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Abstract

Background: Clostridium difficile is one of the most common and important nosocomial pathogens, causing severe
gastrointestinal disease in hospitalized patients. Although "bundled" interventions have been proposed and promoted,
optimal control strategies remain unknown.

Methods: We designed an agent-based computer simulation of nosocomial C. difficile transmission and infection, which
included components such as: patients and health care workers, and their interactions; room contamination via C. difficile
shedding; C. difficile hand carriage and removal via hand hygiene; patient acquisition of C. difficile via contact with
contaminated rooms or health care workers; and patient antimicrobial use. We then introduced six interventions, alone and
"bundled" together: aggressive C. difficile testing; empiric isolation and treatment of symptomatic patients; improved
adherence to hand hygiene and contact precautions; improved use of soap and water for hand hygiene; and improved
environmental cleaning. All interventions were tested using values representing base-case, typical intervention, and optimal
intervention scenarios.

Findings: In the base-case scenario, C. difficile infection rates ranged from 8–21 cases/10,000 patient-days, with a case
detection fraction between 32%–50%. Implementing the "bundle" at typical intervention levels had a large impact on C.
difficile acquisition and infection rates, although intensifying the intervention to optimal levels had much less additional
impact. Most of the impact came from improved hand hygiene and empiric isolation and treatment of suspected C. difficile
cases.

Conclusion: A "bundled" intervention is likely to reduce nosocomial C. difficile infection rates, even under typical
implementation conditions. Real-world implementation of the "bundle" should focus on those components of the
intervention that are likely to produce the greatest impact on C. difficile infection rates, such as hand hygiene and empiric
isolation and treatment of suspected cases.
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Introduction

Clostridium difficile infection (CDI) is one of the most common

and important healthcare-associated infections (HAI) among

patients hospitalized in the United States and Europe,[1–3]

producing a spectrum of clinical diseases ranging from asymp-

tomatic colonization to life-threatening toxic megacolon.[3,4] C.

difficile is acquired exogenously, similar to other enteric pathogens,

with the principal reservoirs of infection thought to be colonized or

infected individuals and contaminated environments such as

hospitals and chronic care facilities.[2,4] The high cost of care

associated with CDI[4–6] underscores the urgent need for
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improved hospital infection control and prevention practice. This

is particularly true given the recent emergence of an epidemic

strain of C. difficile (BI/NAP1/027) that is associated with higher

mortality and morbidity, especially in older patients.[6]

Despite progress in defining the mechanisms of C. difficile

transmission and interventions to control its spread in endemic

settings,[7–9] optimal control strategies for C. difficile remain

unclear.[10] Many of these studies have limited generalizablility

due to differences in study populations, contact networks,

antimicrobial exposure, and predominant strain of C. difficile. In

fact, recently published clinical practice guidelines for CDI from

the Society for Healthcare Epidemiology of America and the

Infectious Diseases Society of America include only two recom-

mendations based on level I evidence.[11] Despite an urgent need

to improve the evidence base, prospective, head-to-head compar-

isons of infection control practices are prohibitively difficult and

expensive to perform. The cost and challenge of effectively

controlling for complex interactions among important environ-

mental and intervention factors have impeded definitive studies.

Here, we sought to address current challenges in the control of

this pathogen through computer simulation modeling. Simulations

are useful for studying complex systems involving multiple

dynamic interactions among and between individuals and their

environments over time.[12] Models that synthesize current best

evidence allow us to replicate known behaviors and occasionally

discover non-intuitive relationships. Simulations also provide

inexpensive laboratories where decision makers can conduct

experiments using scenarios that might be infeasible, unethical,

or too expensive to test in the real world. Simulation models have

been applied successfully to a number of disease paradigms such as

influenza[13,14] but few thus far have attempted to incorporate

the unique epidemiology of C. difficile,[15–18] particularly with

respect to the key role of antibiotics in susceptibility and

transmission and the role of environmental shedding and

acquisition. We developed an agent-based simulation model of a

hospital setting to investigate the degree to which current and

novel CDI control strategies, alone and in combination, can

decrease C. difficile transmission and infection. We hypothesized

that "bundled" interventions would decrease nosocomial CDI, but

that the individual intervention components would vary in their

level of influence and effectiveness.

Methods

Approach
We used a type of computer simulation modeling called agent-

based modeling (ABM), a technique in which a system is modeled

as collections of autonomous entities called agents.[12] Each agent

is assigned internal states and behaviors; interactions between

agents can then produce emergent, system-level dynamics. Our

purpose was to simulate a typical hospital environment, composed

of intensive care and non-intensive care units and staffed by

physicians and nurses. Within this virtual hospital, we introduced

the capacity for C. difficile to be spread between patients via

contaminated environmental surfaces and health care worker

(HCW) hands. Testing and treatment of symptomatic patients was

also represented. The model thus served as the framework for the

evaluation of infection control interventions aimed at reducing the

risk of C. difficile transmission.

Model components and processes
The agent-based model was constructed using Anylogic 6 (XJ

Technologies, St. Petersburg, Russia), a Java-based modeling

application. The model was engineered to be modular in order to

enhance its ability to represent diverse facilities and intervention

scenarios. Mathematical formulations associated with each sub-

model are presented in detail in Appendix S1.

The patient flow sub-model (Figure 1A) governed processes of

patient admission, transfer, and discharge. The virtual hospital,

representing a medium-sized facility, contained nine 30-bed acute

care wards and two 15-bed intensive care units. All rooms were

single occupancy. Parameters regulating length of stay and time to

inter-ward transfers were derived from Veterans Affairs data (see

Appendix S1).

The patient states sub-model (Figure 1B) included representations

of infection status, symptoms, and antimicrobial use. "Susceptible"

(non-colonized) patients transitioned to "asymptomatic C. difficile

infection" as a consequence of acquisition, and "asymptomatic"

patients transitioned to "diarrhea due to C. difficile infection" as a

consequence of progression. Fifty percent of imported C. difficile

colonization was with a toxigenic strain;[19,20] both toxigenic and

non-toxigenic C. difficile caused asymptomatic carriage but only

toxigenic C. difficile caused diarrhea. Antimicrobial drugs were

grouped into five distinct classes to represent differential effects on

risk of C. difficile acquisition, progression to symptomatic CDI, and

organism shedding.

The contact event sub-model (Figure 1C) governed processes of

contamination of environmental surfaces within the room, transfer

of organisms to HCW hands, and acquisition of organisms by

susceptible patients. The level of environmental contamination

was a function of organism shedding while the room was occupied

by an infected patient, and was represented both by pathogen load

and the fraction of contaminated surfaces in the room. Symptom-

atic patients shed organisms at higher rates than asymptomatic

patients; outcomes were not sensitive to the ratio of these rates

across a wide range of values. Terminal (deep) cleaning reduced a

greater fraction of organisms and contaminated surfaces than

routine cleaning. HCWs had the potential to acquire C. difficile on

their hands when they visited rooms occupied by infected patients

or rooms occupied by uninfected patients but still contaminated

from previous occupants. Hand contamination was a function of

the load of organisms in the environment and the infection control

practices of the HCW, namely, their hand hygiene behavior and

use of barrier precautions (gloves). Susceptible patients acquired C.

difficile either because of occupancy of a contaminated room or

contact with a contaminated HCW.

The response and intervention sub-model (Figure 1D) governed

policies for managing infected patients and preventing transmis-

sion. CDI cases were identified through diagnostic testing. The

accuracy of the test was set by sensitivity and specificity

parameters; values for a typical qualitative C. difficile toxin enzyme

immunoassay (EIA) were selected.[21] Patients with CDI were

placed on contact isolation. It was assumed that adherence to

barrier precautions led to reduced hand contamination when

HCWs visited an infected patient or contaminated room.

Treatment of patients with CDI led to resolution of symptoms

and decreased shedding into the environment.

The contact network sub-model (Figure 1E) represented the

connections between patients and the two types of HCWs, nurses

and physicians. Each patient was assigned a random number of

nurses within their ward using a shifted Poisson distribution

(having a minimum of 2 and mean of 4) as well as two physicians;

nurses only contacted patients within their own ward, while

physicians contacted a larger panel of patients across multiple

wards. Assignments changed twice daily. Nurses and physicians

differed in their frequency of contacts with patients.

Strategies to Control C. difficile Transmission
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Model parameters
We followed a systematic process to parameterize and calibrate

the model. First, an extensive literature search was performed.

When available, national and local data were used to generate

estimates. When no data were available to inform parameteriza-

tion, we utilized a Delphi approach[22] on a convenience sample

of experts, modified to include face-to-face panel discussions.

Candidate point estimates and ranges for these parameters were

first established; we then convened our expert panel to solicit their

parameter value estimates. Following a period of facilitated

debate, the experts were encouraged to revise their estimates

based on the evidence presented. Median values of the revised

Figure 1. Representations of key agents and sub-models in the simulation, with their interrelationships. Abbreviations: ICU, intensive
care unit; LOS, length of stay; HCW, health care worker; CDI, Clostridium difficile infection.
doi:10.1371/journal.pone.0080671.g001
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Table 1. Key parameters used in the model, including the parameters governing the six bundle intervention components, the
values used for the BASE, INT, and OPT scenarios, and the values used for the epidemiologic conditions.

Parameters for sub-models

Sub-model BASE REF

Patient states

Fraction of new admissions already colonized with C. difficile 0.075 [28],EX

Fraction of new admissions who have symptomatic C. difficile at entry 0.0075 [29],EX

Fraction of new admissions who are already on antibiotics 0.24 DA

Fraction of imported C. difficile strains that are toxigenic 0.50 [19,20],EX

Average time from acquisition to development of symptoms (days) 4 [30,31]

Average time from development of symptoms to recognition (days) 1.5 [32–34]

Fraction of patients who will start antibiotics per hospital day 0.10–0.12 DA

Fraction of patients who will stop antibiotics per hospital day 0.33 DA

Contact events

Average number of contacts a patient will have with a doctor per day 4 [35–37],DA

Average number of contacts a patient will have with a nurse per day 20 [35–37],DA

Percent decrease in spores on hands following HH with ABHR 20 [38,39]

Percent decrease in spores on hands following HH with soap and water 90 [38,39]

Response/Interventions

C. difficile test sensitivity 0.70 [21,40]

C. difficile test specificity 0.97 [21]

Average laboratory turnaround time, EIA test (hours) 2 [40,41]

Average time from test order to initiation of contact isolation (days) 1.75 [42,43],EX

Contact networks

Number of doctors connected to each patient 2 DA

Number of nurses connected to each patient per nursing shift, mean 4 DA

Minimum number of nurses connected to each patient per shift 2 DA

Bundled Intervention

Intervention Component BASE INT OPT REF

Hand hygiene adherence

(% adherence in non-isolation rooms/isolation rooms)

Nurses, before patient contact 30/50 60/70 80/90 [44–47]

Nurses, after patient contact 50/70 70/80 90/90 [44–47]

Physicians, before patient contact 20/30 50/60 70/70 [44–47]

Physicians, after patient contact 40/50 70/80 80/80 [44–47]

Use of soap & water for hand hygiene for CDI patients

(% use of soap & water when HH performed) 60 80 90 DA,EX

Use of contact precautions in isolation rooms

(% adherence) 60 75 90 [48]

Environmental decontamination

(% organism reduction)

Routine Daily cleaning (e.g., detergent-based) 27.5 30 35 [49–53],EX

Routine Terminal cleaning (e.g., detergent-based) 35 40 42.5 [49–53],EX

Deep Terminal cleaning (e.g., chlorine-based) 70 80 90 [49–53],EX

Aggressive/early testing for CDI

(mean days from symptoms to test order) 1.5 1 0.5 [32–34]

Empiric isolation and treatment of suspected CDI No Yes Yes --

Epidemiologic Conditions

Condition LOW BASE HIGH REF

C. difficile importation prevalence (%) 2 7.5 15 [28],EX

C. difficile transmission rate *see Methods for details DA,EX

Strategies to Control C. difficile Transmission
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estimates were used to inform the model. A summary of the key

parameters used in the model is shown in Table 1.

Experimental design
Our goal was to explore the impact of the following six infection

control interventions and policies for reducing C. difficile transmis-

sion and infection:

1. Improved adherence with hand hygiene;

2. Improved use of soap and water for hand hygiene for contacts

with CDI patients;

3. Improved adherence with contact precautions for contacts with

CDI patients;

4. Improved environmental decontamination;

5. Aggressive/early testing for C. difficile;

6. Empiric isolation and treatment of suspected cases of CDI.

These six interventions were studied individually and in

combination (as a C. difficile ‘‘bundle’’), across varying levels of

implementation. We initially set all intervention parameters at

base-case (BASE) values; i.e., values that reflect current realities in a

typical hospital not employing interventions specifically targeting

C. difficile. In addition to BASE values, we defined two additional

experimental scenarios: (1) intervention values (INT), which repre-

sent an improvement over BASE values, reflecting the reasonably

expected effect from typical adherence to a hospital-wide effort

focusing on that particular strategy; and (2) maximum feasible or

optimal values (OPT), which represent the maximum effects that

can be reasonably expected from strong adherence to an intensive

and aggressive campaign to reduce C. difficile transmission. The

parameters governing the six intervention strategies, and the

values used for the three experimental scenarios (BASE, INT, and

OPT), are shown in Table 1.

For all simulation runs, the primary outcome of interest was

incident, nosocomial symptomatic CDI per 10,000 patient-days

(PD), in terms of both the actual (true) infection rate and the

reported (real-world) rate as observed from positive results of C.

difficile testing. Secondary outcomes included the rate of C. difficile

acquisitions (per 10,000 PD); the number of days symptomatic

with CDI prior to treatment initiation (per 10,000 PD); the

fraction of actual CDI cases detected; the daily C. difficile

colonization prevalence; and the number of C. difficile tests ordered

(per 10,000 PD).

To assess the three experimental scenarios (BASE, INT, and

OPT), we ran a total of 2000 iterations for each. To assess the

differential effect of each bundle component, each of the 486

combinations of component values (3 levels for each component

except empiric isolation and treatment, which had 2 levels) were

run 39 times.

Experimental scenarios were explored across three sets of

epidemiologic conditions representing different levels of C. difficile

importation and transmissibility: base-case, or typical, levels for

each (BASE), high levels for each (HIGH), and low levels for each

(LOW). The purpose of this comparison was to assess whether the

impact of various infection control measures varied under different

epidemiologic conditions. The parameter values used to represent

these epidemiologic conditions for importation levels are shown in

Table 1. To vary C. difficile transmissibility, we utilized a

transmissibility parameter as a component of the expression that

governs the probability of transmission during a HCW-patient

contact event (see Appendix S1). The value of the parameter was

tuned to produce an appropriate calibrated output for C. difficile

aquisition and infection rates for the base-case scenario, which was

then adjusted for the LOW and HIGH scenarios. We included

500 runs for each condition for each of the three scenarios.

Data and statistical analysis
The differences in outcomes among the three experimental

scenarios (BASE, INT, and OPT) were assessed graphically using

boxplots of rates and also comparing estimated rates of actual and

reported CDI. The differences were also assessed graphically for

epidemiologic conditions with low values of probability of

importation and transmission parameter (LOW) and for high

values of both (HIGH).

The impact of independently increasing each single bundle

component’s value from BASE to INT level (or INT to OPT level)

on outcome measures was assessed. A step 1 scenario was defined

by setting the component with the greatest single effect at INT

level and the other components at BASE level. This step 1 scenario

was used as the new baseline from which to assess the impact of

independently increasing each single bundle component’s value

from its current level to the next higher level. This step-wise

process was continued until there was no discernible effect of

increasing the level of any single component. The assessment was

based on estimated CDI rates at each step and also boxplots of

actual and reported CDI rates.

Ethics statement
This study was approved by the Institutional Review Board at

the University of Utah as well as by the Research and

Development Committee at VA Salt Lake City Health Care

System.

Results

Outputs of base-case scenario
Base-case parameter values were used in 1,000 simulation runs

of one-year periods each. Rates of CDI varied from 8 to 21 per

10,000 PD. The interquartile range was 13 to 16. Reported CDI

rates ranged from 5 to 13 per 10,000 PD, with a detection fraction

that varied between 32% and 50%. The estimated daily

prevalence of toxigenic strains ranged from 8% to 12% and of

non-toxigenic strains from 5% to 7%. The difference in

colonization prevalence between toxigenic and non-toxigenic

strains was due to the higher transmissibility (and shedding) of

symptomatic patients.

The rate of acquisition of C. difficile ranged from 115 to 202

events per 10,000 PD. The interquartile range was 144 to 160.

Approximately 40%of these acquisitions originated from the

rooms of symptomatic CDI patients (6% of carriers) and 60%

originated from the rooms of asymptomatic carriers (94% of

carriers).

The percent of C. difficile carriers who progressed to symptom-

atic CDI varied from 3% to 13% for those who acquired C. difficile

in the hospital and was approximately 2% to 6% for those who

imported C. difficile. The lower rate of progression for patients who

imported was because (a) half of importation strains were non-

Abbreviations: BASE, Base-case values; INT, Typical intervention values; OPT, Optimal intervention values; LOW, low-level values; HIGH, high-level values; HH, hand
hygiene; ABHR, Alcohol-based hand rub; EIA, Enzyme immunoassay; abx, antibiotics; REF, reference(s); DA, analysis of local or national VA data; EX, subject matter expert
opinion.
doi:10.1371/journal.pone.0080671.t001
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toxigenic[19,20] and (b) patients who imported toxigenic strains

were less likely to progress to symptoms than patients who

acquired toxigenic strains[20] as specified in the model.

Impact of bundle
Implementing the bundle at INT levels had a large impact on C.

difficile acquisition rates (Figure 2A), as well as on both actual and

reported CDI rates (Figure 2B). The intensification of intervention

levels to OPT reduced the acquisition and actual CDI rates, to a

small extent, but had little to no effect on the reported CDI rate.

The results of the stepwise approach to assessing the effect of

single bundle components are shown in Figure 3. The impact of

each single component at INT level on the actual CDI rate was

greatest for hand hygiene and empiric isolation and testing (Figure

3A); similar results were seen with the reported CDI rate (data not

shown). Additional testing of each single component at INT level

when combined with hand hygiene at INT level revealed a small

impact only from empiric isolation and testing (Figure 3B).

Increasing any other single component values to INT level (Figure

3C) or any single component to OPT level (data not shown) did

not further decrease actual or reported CDI rates. No other

combination of two or more bundle components demonstrated

notable improvement in actual CDI rates beyond that seen with

either hand hygiene alone or the combination of hand hygiene and

empiric isolation and testing (data not shown).

Sensitivity analysis
Implementation of INT and OPT levels of the complete bundle

reduced actual CDI rates and C. difficile acquisition rates across a

range of epidemiologic conditions representing C. difficile impor-

tation and transmission (Table 2). For reported CDI rates, the

effect of INT and OPT levels of the complete bundle at low and

high levels of importation and transmission mirrored those for the

BASE levels; the INT scenario reduced reported CDI rates but the

OPT scenario had no additional impact.

Similar effects of the bundle were seen when assessing secondary

outcomes. The implementation of the INT scenario resulted in

large decreases in the number of untreated symptomatic days

(Figure 4A), the C. difficile colonization prevalence (Figure 4C), and

the number of CDI tests ordered (Figure 4D), along with a large

increase in the fraction of CDI cases detected (Figure 4B). As with

the other outcomes, increasing the intervention to OPT levels had

only a small additional impact on these secondary outcomes, aside

from the number of CDI tests ordered, for which there was no

impact (Figure 4D).

Discussion

We observed that "bundled" CDI control interventions

dramatically reduced both C. difficile acquisition and CDI rates

(actual and reported) in non-outbreak settings. Highly optimized

bundle implementations, however, did not see proportional

benefits over standard implementations due to non-linear effects

and interactions between bundle components. When we examined

the influence of each component individually, hand hygiene

substantially affected C. difficile acquisition and infection rates

under a wide range of conditions. Besides hand hygiene, empiric

isolation and treatment of suspected CDI cases was the next most

effective component; none of the other bundle interventions had a

noticeable impact on acquisition or CDI rates when implemented

singly, and there was little added benefit from these other

interventions if enhanced hand-hygiene and empiric isolation

and testing were already in place. Even when hand hygiene was

modeled at lower compliance levels, it improved effectiveness

regardless of which other interventions were already in place (data

not shown). We hypothesize that this was due to hand hygiene

being a horizontal (non-CDI specific, or universal) intervention. In

contrast, C. difficile-targeted measures, even when elevated to

extreme levels of effectiveness, showed relatively low incremental

benefit when combined with other interventions. This was likely

due to interactions between interventions: significant delays in test-

ordering and receipt of results as well as poor sensitivity of the

diagnostic test would allow for C. difficile ‘‘escape,’’ rendering

intervention measures targeted to CDI less effective when

implemented singly.

Most clinical studies evaluating interventions to reduce trans-

mission of HAIs are typically single-center, before-after studies

that involve a bundle of individual strategies, thereby precluding

Figure 2. Results of the simulation for the three bundled intervention scenarios. Box plots of (A) C. difficile acquisition rate, and (B) actual
CDI rate (left) and reported CDI rate (right) for the three bundled intervention scenarios. Grey boxes represent the Base-Case scenario (BASE), green
boxes represent the Typical Intervention scenario (INT), and the blue boxes represent the Optimal Intervention scenario (OPT). Rates shown are
counts per 10,000 patient-days. The horizontal line within each box represents the median. The top and bottom of each box represent the 25th and
75th percentiles, respectively, and the bars represent the highest and lowest values within 1.5 times the interquartile range. The circles denote
outliers.
doi:10.1371/journal.pone.0080671.g002
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the determination of each bundle component’s individual contri-

bution and its potential for synergy, additivity, or antagonism with

other components. For example, Abbett et al. report a 40%

decrease in CDI incidence through the implementation of both a

prevention bundle (with more than 10 components) and a

treatment bundle (with more than 8 components).[23] Given the

observational nature of the study and the lack of data measuring

adherence to the bundle components, little can be concluded

about which bundle components contributed most—if at all—to

the decline in CDI that was observed.

Simulation models present one opportunity for researchers to

address gaps in the empiric literature that are difficult or unethical

to test in the real world. Models that allow for emergent

phenomena in complex systems can evaluate bundle strategies

individually and in combination to determine the presence of

additive or synergistic effects. Such models are thus of practical

value to hospital epidemiologists and administrators, who must

often restrict resources to only one or few interventions. In

addition, models provide a controlled environment in which

background conditions can be precisely defined and manipulated

to allow thorough evaluation of the strategy of interest.

Most published HAI models currently explore aspects of

methicillin-resistant Staphylococcus aureus (MRSA) transmission

dynamics, and few of these are constructed for the purpose of

implementing one or more specific hospital interventions to reduce

nosocomial transmission. Through their compartmental model of

MRSA transmission, McBryde et al. [24] explored a number of

different interventions in an ICU setting and found hand hygiene

to be the single most effective individual intervention. Although

this echoes our findings on C. difficile transmission, the study

focused on different types of interventions (such as patient

cohorting) and did not specifically explore bundled combinations

of interventions. Beggs et al. [25] also studied the dynamics of

hand hygiene and MRSA transmission with their stochastic Monte

Carlo model and concluded, in line with our findings, that this

intervention is subject to the law of diminishing returns: the

greatest benefits derived from hand hygiene occur as a result of an

initial, modest increase in compliance, with little added benefit

from achieving very high levels of compliance. Because their

model does not include, among other things, allowances for the

use of gowns and gloves or for the presence of environmental

reservoirs, it may not present as complete a picture as presented

here, and may not generalize well to the problem of C. difficile.

Finally, a deterministic differential equation model by D’Agata et

al. [26] explored the impact of various interventions, including

hand hygiene, contact precautions, a reduction in antimicrobial

exposure, and screening surveillance cultures on colonization and

infection prevalence for several multidrug-resistant organisms

(MDRO) simultaneously, concluding that most strategies had a

substantial effect on MDRO prevalence over time. Importantly,

because the above models are not agent-based, they are less able to

address the heterogeneity of patient-HCW contact networks or the

stochasticity of interactions within the networks. The model

presented here is able to produce complex, system-level dynamics

and behavior patterns, which potentially can better reflect the

transmission dynamics of C. difficile in the real world.

All models are limited by simplification and by the quality of

their input parameters. In particular, our model does not address

the complexity of bacterial ecosystems, the heterogeneity of innate

virulence, or outbreak settings, nor does it currently evaluate

antimicrobial stewardship as an intervention strategy. The latter,

in particular, is an important strategy that could play a large role

Figure 3. The impact of stepwise addition of bundle components on simulation results. Box plots showing the stepwise addition of
bundle components from Base-Case levels to Intervention levels, one component at a time. Rates shown are actual CDI per 10,000 patient-days. The
horizontal line within each box represents the median. The top and bottom of each box represent the 25th and 75th percentiles, respectively, and the
bars represent the highest and lowest values within 1.5 times the interquartile range. The circles denote outliers. Abbreviations: BASE, Base-Case
scenario; BARR, improved adherence with contact/barrier precautions; SOAP, improved use of soap and water for hand hygiene for contacts with CDI
patients; TIME, aggressive/early testing for C. difficile; DCON, improved environmental decontamination methods; ISOL, empiric isolation and treatment of
suspected cases of CDI; HAND, improved adherence with hand hygiene.
doi:10.1371/journal.pone.0080671.g003

Table 2. Results of the simulation across the three bundled intervention scenarios while under a range of epidemiologic
conditions that specify the importation and transmission rates for C. difficile.

Epidemiologic Base-Case Typical Optimal

Conditions* (No Intervention) Intervention Intervention

Actual CDI Rate LOW 3.4 0.9 (74) 0.6 (82)

BASE 14.3 3.9 (73) 2.5 (83)

HIGH 41.9 13.6 (68) 8.4 (80)

Reported CDI Rate LOW 2.1 0.9 (57) 0.9 (57)

BASE 8.3 3.9 (53) 3.3 (60)

HIGH 22.0 10.2 (54) 8.2 (63)

Acquisition Rate LOW 37.5 12.4 (67) 8.8 (77)

BASE 152.6 51.9 (66) 34.9 (77)

HIGH 430.4 168.3 (61) 109.9 (74)

Rates shown are mean number of CDI cases or mean number of C. difficile acquistions per 10,000 patient-days. Numbers in parentheses are the percent reduction
relative to the base-case scenario.
*For the epidemiologic conditions, LOW indicates low levels of C. difficile importation and transmission, BASE indicates base-case levels, and HIGH indicates high levels
(see Table 1).
doi:10.1371/journal.pone.0080671.t002
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in the control of C. difficile transmission; the modeling of

stewardship as an intervention is a complex process, however,

and is one that we are actively pursuing as part of our future work.

We also made simplifying assumptions about several processes that

could impact our estimates of organism transmission. For instance,

our model does not take into account CDI in HCW themselves,

nor does the model allow for HCW to contaminate room

environments with their hands, both of which may lead to

underestimates of transmission. Our model also assumes a CDI

treatment efficacy of 100%, and does not allow for recurrent CDI

in patients; that said, even post-treatment, C. difficile organisms are

still being shed into the environment, as noted in the literature.[27]

This, combined with relatively short inpatient lengths of stay, likely

result in little if any underestimation of in-hospital transmission.

Finally, our simulation model is not intended to replace evidence

produced by real-world clinical studies. We attempted here to

apply agent-based simulation modeling, using the most current

science and available data, to explore a range of scenarios and

infection control interventions and to generate subsequent

hypotheses which should provide clues to researchers faced with

seemingly unlimited intervention strategies but limited resources to

implement and test them.

In conclusion, our simulation model suggests that a standard

CDI bundled intervention provides a marked reduction in C.

difficile acquisitions and infections, although a highly optimized

intervention provides only minimal additional benefit. Further-

more, the reported CDI rate experiences proportionately less of an

impact than the actual CDI rate, which may in turn mask the true

achievements of a bundled intervention. Our findings also suggest

that a strong hand hygiene program and a policy of early isolation

and treatment of suspected CDI cases are likely the most

important components of a C. difficile-targeted intervention. This

work should help to direct future real-world efforts to implement

bundled interventions aimed at controlling CDI, minimizing costs,

and identifying areas for more rigorous clinical investigation.
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