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Abstract

We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through
visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output
layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain
modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule
which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur
close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of
head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is
demonstrated to be feasible, and each of the core model components described is tested and found to be individually
necessary for successful self-organization.
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Introduction

The most familiar reference frame in primate visual neurosci-

ence is the eye-centered reference frame, where the receptive fields

of visual neurons are anchored to particular locations on the

retina. Another reference frame for visual responses, often studied

in the context of visually guided action or behaviour, is the head-

centered reference frame. Receptive fields in this reference frame

stay in register with the head. Hence mapping of such visual

receptive fields at different gaze angles produces responses which

are selective for visual targets at particular head-centered locations

regardless of the retinal location.

Head-centered visual representations have been thought to

potentially play a role in at least three different primate

behaviours. First, head-centered visual representations may

support sensorimotor integration, where sensory receptors, for

example in the retina, cochlea or soma, respond in different

reference frames to the motor signal with which they are

integrated, and to the motor effectors they may drive. For

example, to reach out and grasp a cup of coffee in the periphery of

the visual field while reading a newspaper requires the transfor-

mation of an eye-centered visual signal into a representation

suitable for guiding limbs and posture [1]. The head-centered

representation of visual space has been suggested as a possible

intermediate representation in such a transformation [2]. Second,

head-centered visual representations may contribute to the

apparent stability of visual perception in spite of frequent and

rapid eye movements, also known as spatial constancy. This

stability may be supported by head-centered representations

because they encode visual space in a more stable supraretinal

reference frame [3]. Third, head-centered visual representations

may help to support the execution of spatially accurate saccades, in

particular double step saccades [4]. In such a task, two sequential

memory guided saccades are made to two distinct locations of

recently flashed visual targets. The readily available eye-centered

trace activity of the second target cannot guide the second saccade

because it does not account for the execution of the first saccade,

however a head-centered representation would on the other hand

preserve trace activity of the second target in a reference frame

invariant to the first saccade [5].

The majority of relevant physiological work has identified a

population encoding of head-centered space in the form of eye-

centered visual representations with eye position gain modulation.

The influence of gaze on area 7a neurons was first established by

[6], and the precise interaction between the visual and eye position

signals was characterized by [7]. These effects were later also

identified in the lateral intraparietal area (LIP) [8]. This work

described such gain modulated responses as a multiplicative

interaction between a Gaussian retinotopic receptive field and a

planar eye position modulation component. The presence of more

peaked eye position gain modulation in the parietal occipital area

(PO) has also been observed [9,10]. Later work has demonstrated

the existence of explicit single neuron representations of head-

centered space in area PO [11], the ventral intraparietal area

(VIP) [12] and area LIP [13]. The issue we investigate in this

paper is how such head-centered single neuron responses could

develop.

A highly influential early model of head-centered neural

responses and eye position gain modulation was developed by

[14]. This model showed how a neural network trained on

independent visual and eye position signals could develop head-

centered output units, and eye-centered visual units with planar
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gain modulation in the hidden layer. This work relied on

backpropagation learning [15], which is not a biologically

plausible self-organization mechanism. In later work [16] were

able to demonstrate similar results without using backpropagation

learning. However, this improvement still relied on a form of

supervised global error correction learning, which depended on an

error term which is unlikely to be present in the cortex. Another

model of sensorimotor transformation by [17] also employed a

supervised delta rule to modify the synaptic weights [18]. So

supervised error-correction learning has been for some time a

dominant modelling approach in understanding sensorimotor

integration, and the development of head-centered representations

in particular.

The model presented in this paper is distinguished from

previously published work in that it utilizes a biologically plausible

process of visually guided learning to self-organize the synaptic

weights and thereby endow the output neurons with head-

centered responses. This learning mechanism relies on a

combination of a biologically plausible neural network architec-

ture and local synaptic learning rule, combined with plausible

assumptions about the natural movements of the eyes and head

observed in primates [19].

Hypothesis
It was hypothesised that the following four core model

components would permit head centered visual representations

to develop through a biologically plausible process of visually

guided learning:

N There is a population of input neurons that encode both the

retinotopic location of visual targets and eye position at the

single neuron level through coupled visual and eye position

receptive fields.

N There is a population of output neurons that compete with

each other through mutual inhibitory interactions mediated by

inhibitory interneurons.

N The feedforward synaptic connections between the input and

output neurons are modified by a local synaptic trace learning

rule that encourages individual output neurons to learn to

respond to subsets of input patterns that tend to occur close

together in time.

N During natural self-motion, there are periods of time when the

eyes are moving in the head while the head remains stationary

with respect to the visual environment and visual objects also

remain stationary within the environment.

Retinotopic visual neurons with eye position gain modulation,

satisfying the first premise, have been identified in multiple

primate cortical areas [7–9]. Premise two is a standard feature of

cortical architecture, in which competitive interactions between

excitatory neurons are mediated by inhibitory interneurons [20].

Premises three and four are related, in that the latter is the

ecological constraint providing the temporal structure which the

former exploits.

Under the assumption that visual stimuli are relatively static in a

world reference frame, a primate will more often adjust its gaze by

moving its eyes rather than the head itself [19]. This behavioural

strategy is preferable to making frequent energetically costly and

slow head movements to adjust gaze. Evidence for this has been

found during exploration of natural environments with free eye,

head and body movements [21]. It was found that when there was

movement, isolated eye and isolated head movements occurred

33.1% and 13.3% of the time respectively, while the remaining

time involved a mixture of movements. These experimental results

confirm that the eyes move more frequently than the head. A

consequence of this is that, during natural movement, there are

periods when the eyes are moving while the head remains

stationary with respect to the visual environment. This temporal

structure can be exploited by a trace learning rule as follows.

A trace learning rule is a local associative learning rule that

incorporates an exponentially decaying temporal trace of past

neuronal activity. The effect of such a learning rule is to encourage

individual postsynaptic neurons to learn to respond to subsets of

input patterns that tend to occur close together in time [22,23].

If the eyes are moving around a scene containing a visual target

while the head remains stationary, then the visual system will

receive a sequence of input patterns corresponding to the visual

target in different retinal locations but the same relative position

with respect to the head. That is, during this period, the visual

target will change position in the eye-centered space but it will

remain stationary in the head-centered space. The sequence of eye

positions and resulting retinal locations of the visual target will be

represented by the retinotopic eye-position gain modulated input

neurons. The synaptic trace learning rule will bind these input

patterns onto the same output representation precisely because

these input patterns frequently follow each other in time.

The visual system may be exposed on separate occasions to a

number of such input pattern sequences of the visual target in the

same head-centered location, but situated in many different retinal

locations due to rapid movement of the eyes. Each of these

sequences might represent the visual target in a different

randomised subset of retinal locations. These randomised

sequences would randomly overlap with each other, which would

ensure that all possible patterns, corresponding to the same head-

centered location but different retinal locations, are brought into

temporal proximity with each other. In this way, all of the patterns

corresponding to a single head-centered location but different

retinal locations would tend to occur clustered together in time.

This kind of randomised mixing of input patterns has previously

been found to facilitate the temporal binding performed by trace

learning [23]. Given this extensive training, a trace learning rule

would eventually encourage a subset of postsynaptic output cells to

learn to respond to this complete set of input patterns and thereby

learn to respond to the visual target at a particular position in the

head-centered frame of reference regardless of where the visual

target occurs on the retina.

Occasionally the position of the head, itself, will be readjusted,

whereupon this process continues with the visual target in a

different position in head-centered space. That is, the location of

the visual target would be shifted to new head-centered locations

by the natural head movements that occur between sequences of

rapid eye movements. The learning process could thus be repeated

with the visual target presented in many different head-centered

locations. Due to the competitive interactions between the output

cells, a new subset of postsynaptic output cells would learn to

respond to the visual target in each different head-centered

location. In this manner, the output layer would eventually

develop neurons that cover the entire space of head-centered

locations.

Methods

Network Architecture
The architecture of the neural network model is shown in Fig. 1.

The network consisted of two layers of neurons, one projecting to

the other.

The first layer was a population of input neurons that

simultaneously encoded the eye position of the agent and the
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retinal location of the visual target. These were modelled as

retinotopic neurons with eye position gain fields. The retinal and

eye position spaces, representing the range of retinal locations and

eye positions in orbit, covered ½{900,900� and ½{300,300�
respectively. Neurons in the input layer sent feedforward synaptic

connections to neurons in the second layer.

The second layer was a competitive population of N output

neurons that competed to represent patterns in the input layer

[20]. Neurons in the output layer all received the same number of

afferent connections from the input layer, that is w percent of the

input population, but each output neuron received connections

from its own randomly assigned subset of the input neurons.

Neither the input layer nor output layer were topographically

organized, however the input layer is presented topographically

for visualization purposes. There is no evidence for topography

among gain modulated input neurons in either 7a, LIP or PO, nor

among head-centered output neurons in the latter two areas.

At the start of each simulation, the strengths of the feedforward

synaptic connections from the input layer to the output layer were

initialised to random weights in the interval ½0,1�. Then the

synaptic weight vector of each output neuron was renormalized as

is typical in competitive networks [20].

Training the Network on a Combination of Visual and Eye
Position Signals

The network was trained on inputs representing a combination

of a visual signal and eye position signal. The visual signal

represented the retinal location of a visual target in the scene, and

the eye position signal represented the position of the eyes in orbit.

In order to reduce edge effects due to clipping of the input

representations, the retinal locations of visual targets were kept

within the interval ½{630,630�, while the position of the eyes was

kept within ½{240,240�.
In each experiment, M evenly spaced head-centered locations

in ½{630,630� were first chosen. Confining visual targets within

this interval of head-centered space ensured that the visual targets

always remained in view as the eyes moved, given the eye position

space chosen above. Each training epoch was divided into M
periods, each corresponding to one of the chosen head-centered

locations. During such a period, a visual target was located in the

given head-centered location while the eyes saccaded through a

random sequence of P different eye positions uniformly sampled

from ½{240,240�. The duration of each fixation was set to 300ms,

and the saccades between successive eye positions were a constant

velocity of 4000=s.

Thus, during training, the network was presented with

sequences of combined visual and eye position input signals that

represented the visual targets remaining in fixed head-centered

locations while the eyes shifted through randomised positions in

the orbit. This was precisley the kind of spatiotemporal structure to

the input stimuli required by the self-organization hypothesis.

Testing the Network
After training, the model was tested by recording the responses

of the output neurons for all combinations of M different eye

fixation positions and T head-centered visual target locations. The

data from this testing was used to analyse the receptive field

properties of the neurons, including the reference frame of

response, receptive field size and receptive field location. In order

to test the ability of the model to generalise to new input patterns

after training, the responses of the output neurons were tested with

combinations of eye position and visual target location that were

different to what the model had been trained on. Specifically, the

model was tested by having it fixate in M~4 eye positions

{180,{60,60 and 180, during which a single visual target was

placed in each of T~80 head-centered target locations within

½{790,790� in increments of 20. For each combination of eye

position and head-centered visual target location the model fixated

for 300ms, and the firing rates of all neurons in the output layer

were saved at the end of this period for analysis. During testing

there was no learning and all model variables were reset between

different combinations of eye position and head-centered visual

target location. Therefore there is no order effect in the testing.

Neuronal and Synaptic Dynamics
Input Layer. The neurons in the input layer were modelled

by imposing a firing rate function that simulated the response

properties of retinotopic neurons that were modulated by eye

position gain fields. Such neurons have been found in a number of

areas of the primate brain, including area PO [9], 7a and LIP [8].

The response function mapped the eye position, denoted by e,

and the retinal location of a single visual target, denoted by r, onto

the instantaneous firing rate of the ith input neuron, denoted by

v I
i (t), within the range ½0,1�. Specifically, the response was

described by

vI
i ~ exp {

(e{bi)
2

2r2

 !
| exp {

(r{ai)
2

2s2

 !
ð1Þ

This response function was composed of a product of two

components: the first component represented the eye position

gain, while the second component represented the retinotopic

location of the visual target in the scene.

The parameter bi represented the preferred eye position for the

ith input neuron, with the width of the corresponding Gaussian eye

position tuning curve determined by the standard deviation r. The

parameter ai specified the preferred retinal location of a target

stimulus for the ith input neuron, and the standard deviation s
determined the width of the corresponding Gaussian retinal tuning

curve.

This sort of gain field, referred to as a ‘peaked’ gain field, has

been reported in area PO [9]. Each input neuron was set to

respond maximally to a unique combination of retinal target

Figure 1. Network architecture. Architecture of 2-layer neural
network model. The layer of input neurons on the left are projecting to
the competitive output layer on the right. During learning, the
strengths of the feedforward synaptic connections from the input layer
to the output layer are modified by a trace learning rule.
doi:10.1371/journal.pone.0081406.g001
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location ai and eye position bi. The population of input neurons

covered the entire two dimensional space resulting from combi-

nations of eye position and retinal target location in integer steps of

1 degree in each dimension.

Output Layer. For the ith neuron in the competitive output

layer there were three dynamical quantities defined: a trace value

qi(t), an internal activation hi(t) and an instantaneous firing rate

vi(t) [24].

The activation was governed by the equation

th

dhi

dt
~{hiz

X
j

wijv
I
j ð2Þ

where th was a time constant common for all neurons in the

output layer and wij was the synaptic weight of the synapse from

the jth input neuron to the ith output neuron.

The firing rate was given by the equation

vi~
1

1z exp {2w(hi{pp{h)ð Þ ð3Þ

where w was the sigmoid slope and h was the threshold. The

parameter pp was used to regulate the level of competition

between neurons in the output layer, and thereby control the

proportion of neurons that remained active. Specifically, pp was

set to the activation value at the pth percentile point of the

distribution of neuronal activations within the output layer. For

example, if p was set to 90, then pp was set to the top tenth

percentile activation value. This was a practical means of

implementing competition within the competitive output layer,

which in cortex is implemented via inhibitory interneurons [24].

This way of implementing competition has been previously used in

competitive neural network models of the primate visual system

with trace learning [25].

Trace Learning. Trace learning rules utilize a temporal trace

of recent neuronal activity in order to encourage postsynaptic

neurons to bind together subsets of input patterns that occur close

together in time. The trace value for the ith neuron in the output

layer was denoted by qi(t) and was governed by the equation

tq

dqi

dt
~{qizvi ð4Þ

where tq was a time constant common for all neurons in the

output layer.

During training the strength of the synapse from the jth input

neuron to the ith output neuron was governed by the trace

learning rule

dwij

dt
~ qiv

I
j ð5Þ

where was the learning rate, vI
j was the firing rate of the jth input

neuron and qi was the trace value of the ith output neuron.

Finally, to prevent unbounded growth of the synaptic weights

during training, the length of the weight vector for each output

neuron i at time t, that is wi~ wi1, . . . ,wiNI
ð Þ where there are NI

input neurons, was renormalized by setting

wi : ~
wi

wik k
ð6Þ

after each weight update [24]. Experimental evidence for

renormalisation of synaptic weights in the brain has been provided

by [26].

Simulation of the Differential Model
The coupled differential equations 2, 4 and 5 were integrated

numerically using the Forward-Euler scheme, where the numerical

time step Dt was set to one tenth of the neuronal time constant th.

For all simulations the stability of the results was manually

confirmed by checking that the qualitative nature of the results

remained invariant at the single neuron level over reductions in

time step and increases in the number of training epochs.

The combined visual and eye-position input signals during

training and testing were simulated dynamically and sampled at

1kHz. Then, where necessary, linear interpolation was used to

compute the numerical inputs to the discretized Forward Euler

model equations, which required input values at every numerical

time step Dt~th=10.

Analysis of Network Performance
Let R be a matrix containing the responses of a given neuron

during testing, where R½i, j� denotes the firing rate when the model

was fixating in the ith eye position ei and the visual target was in

the jth head-centered location tj , as recorded during the testing

protocol described above. The vector (R½i,1�, . . . ,R½i,T �) is

referred to as the response vector at the ith eye position. The

number of eye positions during testing is denoted by E, while the

number of head-centered locations for visual targets during testing

is denoted by T . The indexing of eye positions and head-centered

target locations were ordered from left (negative) to right (positive),

that is e1ƒ . . . ƒeE and t1ƒ . . . ƒtT .

Reference Frames. To determine which reference frame an

output neuron was responding in during testing, two separate

metrics were applied that reflected to what degree the neuronal

response was compatible with either an eye-centered or head-

centered reference frame, and then the values of these two metrics

were compared.

The head-centeredness metric computed the degree to which

the head-centered response vectors of a neuron remained stable

across different eye positions. The head-centeredness metric

measured the degree of such stability for a given output neuron

by averaging correlations between response vectors for different

eye positions, that is

P~
1

E

2

� � X
1ƒi1vi2ƒE

PT
j~1

R½i1, j�{R½i1�
� �

R½i2, j�{R½i2�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
j~1

R½i1, j�{R½i1�
� �2PT

j~1

R½i2, j�{R½i2�
� �2

s ð7Þ

where

R½i�~ 1

T

XT

j~1

R½i, j� ð8Þ

This yielded a metric which was referred to as the head-

centeredness of the output neuron, and it was bounded between {1
and 1, where a perfect correlation of 1 indicated a perfectly head-

centered response.

A very similar analysis was done to quantify the compatibility of

the responses of the output neuron with an eye-centered frame of

Learning Head-Centered Visual Responses

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e81406

%

%



reference. That is, a visual neuron is judged to respond in an eye-

centered frame of reference to the extent that its eye-centered

response vectors remain stable across different eye positions. The

eye-centered analysis proceeded as follows. To reiterate, each

response vector (R½i,1�, . . . ,R½i,T �) was the result of testing over

the same set of head-centered locations, but with the model fixated

in a distinct eye position. Therefore, each response vector also

corresponded to a unique range of retinal locations. The intersection

of these retinal ranges corresponded to different portions of each

response vector, and it was these portions that were subject to

correlation analysis. Specifically, fi denotes the first vector position

in the i th response vector to be included, and the V{1 next

positions are included as well such that the subvector

(R½i, fi�, . . . ,R½i, fiz(V{1)�) is the vector being used for the

correlation analysis. The derivation of fi and V are found in the

Appendeix S1. This gave the metric

V~
1

E

2

 ! X
1ƒi1vi2ƒE

PV{1

j~0

R½i1, fi1
zj�{R½i1�

� �
R½i2, fi2

zj�{R½i2�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPV{1

j~0

R½i1, fi1
zj�{R½i1�

� �2 PV{1

j~0

R½i2, fi2
zj�{R½i2�

� �2
s

ð9Þ

where

R½i�~ 1

V

XV{1

j~0

R½i, fizj� ð10Þ

This was referred to as the eye-centeredness of the output neuron,

and it was bounded between {1 and 1, where a perfect

correlation of 1 indicated a perfectly eye-centered response.

Response vectors which had no response for the extracted ranges

were excluded from the correlation, and a neuron without a

response within this range of retinal locations at any eye position

was excluded from further analysis.

Both of the reference frame metrics were finally combined into a

receptive field index (RFI) which classified each neuron along a

spectrum from eye-centered to head-centered. The RFI was

defined as

RFI~

P{V if 0ƒPƒ1 and 0ƒVƒ1

P if 0ƒPƒ1 and {1ƒVv0

{V if {1ƒPv0 and 0ƒVƒ1

0 if {1ƒPv0 and {1ƒVv0

0
BBB@ ð11Þ

The index was a continuous valued function bounded between

{1 and 1. An output neuron with either a positive, negative or nil

RFI value was classified as head-centered, eye-centered or

undetermined respectively. In general, a large positive value for

the RFI indicated better compatibility with a head-centered

reference frame than a smaller positive value. Similarly, a large

negative value for the RFI indicated better compatibility with an

eye-centered reference frame than a smaller negative value.

Receptive Field Location. The head-centered receptive field

location of an output neuron was determined as follows. First, the

head-centered receptive field location at each eye position ei for

i~1, . . . ,E during testing was computed. The head centered

receptive field location for the ith eye position was computed using

the centre of mass of the head-centered response vector at this eye

position. Next, the average of these head-centered locations over

all eye positions was computed, and this averaging is shown to be

optimal in the Appendix S2. This gave the final metric for each

neuron

1

E

XE

i~1

PT
j~1

tjR½i, j�

PT
j~1

R½i, j�
ð12Þ

Coverage. It was important to assess how the receptive fields

of head-centered output neurons were distributed over the range

of M head-centered locations used during training. This was to

establish whether the space of head-centered locations was evenly

represented by differently tuned output neurons, and in particular

whether each training location was preferred by at least one head-

centered output neuron. In this analysis it was then determined

how the receptive field locations of head-centered output neurons

were distributed among the head-centered locations where visual

targets were presented during training, denoted by g1, . . . ,gM .

This distribution was determined by first assigning each head-

centered neuron to the closest head-centered training location. Let

pi denote the fraction of head-centered neurons assigned to

training location gi. To ensure that all locations had at least one

neuron assigned to them, and also quantify the extent to which all

locations were evenly represented, the normalized entropy of this

distribution was computed by

{
1

log2 M

XM
i~1

pi log2 pi ð13Þ

and this was referred to as the coverage of the model. A perfectly

uniform distribution would give a maximal value of 1, and if there

was some pi~0 it was undefined and there was said to be no

coverage.

Receptive Field Size. To quantify the receptive field size of a

visual neuron, a firing rate threshold is often chosen to demarcate

the responsive region or receptive field. In the following analysis, a

neuron was considered responsive when it was firing above a

threshold rate C no less than 50% of its maximal rate across all eye

positions and head-centered visual locations, that is

C~
maxi, jR½i, j�

2
ð14Þ

For each eye position, this threshold was used to isolate the

responsive head-centered regions of the given neuron. The total

size of all such regions was added up, estimating the total receptive

field size at the given eye position. The final receptive field size of

the given neuron was the average of all these estimates from the

different eye positions.

To isolate the responsive regions of a neuron at the ith eye

position, a head-centered piecewise linear response function

Ri : ½{790,790�?½0,1� was derived from the ith response vector

using linear interpolation. Responsive regions were isolated by first

finding all solutions x� to the equation C~Ri(x
�), and then
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identifying the regions of head-centered space where the

interpolated neuronal response was above threshold, denoted by

I1
i , . . . ,Ini

i . In practice there was hardly ever more than a single

responsive region per eye position i, that is niƒ1. Finally, the total

size of all responsive regions I1
i , . . . ,Ini

i for each eye position was

averaged across all eye positions, that is

1

E

XE

i~1

Xni

k~1

bk
i {ak

i ð15Þ

where Ik
i ~½ak

i ,bk
i � was the kth region at the ith eye position, of

which there were ni in total. On a few rare occasions, a head

centered neuron did not actually respond in one of the eye

positions. In this case, that eye position was excluded from the

averaging procedure carried out in equation 15.

Results

Self-Organizing Model
This experiment explored the feasibility of the self-organization

hypothesis presented in this paper. The model had 12261 neurons

in the input population, and 900 neurons in the output layer. Each

output neuron received 613 afferent synaptic connections from a

randomly assigned subpopulation of the input population. At the

beginning of training, the synaptic weights were set to random

values. Then the synaptic weight vector of each of the output

neurons was renormalized according to equation 6. The network

was then trained for 20 epochs. During each training epoch, a

visual target was presented for approximately 5s in each of the

eight head centered training locations: {630,{450,{270,
{90,90,270,450 and 630. For each period where the visual target

was in a fixed head centered target location, the eye position was

varied continuously through time as the model made a series of

saccades and fixations. During each such period, the model

performed 14 saccades interleaved with 15 fixations, where each

fixation lasted 300ms. Each saccade was at a constant velocity of

4000=s, and it was directed to a random eye position within the

range ½{240,240�. Each training epoch thus lasted for approxi-

mately 40s, and the entire training of the network was completed

after about 800s of simulated time. The model was tested as

previously described. Figure 2 shows the simulated movements of

the eyes and head centered locations of visual targets during

training and testing. The parameters for the model are given in

table 1.

Figure 3 shows how the firing responses and synaptic weights of

one the output neurons #79 develop during successive stages of

training.

The responses of the output neuron prior to training exhibited

no consistent structure in head-centered space across the different

eye positions (Fig. 3a). However, at both 10 and 20 epochs there

was a maximal response to the same head-centered location across

all four eye positions (Fig. 3c,e), demonstrating more head-

centered response characteristics. Before training, the neuron had

head-centeredness *0.12, eye-centeredness *-0.2, receptive field

location *100, and receptive field size *650. However, the

corresponding metric values at 10 training epochs were *0.79,

*0.13, *80 and *340, indicating the development of head-

centered responses. This became more pronounced at 20 training

epochs, where the response profiles became more sharply focussed

in the head-centered space and the metric values were *0.78,

*0.18, *110 and *250, respectively.

There was also a correspondance between the weight vector of

the output neuron and the response of the neuron during testing at

each stage of training (Fig. 3b,d,f). Prior to training the afferent

synapses had random values and no structure in terms of the

relationship between the weight of a synapse and the character-

istics of the presynaptic neuron. However, during training a clear

diagonal structure developed in the synaptic weights. The most

potentiated synapses were those originating from input population

neurons i which had a preference for a retinal location ai and eye-

position bi corresponding to the head-centered location which the

output neuron preferred. These particular input neurons lay on

the diagonal line that is evident in the synaptic weights at 20
training epochs shown in Fig. 3f. This corresponded to the

diagonal line with gradient {1 and retinal target location

intercept r0 at e~0 equal to the head-centered location preferred

by the neuron.

In summary these results showed that, after 10 and 20 epochs of

training, the neuron responded in a head-centered frame of

reference, while it did not prior to training. Moreover, at both 10
and 20 training epochs there was reasonably good agreement

about the location of the receptive field in head-centered space

according to the neuron’s firing rate responses and learned

synaptic weights. There was also a degree of eye position

modulation evident in the responses of this head-centered neuron.

Figure 4 presents the population analyses of the receptive field

properties of the output neurons after 0, 10 and 20 epochs of

training, and population statistics are given in table 2. The model

before training and after 20 epochs of training is herein referred to

as the untrained and trained model respectively.

Most output neurons in the untrained model had head-

centeredness values and eye-centeredness values clustered close

to zero. However, many more neurons in the fully trained model

had head-centeredness values clustered close to 1, with eye-

centeredness values close to zero (Fig 4a). In particular, table 2

confirms that training the network led to an increase in the

average head-centeredness over the population of output cells

from 0:04 to 0:58. Also, the average RFI was increased from

{0:11 to 0:22 with training. The proportion of neurons with a

head-centered response, as indicated by a positive RFI, was

increased from *26% to *69% during training. Among head-

centered neurons the average head-centeredness was increased

from 0:17 to 0:63 by training. In summary, these results showed

that training the network had the effect of increasing the number

of head-centered neurons, and also refined the response charac-

teristics of individual neurons to be more compatible with a head-

centered frame of reference.

Head-centered neurons in the fully trained model had receptive

fields clustered around one of the eight head centered training

locations, and there was a similar distribution of receptive field

sizes for each of these head centered locations (Fig 4c,d). In

contrast, the head-centered neurons in the untrained model had

receptive fields covering a more localised central region of head-

centered space, and a wider range of receptive field sizes across

head-centered space. The average receptive field location was near

zero for both the untrained and fully trained models, which

indicated that there was no lateralized bias in receptive field

locations in these models. However, while the fully trained model

had head-centered neurons covering all eight head-centered

training locations with a coverage of 0:96, the untrained model

had no head-centered neurons for the two most eccentric head

centered locations ({630 and 630). Lastly, the average receptive

field size decreased from 65:800 to 29:100 during training. This

receptive field size depends on a range of factors, among which are

the size of the receptive fields in the input layer, the level of

competition in the output population, and the number of training

locations during training. Interestingly, as the level of competition
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(p) or the number of training locations (M) increases, the receptive

field size decreases. In both cases, an increase leads to more

vigorous competition among output neurons, which in turn more

severly truncates the skirts of the receptive field curve of output

neurons. Thus, in summary, training the network developed head-

centered neurons covering head-centered space, and also in-

creased neuronal selectivity by reducing the sizes of the head

centered receptive fields.

The output neurons in the model self-organize their afferent

synaptic connections over the course of 20 training epochs by

visually-guided competitive learning [20]. In such a model, it is

important to investigate whether the learning process converges

and the response characteristics of the output neurons settle down

asymptotically to some form of stable behaviour. The impact of

each successive training epoch on the receptive field properties of

output neurons was examined by plotting key summary statistics as

a function of training epoch in Figure 5. It could be seen that the

fraction of output neurons that were head-centered, the average

head-centeredness among head-centered neurons, and the cover-

age of the head centered training locations all increased close to

monotonically during training. Also, the average head-centered

receptive field size decreased monotonically during training. Most

importantly, it was found that these summary statistics converged

on steady values after further training. Thus, the key performance

characteristics of the model developed close to monotonically in

the desired way as the number of training epochs increased.

Input Neurons with Coupled Visual and Eye Position
Receptive Fields

It was hypothesised that the model required input neurons with

coupled visual and eye position receptive fields in order to be able

to develop head-centered output neurons. In this experiment the

necessity of this premise was investigated by exploring how

decoupling the visual and eye position components of the receptive

fields of input neurons would affect the self-organization of the

model. In order to decouple the visual and eye position

components, half of the input neurons were set to respond purely

to the retinotopic location of a visual target, while the other half of

the input neurons were set to respond purely to the eye position.

The experiment otherwise had the same parameters as used in

previous experiment.

The expected result was that with decoupled receptive fields in

the input population the output layer would be unable to form

head-centered representations. The reason for this is that the

single layer of synapses between the input layer and output layer

would not be able to implement a suitable mapping because all of

the input neurons would by definition participate in encoding any

given location in head-centered space. This problem is solved in a

model with input neurons with coupled visual and eye position

receptive fields because the individual input neuron has a selective

response corresponding to a particular location in the head-

centered space.

Table 3 presents typical population summary statistics of the

response properties of output neurons from the model with input

neurons with decoupled visual and eye position receptive fields.

The statistics were computed over subsets of output neurons for

which the head-centeredness and eye-centeredness metrics were

mathematically defined. This meant that 10% and *98% of

neurons had to be discarded from further analysis in the untrained

and trained model respectively. The table shows that the average

head-centeredness did increase from 0:03 to 0:12 after training.

However, the greatest head-centeredness value found among the

trained ouput neurons was only 0:26. Moreover, all output

neurons had a negative RFI, indicating an eye-centered response.

Figure 6 presents the firing responses and synaptic weights of one

of the output neurons #170 from the model. The results are

shown after training. It can be seen that the neither the firing

responses of the output neuron nor the afferent synaptic weights

were consistent with a head centered receptive field.

The results described here were typical over a broad range of

model parameter values. Thus, these results demonstrated that

decoupling the visual and eye position receptive fields of input

Figure 2. Stimuli data points. Simulated movements of the eyes and head-centered locations of visual targets during training and testing. (A)
Scatter plot in which each point corresponds to a single fixation during either training (red) or testing (blue). The fixation points are plotted as a
function of the eye position (abscissa) and the retinal location of the visual target (ordinate). Each of the diagonal lines of red points corresponds to a
period during training when the visual target was fixed in one of the eight head-centered target locations while the eyes moved. The vertical lines of
blue points correspond to the four eye positions in which the network was tested. (B) Multiple plots showing how the eye position is shifted through
time in a randomised manner during training. Each plot corresponds to a different period during which the visual target is maintained in a fixed head
centered location.
doi:10.1371/journal.pone.0081406.g002
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neurons prevented the development of head-centered output

neurons during training, and in fact had the opposite effect.

Competitive Interactions between Output Neurons
It was hypothesised that the model required competitive

interactions between the output neurons in order to develop

head-centered representations in the output population. The

function of such competitive interactions is to ensure that only a

small subset of output neurons remain active at any time. The

effect of this, when combined with some form of associative

synaptic learning, is to encourage individual output neurons to

learn to respond highly selectively to distinct subsets of input

patterns, with different output neurons learning to respond to

different subsets. The subsets of input patterns that the output

neurons learn to represent reflect natural groupings within the

space of input patterns, and may also depend on the form of

associative learning rule used. This kind of learning process is

known as competitive learning [20].

In this experiment, the necessity of competitive interactions

between output neurons was investigated by exploring how

turning off these competition interactions affected the self-

organization of the model. In previous experiments, the compet-

itive interactions between output neurons were mediated by a

dynamically adjusted response threshold pp ensuring that all

neurons with activation less than the pth percentile of the

activation distribution would fall below the sigmoidal response

threshold, as specified in equation 3. In the simulations described

next, turning off the competitive interactions between output

neurons was achieved by setting the activation threshold to p~0.

This effectively permitted all of the output neurons to remain

active. The experiment otherwise had the same parameters as the

first experiment.

Results from a simulation without competitive interactions

between output neurons are given in Figure 7, which shows the

firing responses and synaptic weights of output neuron #409

before and after training. Prior to training the neuron responded

to a large portion of head-centered space at all eye positions

(Fig. 7a). Although there was a weak response in the center of

head space across all eye positions. This was reflected in

head-centeredness and eye-centeredness values of *0.30 and

*0.015 respectively, indicating a modest head-centered response.

The size of the receptive field before training was *660. After

training the responses were more coordinated across all eye

positions (Fig. 7c), with a much larger response localised in the

middle of the head-centered space. The head-centeredness and

eye-centredness values were *0.75 and *0.30 respectively,

showing that training had significantly increased the head-

centeredness of the neuron. The weight vector (Fig. 7d) reflected

this as well. However, unlike previous simulations with competi-

tion in the output layer, the receptive field size of this neuron after

training remained very large, approximately 460. Thus, although

the neuron was head-centered, the head-centered receptive field

was so large that the neuron would not convey much information

about the location of a visual target in the head-centered space.

This finding was also typical of other neurons in the output layer

after training without competitive interactions between output

neurons.

Further results from the same simulation are given in Figure 8,

which presents the population analyses of the receptive field

properties of the output neurons before and after training.

Population summary statistics for the simulation are given in

table 4. The fraction of output neurons that were head-centered

increased from *0.25 to *0.67 with training, and among head-

centered neurons the average head-centeredness increased from

0:2 to 0:44. However, unlike previous simulations with competi-

tion in the output layer that developed highly selective head

centered output neuron responses, the average receptive field size

among head-centered neurons had a relatively large value of

46:740. This was *68% larger than the corresponding receptive

field size of 280 in the experiment described above with

competition between output neurons.

In summary, these results show that, while the model without

competition between output neurons is capable of producing more

head-centered output neurons after training, these output neurons

actually develop much larger receptive fields in head centered

space. This means that such output neurons would in fact convey

much less information about the head-centered location of a visual

target than output neurons from a model that incorporated

competition within its output layer.

Temporal Binding
It was hypothesised that the model required a synaptic learning

rule that incorporated a memory trace of recent neuronal activity

in order to encourage output neurons to bind together input

patterns that tended to occur close together in time. If, for much of

the time, visual targets tend to remain fixed with respect to the

head while the eyes move, then such a trace learning rule will

encourage individual output neurons to learn to respond when the

visual target is in a particular head-centered location regardless of

the position of the eyes and hence the retinal location of the target.

If the memory trace is removed from the learning rule, then this

temporal binding cannot occur which should lead to a failure of

the output layer to develop head centered representations.

A memory trace can be incorporated into the synaptic learning

rule in a number of alternative ways [27,28]. Equation 5 gives an

example of a learning rule in which an explicit trace term qi(t) has

been incorporated.

However, an alternative, and even simpler approach, is to use a

standard hebbian learning rule

dwij

dt
~‘viv

I
j ð16Þ

Table 1. Parameters of self-organizing model.

Parameter Symbol Value

Number of target locations M 8

Fixation sequence length P 15

Number of training epochs - 20

Width of eye position tuning curve r 60

Width of retinal tuning curve s 60

Output neuron population size N 900

Input neuron population size 12261

Trace time constant tq 400ms

Activation time constant tu 100ms

Activation function slope w 4:5

Activation threshold threshold h 0:4

Sparseness percentile p 80%

Learning rate ‘ 0:05

Synaptic connectivity q 5%

Parameters of self-organizing model.
doi:10.1371/journal.pone.0081406.t001
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where wij(t) is the synaptic weight from presynaptic neuron j to

postsynaptic neuron i, vI
j and vi are the firing rates of the pre- and

postsynaptic neurons respectively, and ‘ is the learning rate. The

hebbian learning rule 16 is combined with synaptic weight

normalization 6 to prevent unbounded growth of the synaptic

weights during training. If the time constant th governing the

activation of the postsynaptic neuron in equation 2 is increased,

then this will lengthen the period of time taken for the activations

and hence firing rates of these neurons to decay. In this case, the

sustained neuronal activity effectively provides an implicit memory

trace in the hebbian learning rule 16 that can promote temporal

binding of input patterns that occur close together in time.

The necessity of a memory trace in the synaptic learning rule

was investigated in two sets of simulations. In the first set of

simulations, the trace rule 5 was tested. Here the duration of the

memory trace was varied by varying the time constant tq of the

neuronal trace qi in equation 4 over three orders of magnitude. In

the second set of simulations, the Hebbian learning rule 16 was

tested. In this case, the duration of the effective memory trace was

controlled by varying the neuronal activation time constant th in

equation 2 over the same range.

Figure 3. Neuron #79 firing responses and weight vector before and after training. The development of the firing responses and synaptic
weights of output neuron #79 before and after training. Results are presented before training (top row), after 10 training epochs (middle row) and
after 20 training epochs (bottom row). Plots in the left column show the firing rate responses of neuron #79 during testing. Within each plot, each
curve corresponds to a fixed eye position while a visual target is presented in a range of head-centered locations. The vertical line shows the decoded
head-centered receptive field location, and the grey bar shows the decoded receptive field size of the neuron. The minature scatter plot shows the
response characteristics of all neurons in the output layer, where each neuron is plotted as a point corresponding to that neuron’s particular
combination of head-centeredness (ordinate) and eye-centeredness (abscissa). The neuron whose firing rate responses have been plotted is shown in
the scatter plot by a red mark. Plots in the right column show the synaptic weights of synapses afferent to neuron #79. Within each plot the synapses
have been arranged topographically by the effective preference of the input neuron for retinal location ai and eye position bi .
doi:10.1371/journal.pone.0081406.g003

Figure 4. Population analysis of receptive field properties. Population analyses of receptive field properties of output neurons during
succcessive stages of training of the self-organizing model. Results are presented before training, after ten training epochs, and after 20 training
epochs. (A) Scatter plot shows the reference frame response characteristics of all neurons in the output layer, where each neuron is plotted as a point
corresponding to that neuron’s particular combination of head-centeredness and eye-centeredness. Neurons from the untrained model are shown in
blue, neurons from the trained model are shown in red. (B) Distributions for receptive field index values before and after training. (C) Scatter plot
showing the combination of head centered receptive field size and head-centered receptive field location of all head-centered output neurons before
and after training. (D) Histograms showing the frequency distribution of the numbers of output neurons that responded preferentially to each of the
head-centered locations which were used to train the model.
doi:10.1371/journal.pone.0081406.g004
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In both sets of simulations, it was expected that decreasing the

relevant time constant, tq or th, should reduce temporal binding

by the output neurons. This is because the neuronal activity

variables, that is the trace qi and firing rate vi, used in the two

learning rules would reflect more recent neuronal activity and be

less able to retain a memory of previous activity. This should lead

to temporal binding over a shorter time window, and therefore

retard the ability of output neurons to bind together and represent

temporally proximal input patterns, which was hypothesized to be

required for the development of head-centered output neurons.

Thus, reducing the time constants tq or th was expected to

degrade the ability of the output layer to develop head-centered

representations. The simulations otherwise had the same model

parameters as the first experiment.

The two sets of simulations also aimed to investigate the relative

efficacies of the trace learning rule 5 and hebbian learning rule 16

as mechanisms for temporal binding and consequently driving the

development of head-centered output representations.

Figure 9 shows the effects of varying the length of the activation

time constant th and the trace time constant tq in the hebbian

learning rule 16 and trace learning rule 5, respectively. The impact

of varying the relevant time constant on the characteristics of the

model was investigated by plotting key summary statistics as a

function of the given time constant.

The observations from the simulations with the hebbian

learning rule were as follows. For time constant th greater than

100ms, the head-centeredness rate was above the baseline rate in

the untrained model, which was *25%. The head-centeredness

rate reached a maximum value of *55% at th~800ms. For th

less than 2s, the coverage did not drop below *0.77. There was

no coverage for the untrained model. The average head-

centeredness among head-centered neurons remained above the

untrained average of *17% across the entire range of th, peaking

at *52% when th~500ms. Lastly, the average receptive field size

among head-centered neurons was below the untrained model

average of *650 for all thv2s. In summary, this showed that

across a wide range of values of the activation time constant th the

prevalence of head-centered neurons and the compatability of

their responses with a head-centered frame of reference were

increased as a result of training. Although, for extreme values of th

in either direction the model performed worse.

The results of the simulations with a trace learning rule were

qualitatively similar. For simulations with the trace time constant

tq greater than 10ms the head-centeredness rate was above the

untrained rate. The head centeredness rate reached a maximum

value of *75% when tq~800ms. There was coverage for all

values of tq less than 8s, and the coverage peaked at *0.97 when

tq~800ms. The average head-centeredness among head-centered

neurons remained above the untrained average across the entire

range of values of tq, peaking at *69% for tq~400ms. The

average receptive field size among head-centered neurons was

below the untrained model average for all values of tq. Overall,

these results demonstrated that, across a broad range of values of

tq, training led to an increase in the number of head-centered

neurons and the compatability of their responses with a head-

centered frame of reference. Moreover, the simulations with the

trace learning rule produced somewhat better performance in

terms of both head-centeredness rate and average head-centered-

ness than the simulations with the hebbian learning rule.

Movement Statistics of Eyes, Head and Visual Targets
It was hypothesised that the model required that for some

periods of time the visual target remained remained stationary in

head-centered space while the eyes moved in order for output

neurons to develop head-centered responses using the trace

learning rule. This would cause different input patterns corre-

sponding to a single head-centered target location to be clustered

together in time. However, if the number of eye fixation positions

P within each such period was reduced, then the trace learning

rule would be prevented from binding together input patterns

corresponding to the same head centered target locations. This

would degrade the ability of the output layer of the model to form

head-centered representations.

This experiment investigated the necessity of saccading between

a sufficiently large number of successive eye position fixations for

each fixed head-centered target location during training. It was

expected that the output neurons would develop more strongly

head-centered responses as the number of eye fixation positions P

for each head centered target location was increased. More

importantly, it was anticipated that the trained model would fail to

produce output neurons with head-centered responses, in com-

parison to the untrained network, as P was reduced to 1. The

sequence length was varied from P~1 to P~11, and the

simulations otherwise had the same parameters as the first

experiment.

Table 2. Results for self-organization experiment.

Untrained 10 Epochs 20 Epochs

All RFI w0 (*26%) All RFI w0 (*59%) All RFI w0 (*69%)

Head-centeredness 0:04 (0:14) 0:17 (0:12) 0:37 (0:25) 0:47 (0:22) 0:58 (0:19) 0:63 (0:16)

Eye-centeredness 0:18 (0:16) 0:04 (0:12) 0:29 (0:21) 0:21 (0:16) 0:36 (0:24) 0:25 (0:15)

RFI {0:11 (0:18) 0:10 (0:09) 0:08 (0:28) 0:26 (0:18) 0:22 (0:31) 0:38 (0:20)

RF Location 0:090 (16:770) {0:220 (18:460) {0:590 (32:020) {0:920 (30:590) {1:760 (40:720) 1:020 (34:450)

RF Size 65:800 (7:150) 66:430 (6:720) 43:000 (14:190) 40:690 (13:650) 29:100 (7:780) 28:610 (7:290)

Population summary statistics of response properties of output neurons in the model at three different stages of training. Results for the untrained model are shown in
the left two columns, results for the model after 10 epochs of training are shown in the middle two columns and the results for the model after 20 epochs of training are
shown in the rightmost two columns. For each stage, results are presented in two subcolumns: statistical measures computed over all output neurons are shown in
the left subcolumn, while measures computed over neurons with a receptive field index greater than zero indicating head-centered responses are shown in the right
subcolumn. Each row corresponds to a different performance metric: head-centeredness, eye-centeredness, receptive field index, head-centered receptive field location,
and head-centered receptive field size. Each cell of the table shows the mean and standard deviation (in parentheses) of the peformance metric over the relevant
population of output neurons.
doi:10.1371/journal.pone.0081406.t002
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The effects of varying the length of the fixation sequence for

each fixed head centered target location on the peformance of the

trained model was investigated by plotting key summary statistics

as a function of P in Figure 10. Most importantly, the head-

centeredness rate and the average head-centeredness increased

almost monotonically with the length of the fixation sequence.

Moreover, for all Pw1 the head-centeredness rate and average

head-centeredness were greater than the corresponding values for

the untrained model, which were *26% and *0.17, respectively.

For all Pw1, there was always coverage, which was never less than

*0.89, and which remained stable for all fixation sequence

lengths. Like previous experiments, the average receptive field size

among head-centered neurons decreased as head-centeredness

rates increased, and remained stable for large values of P.

These simulations confirmed that the output neurons developed

more head centered responses as the length, P, of the fixation

sequence for each fixed head centered target location was

increased. For the the shortest possible fixation sequence P~1,

the output neurons in the trained model had a lower value of head

centeredness rate than the untrained model. These observations

confirmed that for output neurons to develop head centered

responses, the eye position must move through a sufficiently large

number, Pw1, of successive fixations while the visual target

remains in a fixed head-centered location.

Discussion

This paper investigated the feasibility of the hypothesis that a

biologically plausible process of visually-guided learning could

produce neurons with head-centered receptive fields in a model

that combined the following four core components: (i) input

neurons that encoded the retinotopic location of a visual target

and eye position through coupled receptive fields; (ii) output

neurons that competed with each other through mutual inhibitory

interactions; (iii) a synaptic learning rule that incorporated a

memory trace of recent neural activity; and (iv) periods of time

Figure 5. Population analysis for varying number of epochs of training. Population analyses of receptive field properties of output neurons
in the self-organizing model during succcessive training epochs. There are four plots as follows. The average receptive field size curve (black) shows
the average size of the head centered receptive field among head-centered neurons, and the error bars represent the standard deviations. The head-
centeredness rate (blue) was the fraction of output neurons that were head-centered. The coverage curve (green) was the coverage of the head-
centered training locations by the output neuron population after the given number of epochs of training, where missing data points before epoch 5
were due to at least one of the eight head-centered training locations not being represented by the output cells. The average head-centeredness
curve (red) was the average head-centeredness value among all head-centered neurons, and the error bars were the standard deviations.
doi:10.1371/journal.pone.0081406.g005

Table 3. Results for experiment with input neurons with
decoupled receptive fields.

Untrained Trained

Head-centeredness 0:03 (0:14) 0:12 (0:08)

Eye-centeredness {0:84 (0:13) 0:68 (0:12)

RFI {0:87 (0:18) {0:55 (0:16)

RF Location {0:660 (25:030) 3:080 (34:260)

RF Size 56:060 (11:230) 28:790 (9:400)

Population summary statistics of response properties of output neurons in the
model with decoupling of the visual and eye position components of the
receptive fields of input neurons. Results are given before training (left column)
and after training (right column). Each row corrresponds to a different
performance metric: head-centeredness, eye-centeredness, receptive field
index, head-centered receptive field location, and head-centered receptive field
size. Each cell of the table shows the mean and standard deviation (in
parentheses) of the performance metric over a subset of output neurons
described in the text.
doi:10.1371/journal.pone.0081406.t003
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when the head and visual targets remained stationary while the

eyes moved. It was successfully established, through computer

simulation, that the combination of these core model components

did allow for the development of head-centered visual represen-

tations in the output layer of the network. After training, output

neurons were found to have receptive fields well aligned with the

head-centered target locations the model was exposed to during

training, and their receptive fields were stable across different eye

fixation positions as required. Control experiments were then

conducted to investigate whether the four core model components

described above, having been established as sufficient, were also

individually necessary for the model to successfully self-organize

head-centered output representations.

It was shown that decoupling the visual and eye position

dimensions of the receptive fields of input neurons prevented the

model from developing head-centered output neurons during

training. This result confirmed that input neurons with coupled

visual and eye position receptive fields were indeed a necessary

model component. Simply having the required input information,

namely retinal target location and eye position, in a decoupled

representation did not enable successful self-organization. This

was because with input neurons that have decoupled receptive

fields there does not exist any set of synaptic weights that can effect

a mapping to head-centered output neurons. So no self-

organisational synaptic learning process can solve this problem

because there is in fact no solution. This can be understood by

considering the following. For an output neuron to respond to a

particular head centered location, it must respond to a set of many

specific combinations of retinal target location and eye position

that correspond to that head-centered location. These combina-

tions will together cover large portions of the retinal target location

space and eye position space. However, the inputs from these two

spaces are represented independently. This means that the output

neuron must have strengthened synaptic connections from input

neurons representing a broad region of the retinal target location

space, as well as input neurons representing a broad region of the

eye position space. Indeed, all retinal target locations will map

onto most head-centered locations (depending on eye position),

and all eye positions will map most head-centered locations

(depending on retinal target location). In this case, the output

neuron will receive equal stimulation from the many possible

combinations that can be constructed from these large portions of

the retinal target location and eye position spaces, not just

combinations corresponding to one specific head-centered loca-

tion. In this case, the output neuron cannot respond selectively to

just one head-centered location. Thus, with input neurons with

decoupled receptive fields, there is no set of synaptic weights that

can effect a selective mapping to head-centered output neurons.

These results may therefore help to explain the functional

significance of neurons with coupled visual and eye position

receptive fields that have been reported in cortical area PO by [9].

This, in turn, would highlight the need for multiple stages of

neural processing of the visual and eye position signals in the brain

in order to develop neurons at an intermediate stage with coupled

receptive fields, which then provide the required inputs for the

Figure 6. Neuron #170 firing responses and weight vector.
Analysis of one of the output neurons #170 from the model with input

neurons with decoupled visual and eye position receptive fields. Results
are presented after training. (A) The firing rate responses of the output
neuron. (B) and (C) Histograms of afferent synaptic weights onto the
output neuron from input cells that represent the retinal target location
and eye position, respectively. The histograms in (B) and (C) were
produced by finding the sum of all synaptic weights from input neurons
with the given retinal location (a) or eye position preference (b)
respectively. Both histograms have bin sizes of 10.
doi:10.1371/journal.pone.0081406.g006
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model architectures presented. These neurons with coupled visual

and eye position receptive fields may then fascilitate subsequent

stages of neural processing, such as competitive trace learning to

produce head-centered output representations.

The general form of network architecture used to develop head-

centered output neurons is known as a competitive neural network

[15,20]. Such a network implements competitive interactions

between the output neurons during training and testing. The

competition is needed to encourage individual output neurons to

learn to respond selectively to particular subsets of input patterns,

with different output neurons responding to different subsets of

input patterns. The subsets (categories) of input patterns that the

output neurons learn to represent depend on the structure of the

space of input patterns, the temporal order in which the input

patterns are presented during training, and the kind of learning

rule used to modify the synaptic weights. The model simulations

reported above confirmed that competitive interactions were

needed within the output layer in order to force individual output

neurons to learn to respond selectively to subsets of input patterns

corresponding to particular head-centered locations. This result

was consistent with standard theory of learning and self-

organization in competitive neural networks [15,20].

It was shown that diminishing the efficacy of the synaptic

learning rule to bind temporally proximal input patterns

undermined the ability of the model to develop head-centered

output neurons during training. Both the trace learning rule 5 and

the hebbian learning rule 16 were sensitive to their relevant time

constant, namely the trace time constant tq in equation 4 and

activation time constant th in equation 2, respectively. Only the

middle range of values of these time constants allowed the model

Figure 7. Neuron #409 firing response and weight vector. Results from a simulation without competitive interactions between output
neurons. The Figure shows the firing responses and synaptic weights of one the output neurons #409 before training (top row) and after 20 training
epochs (bottom row).
doi:10.1371/journal.pone.0081406.g007
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to develop head-centered output neurons. For very small time

constants the memory trace of previous neural activity was

dissipated too quickly for it to support learning of subsequent input

patterns. For very large time constants the memory trace had too

much inertia for previous neural activity to drive it up in the first

place. Thus, in order to achieve effective temporal binding of input

patterns, there was a need for a trace term that could be effectively

driven up (i.e. a short enough time constant) but also remain for

some period of time to support learning (i.e. a long enough time

constant).

The fact that a Hebbian learning rule could effect temporal

binding of input patterns was an important result. Previous

research had appeared to show that a hebbian learning rule could

not effect such temporal binding [23,27]. However, this previous

research had tested a more usual discrete time hebbian learning

rule of the form Dwij~‘vivj . Such a discrete time version of a

hebbian learning rule does not contain any memory trace of

previous neural activity and so cannot perform temporal binding

of input patterns. However, the hebbian learning rule 16 and

activation equation 2 implemented in the simulations reported

were time-continuous differential formulations. The differential

equation 2 simulated neuronal activations with an expo-

nential decay governed by the time constant th, which ensured

the activation hi effectively represented a memory trace of

recent neural activity. This memory trace of activity was then

incorporated into the hebbian learning rule 16, which allowed the

learning rule to perform temporal binding. An upshot of this result

is that temporal binding in the brain may be performed by a

simple hebbian learning rule without the need to invoke and

explain additional mechanisms required for the explicit trace term

qi used in the trace learning rule 5. Indeed, temporal binding has

recently been demonstrated in a more biophysically detailed

model with spiking neurons and a STDP learning rule [29]. In

these simulations, temporal binding was enhanced by increasing

the time constant of the synaptic conductances, which controlled

the flow of current into the postsynaptic neuron. These simulations

provided one biologically plausible mechanism for temporal

binding in the brain.

However, the simulations reported showed that the trace

learning rule was more efficacious than the hebbian learning rule

in terms of producing head-centered output neurons. In particular,

simulations with the trace learning rule gave larger values for both

the head-centeredness rate and average head-centeredness. One

factor that might have contributed to this observation is that the

trace learning rule allows postsynaptic neurons to learn regardless

of whether they win the competition at the current time, while the

hebbian learning rule requires the output neuron to win the

competition at the current time to allow learning. Another factor

responsible for the different efficacies of the two learning rules may

be as follows. The pre- and postsynaptic terms in the hebbian

Figure 8. Population analysis in experiment without competition in output layer. Simulation results without competitive interactions
between output neurons. Population analyses of the receptive field properties of output neurons are presented before training (blue) and after
training (red). (A) Scatter plot showing the reference frame response characteristics of all neurons in the output layer. (B) Scatter plot showing the
combination of head centered receptive field size and head-centered receptive field location of all head-centered output neurons.
doi:10.1371/journal.pone.0081406.g008

Table 4. Results for experiment without competition in output layer.

Untrained Trained

All RFI w0 (*25%) All RFI w0 (*67%)

Head-centeredness 0:05 (0:14) 0:20 (0:12) 0:38 (0:19) 0:44 (0:18)

Eye-centeredness 0:16 (0:17) 0:05 (0:12) 0:27 (0:20) 0:20 (0:15)

RFI {0:10 (0:19) 0:12 (0:10) 0:10 (0:25) 0:24 (0:16)

RF Location 0:000 (15:720) 1:230 (17:930) {2:010 (24:180) 0:350 (25:170)

RF Size 64:610 (5:190) 64:280 (5:060) 46:960 (6:680) 46:740 (6:770)

Simulation results without competitive interactions between neurons in the output layer. Population summary statistics of response properties of output neurons are
shown before training (left two columns) and after training (right two columns). For each of these two stages of training, statistical measures computed over all output
neurons are shown in the left subcolumn, while measures computed over neurons with a receptive field index greater than zero are shown in the right subcolumn.
doi:10.1371/journal.pone.0081406.t004
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learning rule represent the activities of these neurons over the

same short time interval, which the rule associates together. Thus,

there is only limited association and binding across time. In

contrast, the pre- and postsynaptic terms in the trace learning rule

represent the activities of these neurons over different, albeit

nearby, time intervals. This helps to promote temporal binding of

input patterns separated across time. These results suggest that it

may be possible to further enhance the efficacy of the trace

learning rule by incorporating an explicit time delay into the trace

term. That is, the ability of the model to develop head-centered

output neurons by temporal binding may be further improved by

using a trace learning rule of the form
dwij (t)

dt
~‘qi(t{Dt)vI

j (t)

where Dt is a short delay of the order of, say, tens of milliseconds.

The precise form of the trace learning rule and how this affects the

performance of the model will remain an important issue for

future research.

A core requirement for the model to produce head-centered

output neurons through visually-guided learning is that there are

periods of time during which the head and visual target remained

fixed while the eyes move around a visual scene. This is a

reasonable assumption because most visual stimuli remain static in

the visual world for most of the time, and a primate will more

frequently adjust its direction of gaze by moving its eyes rather

than its head [19]. This will ensure that input patterns

corresponding to a fixed head-centered location of the visual

target will be clustered together in time. In this case, the trace

learning rule is able to encourage individual output neurons to

learn to respond selectively to subsets of input patterns

corresponding to particular head-centered target locations. The

simulations reported above confirmed the feasibility of this

hypothesized mechanism for the development of head-centered

visual representations in the primate dorsal visual pathway.

Moreover, if these movement statistics were altered during

Figure 9. Varying time constants th and tq. Simulations exploring the effects of varying the length of the activation time constants th and the
trace time constant tq in the hebbian learning rule 16 and trace learning rule 5, respectively. The top row shows the series of simulations where a
hebbian learning rule was used and the activation time constant was varied. The bottom row shows the series of simulations where a trace rule was
used and the trace time constant was varied. The left plots show the fraction [½0,1� of output neurons that were deemed to be head centered (blue
curve), and the coverage of the head centered training locations by the output neuron population (green curve). The right plots present the average
size of the head centered receptive field among head-centered neurons (black curve), and the average head-centeredness value among all head-
centered neurons (red curve). The error bars on these last two curves represent the standard deviations. The dashed line in each plot shows the
corresponding quanitity in the untrained model, and since there was no coverage in the untrained model this line is absent.
doi:10.1371/journal.pone.0081406.g009
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training by reducing the number of eye fixation positions P for

each fixed head-centered target location, then, consistent with the

hypothesis, this prevented the model from forming head-centered

output representations. Of course, across different times, primates

will experience a variety of different kinds of movement statistics of

the eyes, head and visual targets. For example, sometimes a

primate will move its head with respect to the static visual world,

or a visual object will move while the eyes and head remain

stationary. These are not the kind of movements required to build

head-centered visual representations by binding of temporally

proximal input patterns. However, this should not be a problem

for the model, which should be capable of learning multiple

different kinds of output representations. That is, when the eyes

are moving while the head and visual target remain fixed, then

some output neurons will learn to represent the head-centered

location of the target. At other times, when the model is trained on

different movement statistics, other output neurons may learn

different kinds of representations such as eye-centered target

locations. Indeed, evidence for this is provided by the fact that

individual cortical regions such as LIP and PO do indeed contain a

heterogenous population of neurons with different response

characteristics, including both eye-centered and head-centered

responses [11,13].

The majority of past experimental and theoretical work in

coordinate transformation from an eye- to a head-centered

reference frame has focused on parietal areas LIP and 7a. In

these areas eye position gain modulated retinotopic neurons are

easily isolated, and consequently the planar eye position gain fields

in these areas were studied in detail [8]. Later work identified eye

position gain fields in area PO that were peaked rather than

planar. Subsequent theoretical work demonstrated that this form

of gain modulation improved the efficiency of the model by

reducing the number of neurons necessary to encode the visual

target position [10], and such modulation has also been used in

other influential sensorimotor work with head-centered output

representations [30,31]. Some researchers speculated in early work

that the difficulty in identifying head-centered neural representa-

tions at the single neuron level was evidence that eye position gain

modulated neurons in parietal areas were the last stage of

sensorimotor integration of signals representing the retinal location

of visual targets and eye position, and that head-centered

representations were only available at the population level of

these eye position gain field neurons [8]. Subsequent experimental

work did, however, reveal that multiple parietal areas, including

PO, LIP and VIP, did have head-centered representations [11–

13]. However, it still remains to identify the flow of signals between

the various relevant cortical areas, and it is possible that

experimental studies will not show an obvious, simple progression

from eye-position gain modulated retinotopic neurons to head-

centered neurons between two successive visual areas in the brain.

For example, neuroanatomical studies have shown that area PO

and area LIP are reciprocally connected [32], hence head-

centered neurons in area LIP might develop using the trace

learning principles described in this paper applied to the afferent

synaptic connections received from eye-position gain modulated

retinotopic neurons present in area PO. However, these head-

centered neurons in LIP might then project back to other neurons

in PO, which would then inherit head-centered response

characteristics from the LIP inputs. This would give rise to a

mixed population of both eye-position gain modulated retinotopic

neurons and head-centered neurons in area PO, which is in fact

what has been observed experimentally [11]. Nevertheless, the

head-centered representations present in these areas would

still initially develop by trace learning in the projections from

Figure 10. Varying fixation sequence length P. Simulations exploring the effects of varying the number, P, of eye fixation positions for each
fixed head centered location of the visual target during training. Results are presented showing the response characteristics of the output neurons
after 20 epochs of training. The dashed lines represent the corresponding values for the untrained network.
doi:10.1371/journal.pone.0081406.g010
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eye-position gain modulated retinotopic neurons in area PO to

area LIP. Another possible network architecture is that head-

centered neurons in area PO develop by trace learning in the

recurrent connections from eye-position gain modulated retino-

topic neurons in area PO. Then, these head-centered neurons in

area PO may project to neurons in area LIP that would then

inherit these head-centered firing characteristics. There are many

possible network architectures in which head-centered represen-

tations may develop without a readily apparant, simple progres-

sion from eye-position gain modulated retinotopic neurons in one

visual area to head-centered neurons in a succeeding area. These

more complex network architectures are characterised by the

presence of either recurrent connections between neurons within

an area, or the presence of both feedforward and feedback

connections between different areas. Furthermore, these types of

synaptic connectivity are indeed typical architectural features of

the cortex [20]. Nevertheless, the trace learning mechanisms

described in this paper may still operate in these more complex

architectures in the manner described.

In conclusion, the model presented here provides a biologically

plausible explanation of the mechanisms underpinning the

development of head-centered visual representations in the

macaque cerebral cortex. The model is distinguished from other

previously published work by its relatively high degree of

plausibility. The model uses a biologically plausible neural network

architecture and local synaptic learning rule. In particular, the

synaptic connections self-organize through a biologicaly plausible

process of unsupervised, visually-guided, competitive learning.

Unsupervised learning means that no implausible artificial

teaching signal is used to set the firing rates of the output neurons

during training [15,20]. The model also utilises the natural

movements of the eyes and head observed in primates [19]. The

plausible way in which the required synaptic connections are set

up within the model contrasts sharply with previously published

work using error correction learning.

Supporting Information

Appendix S1 Eye-Centeredness Reference Frame Anal-
ysis. This appendix demonstrates how the terms fi and V , used to
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Appendix S2 Head-Centered Receptive Field Location.
This appendix demonstrates how the head-centered receptive field

location is derived.

(PDF)
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