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Abstract

Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising
therapeutic potential in Parkinson’s disease. A few association analyses between GDNF gene polymorphisms and psychiatric
disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little
is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we
present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050
and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital
Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise
single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores
following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140,
respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs;
mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-
gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more
pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and
mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and
individual variability of anxiety using self-report data from a non-clinical sample.
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Introduction

Glial cell line-derived neurotrophic factor (GDNF), a member of

the TGFb superfamily that signals via cell-surface tyrosine kinase

receptors, is considered an essential neuroprotective ligand for

midbrain dopaminergic neurons [1] with promising clinical trials

in Parkinson’s disease [2]. As GDNF has also been shown to

promote the development and differentiation of dopaminergic

neurons [3] perturbed regulation of its expression has been

supposed to underlie several neuropsychiatric diseases such as

schizophrenia and depression via dysregulation of dopaminergic

neural circuitries and impaired synaptic plasticity [4,5].

Analysis of GDNF level changes in depressive disorders revealed

contradictory results. Both elevated [11,12] and reduced [13,14]

GDNF plasma concentrations have been reported in patients with

late-onset depression, major depression or bipolar disorder.

Antidepressants and electroconvulsive therapy seemed to enhance

rat hippocampal [15] and human plasma GDNF levels [16,17]

possibly via altered epigenetic regulation of the GDNF promoter

[18]. On the other hand, a recent post mortem analysis of human

brain samples disclosed elevated GDNF protein levels in the

parietal cortex but not in limbic areas and basal ganglia of patients

with depressive disorder [19].

Recent genetic association studies on neurotrophic factors

investigated the brain-derived neurotrophic factor (BDNF) and

the neurotrophin-3 receptor gene demonstrating association with

depression [6], anxiety disorders [7,8] or attention deficit

hyperactivity disorder [9]. Evidence was also provided for an

interaction between dopaminergic (COMT) and neurotrophic

(BDNF) gene variants influencing dysfunctional beliefs such as

threat [10] which might be linked to anxiety. Interestingly, the

potential etiopathological involvement of GDNF has rarely been

addressed by genetic studies. A genome-wide linkage study has

first shed light on the GDNF as potential candidate gene in

schizophrenia [20], followed by contradictory results from case-

control association studies [21,22]. This issue has extensively been

investigated later by Williams and co-workers [23]. They analyzed

9 SNPs (single nucleotide polymorphisms) encompassing the entire

genetic locus as well as a poly-AGG repeat in the 39 untranslated

region, but neither of them proved to be significantly associated

with schizophrenia. No associations have been found between

GDNF SNPs and attention deficit hyperactivity disorder (ADHD)

either [24,25].

GDNF was also shown to have a protective effect against

methamphetamine induced dopamine depletion related neurotox-

icity [26]. In addition, a single nucleotide polymorphism (SNP) of

GDNF (rs2910704) has recently been associated with metham-

phetamine dependence in a Japanese population [27]. Since mood

disorders are often accompanied by drug abuse [28], and impaired

dopaminergic signaling is a well-known factor in the pathogenesis

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e80613



of depression, we raised the question whether GDNF gene variants

might be risk factors of depression or anxiety. To clarify this issue,

here we present an association analysis between eight SNPs of the

GDNF gene and mood characteristics assessed by the Hospital

Anxiety and Depression Scale (HADS) questionnaire using data

from 708 healthy Caucasians. To our best knowledge, this is the

first study addressing the role of GDNF polymorphisms in anxiety

and depression.

Subjects and Methods

Sample
Non related Caucasian (Hungarian) subjects participated on a

voluntary basis from several educational facilities. They were

recruited at the Institute of Psychology, Eötvös Loránd University.

The study protocol was designed in accordance with guidelines of

the Declaration of Helsinki, and was approved by the Scientific

and Research Ethics Committee of the Medical Research Council

(ETT TUKEB). The participants signed a written informed

consent, provided buccal samples and filled out the Hospital

Anxiety and Depression Scale (HADS). Selection criteria included

no past or present psychiatric history (based on self-report), age

between 18–35 years, valid GDNF SNP data for at least five of the

eight analyzed SNPs and valid self-report data for the HADS

subscales. A total of 837 independent samples were genotyped by

the Open Array system, of which 767 subjects were between 18–

35 years and 760 of them filled out the HADS self-report scale. All

of these 760 subjects provided answers for at least six out of seven

items in each HADS subscale, therefore valid scale data could be

calculated. 708 of them had 5 or more GDNF genotypes providing

the final study population. As a result, we analyzed data from 708

subjects (46.3% males, 53.7% females; mean age: 21.363.4 years).

The sample comprised of 169 university students from the Institute

of Psychology, Eotvos Lorand University, 217 college and

university students from two law enforcement institutions in the

Budapest area and 322 volunteers recruited on different occasions

popularizing our research. Anxiety and depression scores (see

Table S1 in File S1), as well as age and sex ratios (see Table 1)

were different in these subgroups. On the other hand, genotype

frequencies of GDNF SNPs were similar in the subgroups (see

Table S2 in File S1), therefore the total sample was used for

association analyses.

Phenotype measures
All subjects completed the Hungarian version [29] of the

Hospital Anxiety and Depression Scale (HADS). This self-report

tool was originally developed by Zigmond and Snaith [30]. The

questionnaire contains 14 intermixed items of two scales for

detecting levels of anxiety (7 items) and depression (7 items). Both

scales contain straightforward and reversed items to ensure

attentive responses. Items are scored from 0–3 based on the

releated response category (e.g. most of the time – not at all). The

final raw score of both scales range from 0–21, sum of the

appropiate items’ scores. In the paper describing the Hungarian

translation and validation of the HADS questionnaire [29] high

internal consistency and discriminating power was found based on

a sample of 715 Hungarian cancer patients. Concurrent validity of

the HADS depression and anxiety scales has been attested with the

Symptom List and the Beck Depression Scale. HADS anxiety

scores increased with the number of anxiety-related emotional

problems, such as ‘fears’, ‘nervousness’, and ‘worry’ and similarly

increased HADS depression scores were found in those reporting

‘depression’ and ‘sadness’. Correlation of the depression scale of

the HADS and the Beck Depression Scale (r = 0.81) also indicate

sufficient concurrent validity.

The SNP selection criteria
Single nucleotide polymorphisms (SNPs) with a minor allele

frequency (MAF) greater than 0.05 were selected from the Single

Nucleotide Polymorphism database of NCBI (dbSNP). The

pairwise tagging method using r2 threshold of 0.8 by Haploview

was used to determine tagging SNPs based on HapMap data to

obtain a proper coverage of the GDNF gene. SNPs with a

reference from previous association studies concerning neuropsy-

chiatric disorders were preferred.

Table 1. Anxiety and depression in the three subject groups.

Subject groups N Age Male/female

Psychology students 169 18–35 (20.3262.74) 16.6%/83.4%

Students in law
enforcement

217 18–35 (20.2762.08) 73.3%/26.3%

Other volunteers 322 18–35 (22.5763.96) 43.5%/56.5%

Total sample 708 18–35 (21.3363.39) 46.3%/53.7%

Note. Range, mean values and StDev are provided for age.
doi:10.1371/journal.pone.0080613.t001

Table 2. Genotype distribution of the studied GDNF
polymorphisms.

dbSNP No Genotype N % HWE* Call rate

rs1981844 GG 313 55.1 p = 0.537 80.2%

CG 224 39.4

CC 31 5.5

rs3812047 GG 542 76.6 p = 0.962 100,0%

GA 154 21.7

AA 12 1.7

rs3096140 TT 316 48.0 p = 0.928 92.9%

TC 283 43.0

CC 59 9.0

rs2973041 AA 488 70.6 p = 0.727 97.6%

AG 182 26.4

GG 21 3.0

rs2910702 AA 380 54.8 p = 0.911 98.0%

GA 270 38.9

GG 44 6.3

rs1549250 TT 235 33.5 p = 0.970 99.0%

TG 339 48.4

GG 127 18.1

rs2973050 CC 237 40.6 p = 0.340 82.3%

TC 282 48.4

TT 64 11.0

rs11111 AA 535 75.9 p = 0.321 99,6%

AG 153 21.7

GG 17 2.4

Note. * Hardy-Weinberg equilibrium.
doi:10.1371/journal.pone.0080613.t002
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Sample preparation and SNP genotyping
Collection of buccal swabs and isolation of genomic DNA was

carried out as described in [24] with some modifications. Briefly,

swabs were incubated in 450 mL lysis solution containing 0.2 g/L

Proteinase K, 0.1 M NaCl, 0.5% SDS and 0.01 M Tris buffer,

pH = 8 at 56uC overnight followed by RNase treatment at room

temperature. Proteins were removed with saturated NaCl (2:1

volume ratio). After the standard procedure of DNA precipita-

tion with isopropanol and ethanol, the pellet was resuspended in

100 mL of 5 mM Tris pH = 8, 0.5 mM EDTA. Concentration of

double stranded DNA was measured by fluorometry applying an

intercalation assay (AccuBlue Broad Range dsDNA Quantifica-

tion Kit, Biotium, Hayward). The range of the DNA concen-

tration was 15–200 ng/mL, samples with lower than 15 ng/mL

were not used for the OpenArray analysis.

Genotypes were determined applying the TaqManH Open-

ArrayTM Genotyping System (Applied Biosystems, Forster City,

CA) based on sequence-specific, fluorescent TaqMan probes in

combination with a high-throughput PCR system using nanoliter-

scale sample volume and post-PCR (endpoint) detection. Geno-

typing platforms were obtained from the manufacturer as

immobilized target specific primers and fluorescent probes in a

low density array format. Reaction mixtures containing approx-

imately 100 ng DNA (range: 30–150 ng) and the 16master mix

(each deoxyribonucleoside triphosphate and the AmpliTaq Gold

DNA-polymerase, provided by the manufacturer) were prepared

on a 384-well sample plate and then loaded on the genotyping

plates by the OpenArrayTM Autoloader. PCR amplification was

performed in the GeneAmpH PCR System 9700 (Applied

Biosystems, Forster City, CA) following the manufacturer’s

instruction. Endpoint imaging of the allele specific FAM and

VIC fluorescent intensities was made by the OpenArrayTM NT

Imager. Raw data were evaluated by the TaqMan Genotyper v1.2

software.

2% of the DNA samples were repeatedly applied on the

OpenArray system, demonstrating a 98,2% reproducibility. In

addition, a subsample was re-genotyped for two SNPs (rs3812047,

rs3096140) were re-genotyped with a 7300 Real-Time PCR

System (Applied Biosystems, Foster City, CA) for quality control

also providing an increase in the call rate of these SNPs. Original

call rates of OpenArrayTM Genotyping System are presented in

Table S3 in File S1, while the call rates calculated for the final

study population is given in Table 2. As it can be seen in these

Tables, all the genotypes were in Hardy-Weinberg equilibrium.

Statistical Analysis
Statistical analyses were carried out using SPSS 20.0 for

Windows. Chi-square analysis was used to test reliability of the

measured genotype and allele frequencies. Lewontin’s D’ as well as

R2 values of linkage disequilibrium were determined using

HaploView 4.2 [31]. Haplotypes were determined by the Phase

program [32–34]. Independent-Samples t-test was used to assess

sex differences; relationship with age has been tested by correlation

analyses. One way analyses of covariance (ANCOVA) was used to

test genetic associations of the single and multiple marker analyses

in an allele-wise design. False positive results were ruled out by

Bonferroni correction for multiple testing. The corrected level of

significance was p,0.00313, as the nominal p (value 0.05) was

divided by the number of analyses performed (8 SNPs 62 HADS

scales = 16). Two-way ANOVA was used for testing the effect of

prior associations in males and females.

Genotypic and phenotypic data of the present study is publicly

available through the NCBI dbGaP data repository: http://www.

ncbi.nlm.nih.gov/gap.

Table 3. Association of GDNF polymorphisms and mood dimensions.

Association analysis

dbSNP No alleles N MAF** Anxiety p Depression p

rs1981844 C 286 0.252 6.16 (63.87) 0.07491 3.04 (62.83) 0.02431

G 850 5.71 (63.41) 2.64 (62.53)

rs3812047 A 178 0.126 6.68 (63.72) 0.00070* 2.93 (62.55) 0.32941

G 1238 5.68 (63.50) 2.73 (62.55)

rs3096140 C 401 0.305 6.29 (63.48) 0.00138* 2.80 (62.51) 0.76512

T 915 5.59 (63.55) 2.75 (62.54)

rs2973041 G 224 0.162 5.64 (63.81) 0.52321 3.01 (62.81) 0.08250

A 1158 5.80 (63.50) 2.69 (62.51)

rs2910702 G 358 0.258 6.27 (63.62) 0.00356 2.83 (62.58) 0.59415

A 1030 5.60 (63.52) 2.74 (62.56)

rs1549250 G 593 0.423 6.07 (63.68) 0.01252 2.90 (62.67) 0.05343

T 809 5.56 (63.38) 2.63 (62.43)

rs2973050 T 410 0.352 6.11 (63.63) 0.05656 2.85 (62.69) 0.39771

C 756 5.65 (63.50) 2.72 (62.54)

rs11111 G 187 0.133 5.78 (63.86) 0.84093 2.97 (62.67) 0.22126

A 1223 5.79 (63.49) 2.72 (62.54)

Notes. *Significant after Bonferroni correction (p,0.00313) in single marker analyses. **MAF: minor allele frequency.
doi:10.1371/journal.pone.0080613.t003
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Results

Reliability of the tested phenotypes and genotypes
Chronbach Alpha values were calculated to test the internal

consistency of the self-report phenotypes. In the present sample

reliability coefficients were satisfactory for both Anxiety (0.75) and

Depression (0.68) scales. The Pearson’s correlation coefficient was

used to assess inter-correlation of the two scales: r = 0.54

(p,0.0001). Mean score of the anxiety scale was 5.80 (63.54),

with individual scores ranging from 0 to 19. Mean depression

score was 2.75 (62.55), with a range from 0 to 16. All

polymorphisms were in Hardy-Weinberg equilibrium [35] as the

p-values presented in Table 2 showed no significant differences

between the distribution of observed and calculated genotype

frequencies.

Age and sex as possible confounds
For testing sex differences on the two HADS scales Indepen-

dent-Samples t-test was applied. Females showed significantly

higher anxiety scores then males (6.47 compared to 5.02; t(706)

= –5.55; p,0.001), thus sex was used as a covariant in all

association analyses. Depression scores showed no significant sex

difference. There was no significant correlation between HADS

scales and age. This might be due to the relatively narrow age-

range in our sample, as 90% of participants were between

18–25 years of age.

Association analyses of mood characteristics and GDNF
polymorphisms

Table 3 summarizes results from the single marker analysis in

both mood dimensions using one-way ANCOVAs with one of the

GDNF SNPs as the grouping variable, with the HADS anxiety or

the depression scale as the dependent variable and with sex as

covariant. Association results for the 8 GDNF SNPs are

represented in each row with the number of detected alleles,

calculated MAF values, mean and standard deviation of anxiety

and depression scores for carriers of the presented alleles and the

corresponding p values from the ANCOVAs. Four SNPs

(rs3812047, rs3096140, rs2910702, rs1549250) were associated

with anxiety; scores were higher in the presence of the minor allele

in all four cases. Corresponding statistical values for the above four

SNPs labeled in bold in Table 3 were [F(1,1413) = 11.541,

p = 0.0007, g2 = 0.008, power = 0.924]; [F(1,1313) = 10.282,

p = 0.00138, g2 = 0.008, power = 0.893]; [F(1,1385) = 8.527,

p = 0.00356, g2 = 0.006, power = 0.831]; and [F(1,1399) = 6.252,

p = 0.01252, g2 = 0.004, power = 0.705], respectively. One GDNF

SNP (rs1981844) showed association with the HADS depression

scale, with higher scores in the presence of the minor allele

[F(1,1133) = 5.086, p = 0.02431, g2 = 0.004, power = 0.615]. After

correction for multiple testing, association of anxiety with

rs3812047 and rs3096140 remained significant, labeled by single

stars in Table 3. Mean anxiety was significantly higher in the

presence of the minor (A) allele of the rs3812047 (6.6863.72) as

compared to the mean anxiety of major (G) allele carriers

(5.6863.50). The minor (C) allele of the rs3096140 was also a

genetic risk factor of anxiety, as mean scores in the presence of this

Figure 1. Linkage disequilibrium plots for the studied GDNF SNPs. A: Lewontin’s D’ measure and B: R2 values of linkage disequilibrium.
Higher values and darker squares indicate stronger pairwise linkage disequlibrium between two loci.
doi:10.1371/journal.pone.0080613.g001

Table 4. Haplotype analysis of risk alleles.

Haplotypes* N MAF** Anxiety p Depression p

rs3812047G_rs3096140T 853 0,602 5.49 (63.45) 0.00029 2.72 (62.60) 0.804

rs3812047G_rs3096140C 385 0,272 6.08 (63.57) 2.74 (62.46)

rs3812047A_rs3096140T 125 0,088 6.50 (64.04) 2.90 (62.53)

rs3812047A_rs3096140C 53 0,037 7.09 (62.80) 2.98 (62.64)

Notes. *Risk alleles in the haplotypes are labeled by bold. **MAF: minor allele frequency.
doi:10.1371/journal.pone.0080613.t004
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allele were higher (6.2963.48) as compared to those with the

major (T) allele (5.5963.55). Both GDNF SNPs explained 0.8% of

the variability of anxiety. Although the risk allele for anxiety was

the minor allele for both SNPs, the number of participants in the

study provided enough data points for association analyses with

sufficient power (for rs3812047 MAF = 12.6%, N = 178; for

rs3096140 MAF = 30.5%, N = 401).

Since the law enforcement subgroup of our sample showed

markedly lower anxiety mean scores than the subgroup of

psychology students and other volunteers, we carried out two

post-hoc analyses testing association of anxiety and the rs3812047

and rs3096140 GDNF polymorphisms without the law enforce-

ment subgroup. Omitting this subgroup did not alter our previous

findings using the total sample, the same pattern of risk alleles for

increased anxiety was demonstrated: Mean anxiety score was

higher (7.4363.56) in the presence of the rs3812047 A allele as

compared to 6.22(63.38) in those carrying the rs3812047 G allele

[F(1,903) = 12.358, p = 0.00046, g2 = 0.014, power = 0.940]. Sim-

ilarly, in the presence of the rs3096140 C allele mean anxiety level

was higher (6.7463.25) than in the presence of the rs3096140 T

allele (6.1763.50), [F(1,837) = 4.682, p = 0.03077, g2 = 0.006,

power = 0.580]. According to these results association of

rs3812047 and rs3096140 GDNF polymorphisms with anxiety

was consistent across participant subgroups.

Haplotype analysis
As the two SNPs (rs3812047 and rs3096140) significantly

associated with anxiety after correction for multiple testing were

not in linkage disequilibrium (D’ = 13, r2 = 0; see Figure 1A and

1B), haplotype analysis was also performed. One-way ANCOVAs

were applied on the two mood dimensions with the haploalleles as

the grouping variable and sex as covariant (results are presented in

Table 4). Effect of haplotypes on anxiety was significant

[F(1,1415) = 6.323, p = 0.00029, g2 = 0.013, power = 0.967], while

there was no significant differences in the mean scores of

depression. Mean anxiety was lowest when formerly defined risk

alleles were not present in the in the haplotype (5.4963.45). When

rs3096140C was present in the haploallele mean anxiety scores

were notably higher (6.0863.57). Anxiety scores were even higher

when rs3812047A was present in the haploallele (6.5064.04), and

anxiety reached its highest average in the presence of both risk

alleles in the haplotype (7.0962.80).

Effect of GDNF risk alleles on male and female anxiety
There was a significant sex difference in HADS anxiety scores.

In order to test if the significant genetic effects from our single

marker analyses were different for males and females we used two-

way ANOVAs on anxiety as the dependent variable and sex and

presence or absence of the risk allele of one of the two SNP as

grouping factors. Results are presented in Figure 2A and 2B. Main

effect of the rs3812047 SNP was significant [F(1,1412) = 13.391,

p = 0.0002, g2 = 0.009, power = 0.955] and as expected, we found

a significant main effect of sex [F(1,1412) = 12.48, p = 0.0004,

g2 = 0.009, power = 0.942]. Interestingly a significant interaction

between sex and the rs3812047 SNP was also observed

[F(1,1412) = 4.539, p = 0.033, g2 = 0.003, power = 0.567]. The

effect of the minor (A) allele as a risk for higher anxiety was more

pronounced in males as compared to females (Figure 2A).

Main effect of the rs3096140 SNP was also significant on

anxiety [F(1,1312) = 9.664, p = 0.002, g2 = 0.007, power = 0.874],

and we also found a significant sex effect [F(1,1312) = 49.233,

p,0.0001, g2 = 0.036, power = 1.000]. However, for this GDNF

SNP there was no significant gene-sex interaction. As presented in

Figure 2B both males and females with the minor (C) allele showed

higher anxiety.

Discussion

Evidence from twin studies confirms that mood characteristics

have a considerable genetic component. Heritability of major

depression is 37% [36,37] and heritability of affective and anxiety

disorders is around 45% [38]. The association between mood

disorders and the monoamine system, especially the dopamine

pathways, is well established [39–41], however, there are no prior

reports on the effect of GDNF polymorphisms on mood

characteristics in clinical or non-clinical populations.

Figure 2. Effect of GDNF risk alleles on male and female anxiety. Mean HADS anxiety scores in females and males as a function of rs3812047
(A) and rs3096140 (B) alleles. Open markers denote females; closed markers denote males. Error bars represent standard errors of the mean.
doi:10.1371/journal.pone.0080613.g002
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The aim of the present study was to investigate any possible

association of the GDNF gene polymorphisms with non-clinical

individual variations of anxiety and depression. Several methods

have been proposed to date for measuring mood characteristics

(for recent reviews see: [42,43]. In the present study we used the

HADS questionnaire which has been translated to several

languages [44] and is applicable to measure anxiety and

depression in somatic, psychiatric and non-clinical samples [45].

We also demonstrated applicability of the HADS questionnaire in

our previous genetic association findings, e.g. reporting association

between polymorphisms of the P2RX7 gene and depression scores

of diabetic patients [46] and patients with major depression or

bipolar disorder [47].

Here we explored the association of 8 GDNF polymorphisms

with anxiety and depression (Table 3). After correcting for multiple

testing, the genetic effect on depression did not remain significant;

however, two of the studied GDNF SNPs (rs3812047A and

rs3096140C) were identified as possible risk alleles of anxiety (level

of significance for the two associations were p = 0.00070 and

0.00138, respectively). We replicated these association findings

using a subsample without the law enforcement subgroup, since

they showed markedly lower anxiety mean scores than the

subgroup of psychology students and other volunteers. Mean

anxiety scores were higher in the presence of the rs3812047 A and

the rs3096140 C risk alleles. According to these results association

of rs3812047 and rs3096140 GDNF polymorphisms with anxiety

was consistent across participant subgroups.

Since the two risk-SNPs were not in linkage disequilibrium we

also performed haplotype analysis of these SNPs. Results described

in Table 4 underlie the significant genetic effect indicated by our

single-marker analyses: mean anxiety scores raised according to

the number of risk alleles present in the haplotypes (p = 0.00029).

It should be noted that anxiety and depression scales of the HADS

questionnaire correlate (r = 0.54, p,0.0001) implicating that these

two constructs are in close relation. One possible reason for the

lack of significant effects of GDNF polymorphisms on depression in

the present study is that depression scores were quite low in our

non-clinical sample. This floor effect [48] might have reduced

individual variation, and diminished genetic effects.

Findings from previous studies also confirm sex differences in

anxiety. Higher anxiety of females was consistent according to a

meta-analysis [49] with studies using a wide range of subject pool

and anxiety measures (e.g. State-Trait Anxiety Inventory, Chil-

dren’s Manifest Anxiety Scale, Minnesota Multiphasic Personality

Inventory). Anxiety disorders are also more frequent in females

and more anxiety symptoms characterize them [50]. Neurotrans-

Figure 3. A. Localization of the analyzed human GDNF gene polymorphisms. Exons are labeled by filled boxes, the approximate position of
the studied SNPs by filled triangles. SNPs showing significant association with anxiety after correction for multiple testing are in bold. ATG 1,2,3 and 4:
alternative start sites, TGA: stop signal. B. Fine map of the genomic location of GDNF isoforms. Chromosomal positions of exons in each
transcription variant are indicated at the bottom. (Please note, that introns are longer than they appear in the figure.) Arrows pointing up indicate the
start and stop codons of open reading frames in each isoform. Chromosomal localization of rs3812047 and rs3096140 are shown on the top. Distance
between exon 1 of variant 2 and rs3812047 is 99 bp, whereas exon 2 is 474 bp away from the polymorphic locus. Similarly, distance between exon 2
of isoform 1 or 3 and rs3096140 is 1915 bp, and exon 3 is 16596 bp away from the SNP.
doi:10.1371/journal.pone.0080613.g003
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mitter systems probably play an important role in the background

of these differences [51], for example through the estrogen system

increasing monoamine synthesis (dopamine, serotonin, norepi-

nephrine) and receptor sensitivity [52]. Our results support these

findings, as female subjects reported higher anxiety scores.

However, we also report an interaction effect of sex and

rs3812047 SNP on anxiety (Figure 2A). Males with the minor

(A) allele showed anxiety scores as high as females with the major

(G) allele of this polymorphism. Females with the risk (A) allele

reported even higher anxiety scores. Others [53] also reported

interaction effect of sex and the BDNF Val66Met polymorphism

on stress reactivity.

Limitations of the presented study involve the relatively low

sample size, therefore the possibility of false positive findings could

not be excluded despite the fact that the two reported significant

findings survived the Bonferroni-correction for multiple testing.

Therefore further replications with independent samples are

necessary. Moreover, no functional data are available concerning

the intronic SNPs shown here to associate with anxiety, however,

it is important to note that both anxiety-linked SNPs are in the

close proximity of critical sites of alternative splicing (Figure 3.A.

and B). Nevertheless, the fact that only these two SNPs associate

firmly with anxiety might imply their significance in the control of

gene expression. As far as the molecular background of this novel

association is concerned, it is tempting to assume that these

polymorphisms might be involved in the regulation of alternative

splicing of the GDNF gene. Importantly, there are two main types

of alternatively spliced preproGDNF isoforms, alpha and beta, the

latter possessing a significantly shorter propeptide sequence due to

the presence of an alternative splicing site in exon 3 of the gene

[54], resulting in four isoforms as shown on Figure 3 B. Although

the functional differences of GDNF variants are not fully

understood, altered processing and secretion of the protein

isoforms have been demonstrated [55]. This assumption seems

highly probable in the light of recent publications assigning a

pivotal role to intronic polymorphisms in governing splicing

processes via differential recruitment of key splicing factors. For

instance, two intronic SNPs in the type 2 dopamine receptor gene

(DRD2) have been found sufficient to affect alternative splicing

and therefore susceptibility to cocaine abuse [56]. Similar

interactions between intronic SNPs and alternatively spliced

isoforms have also been described in case of the human myocilin

[57] and insulin [58] as well as the human papilloma virus E6/E7

genes [59], just to mention but a few.

Albeit several lines of biochemical evidence argue for the role of

GDNF in dopaminergic differentiation [1], relatively scarce and

ambiguous data have been gained from association studies with

regard to its involvement in the pathogenesis of neuropsychiatric

disorders. To date, a cohort of association analyses has suggested

that certain GDNF polymorphisms might be linked to schizophre-

nia, a pervasive neurodevelopmental disorder [20,23]. Recent

findings from Ahmadiantehrani and Ron [60] seem to corroborate

these results by revealing that upregulated DRD2 signaling, a

hallmark of schizophrenia, resulted in elevated GDNF expression

levels.

To our best knowledge, this is the first report shedding light on

the significance of the rs3812047 and rs3096140 SNPs that have

not been found to significantly associate with any known traits or

disorders before. Previously, a study conducted on Japanese drug

abusers identified a GDNF SNP associated with metamphetamine

dependence [27]. It is widely known that anxiety disorders such as

generalized anxiety disorder, phobias, panic- and compulsivity

disorders are often accompanied by drug addiction, smoking and

heavy drinking [61,62]. In light of results presented here, GDNF

might be one of the common factors that links anxiety to substance

abuse.

This is the first report on association between anxiety and the

polymorphisms of GDNF gene; however, since we used a non-

clinical sample we could assess genetic background of individual

variation in anxiety below the clinical threshold. Further studies

are needed to reveal whether the genetic risk factors suggested

here are related to higher vulnerability of mood disorders.
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