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Abstract

Background: Real-time quantitative PCR (qPCR) is still the gold-standard technique for gene-expression quantification.
Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the
limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management
and analysis of these data is not available.

Results: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using
the same n-fold diluted samples. Data Analysis Gene (DAG) Expression software has been developed to perform high-
throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference
genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment
performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our
analysis was tested and compared with other available methods.

Conclusions: DAG Expression is a freely available software that permits the automated analysis and visualization of high-
throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://
www.dagexpression.com/dage.zip.
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Introduction

Real-time quantitative PCR (qPCR) analysis is the most

common method to analyze gene expression due to the excellent

sensitivity and specificity of PCR. It generates high-quality data

without the requirement of additional validation. In fact, this

methodology is applied to validate data obtained by higher

throughput technologies such as microarray or RNA-Seq exper-

iments [1]. Due to the technological advances produced in recent

years, this methodology can also be used to perform high-

throughput gene-expression quantification [2,3]. In parallel to

these technological advances, several methodologies have been

developed to calculate the relative fold-change expression taking

into account the efficiency of PCR [4–8]. Among them, the

comparative threshold cycle method [4,8] is one of the most

commonly used methods and has recently been implemented in R

packages for users with experience in this statistical environment

[9,10]. However, this method requires the PCR efficiencies of

target and control genes to be approximately equal, and close to

100%, requirements that are not always achieved with high-

throughput gene-expression measurements with qPCR. Other

methods using different mathematical models, in which target-

specific amplification efficiencies are introduced into equations to

calculate relative expression data normalized to one [5] or multiple

[7] reference genes, have also been developed. The latter is now

available through the commercial software qBasePlus (Biogazelle)

[7].

It is well established that the best method to calculate PCR

efficiency is through the construction of standard curves [7]. One

of the advantages of the commercial microarrays currently

available, such as the OpenArrayH (Applied Biosystems) or the

microfluidic dynamic Arrays (Fluidigm), is the feasibility of

constructing standard curves of multiple assays using the same

n-fold, serial diluted samples. Hence, this allows for the use of

relative standard quantification to compare the relative concen-

trations among multiple samples and the analysis of gene-

expression profiling among multiple assays. In the linear regression

analysis method, the relative concentrations of unknown samples

are calculated accounting for unequal efficiencies of target and
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control genes. Here, we have developed user-friendly software for

the automated analysis of high-throughput gene-expression data

by drawing relative standard curves for relative quantification,

allowing the use of one or multiple-reference genes for sample

normalization. To the best of our knowledge, there is no available

software to perform an interactive analysis with standard curves

with multiple genes and samples.

Methods

Implementation
Data Analysis Gene (DAG) Expression has been developed in

Visual Basic.Net and will run under the major Microsoft operating

systems (MicrosoftH WindowsH 7 or XP). A detailed manual and a

demo-experiment (example results data) consisting of a micro-

fluidic dynamic arrayTM IFC (48.48) containing 48 assays (44

target and 4 reference genes) and 48 samples are available in the

Help menu, which allow users to be familiar with the DAG

Expression software.

Installation
The program does not need installation, it is zipped into a file

and the user can unzip it with a standard program to a folder or

desktop. In most systems, Framework.Net is installed, however, if

the program gives an error message, the user must download and

install Framework.Net 4 or above (http://www.microsoft.com/en-

us/download/details.aspx?id = 17851).

Software features
The diagrams for processing analysis are presented in Figure S1

and S2. At present, the DAG Expression workflow can be

summarized as follows:

Data import. Output files (.csv or txt files) of different

software (Fluidigm Real-Time PCR analysis software, SDS, etc.)

or user-formatted input data containing the assay name (genes

being measured), sample name and Ct (threshold cycle) values

separated by a semicolon can be imported (Figure 1A). The

program is able to import multiple files, allowing for the analysis of

more than 96 genes and hundreds of samples; the name of each

file can be visualized in the ‘File Name’ column of the sample data

table (main work area).

Once imported, the DAG expression software converts these

files into a standard internal format which contains information on

the assay name, sample name (user can modify it), Ct value, and

Mean Ct value (the arithmetic mean of the raw Ct values for the

technical replicates of a given gene; samples with the same name

are considered as being technical replicates by the program).

Furthermore, when output files are imported to DAG expression,

the software directly omits the data points that fail during the

qPCR amplification. This allows the identification of these missing

data points and allows users to further select data points and

exclude them for subsequent analysis.

Two output files (fluidigm or generic csv) of the same demo-

experiment have been included in the zip file to permit users to

practice with the import action and to be familiar with the DAG

Expression accepted formats.

Setting parameters. To start data analysis, different param-

eters such as the assay type (Selected Control or Target), the

sample type (Standard, Unknown and Non-Template Control-

NTC) and the quantity values in the Standard samples (serial

dilutions) have to be set (Figure 1B).

Calculation of relative quantities. Once the raw qPCR

data have been imported and the different parameters have been

set, the software draws the standard curves for each assay

interactively by plotting the Ct values (independent variable, Y)

versus the log input amount (serial dilution values; dependent

variable, X) of Standard samples (Figure 1C). Then, the software

uses the standard curves to calculate the relative Quantity for

Unknown samples (Step 1) applying the linear regression equation

(y = mx+b) for the best fit line, where the slope m and intercept b

are calculated as:

m~
n
Pn

i~1 (xiyi){
Pn

i~1 xi

Pn
i~1 yi

n
Pn

i~1 x2
i {

Pn
i~1 xi

� �2

b~

Pn
i~1

yi {m
Pn

i~1 xi

n

where y is Ct of the Standard sample, x is the quantity of the

Standard sample in log, n = number of technical replicates i.

Step 1 (equations 1 and 2): Conversion of Ct values into relative

quantities

x~
(y{b)

m
ðEquation 1Þ

Qgs ~10 xð Þ ðEquation 2Þ

where y is Ct of the Unknown sample, m is the slope of the

standard curve, x is the quantity of the Unknown sample in log, b

is the y-intercept of the standard curve line and Qgs is the quantity

of a Unknown sample (s) for a given assay (g): Selected Control or

Target.

Step 2 (equations 3 and 4): For all technical replicates, i, of an

Unknown sample for a given assay, the software calculates the

average quantity (Mean Quantity, Qgs) and the standard deviation

(SD) of the average (Quantity SD, SD(Qgs)).

Qgs~
1

n

Xn

i~1
Qigs ðEquation 3Þ

where Qgs = Quantity value of a Unknown sample for a given

assay; n = number of replicates i

SD Qgs

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~1
Qigs{Qgs

� �2

r
ðEquation 4Þ

where Qgs = Mean Quantity value for all replicates of a

Unknown sample for a given assay; n = number of technical

replicates i

Identification and selection of the most stable expressed

reference genes. Single or multiple genes can be used as a

normalizer. The multiple-gene normalization method is based on

the principles and formulas described by [11] in which the lowest

gene-stability measure (M) value indicates genes with the most

stable expression (Figure 1D).

Once the user has selected the reference genes (Selected

Control), the program calculates the arithmetic mean of the mean

DAG Expression Analyzer
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quantity values of the Selected Controls (Mean Q. S. Control) to

produce a normalization factor (NF), step 3.

Step 3 (equation 5): Calculation of the NF

NFselect:control,gs~
1

n

Xn

j~1
Qselect:control,jgs ðEquation 5Þ

where Qselect:control,gs = Mean Quantity value for all replicates of

an Unknown sample for a given selected control; n = number of

selected controls j

Normalization of relative quantity values. Once the NF is

obtained, the program calculates the normalized quantity (Norm.

Q., NQgs) and the SD of the normalized quantity (Norm. Q. SD,

SD(NQt arg et,gs)) of all Unknown samples for each assay

(Figure 1E), step 4.

Step 4 (equation 6 and 7): Calculation of the normalized value and

SD

NQgs~
Qgs

NFselect:control,gs

ðEquation 6Þ

SD(NQt arg et,gs)~
SD(Qt arg et,gs)

Qt arg et,gs

z

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j~1 SD(Qselect:control,jgs)
2

q
Pn

j~1 Qselect:control,jgs

1
A (n �Qt arg et,gs)Pn

j~1 Qselect:control,jgs

 !ðEquation 7Þ

where Qt arg et,gs = Mean Quantity value for all replicates of an

Unknown sample for a given target assay; SD(Qt arg et,gs) =

Standard deviation of the average quantity of a Unknown sample

for a given target assay; SD(Qselect:control,jgs) = Standard deviation

of the average quantity of an Unknown sample for a given selected

control, n = total number of selected controls.

Figure 1. DAG Expression; (A) Import window; (B) Assay data table (left) and sample data table (right) work area; (C) Standard curve
with a four-fold dilution series (1/4, 1/16, 1/64, 1/256, 1/1024) used to extrapolate the quantity values of Unknown samples; (D)
Control-gene stability analysis. M-values for 4 selected control genes; (E) Results table with different parameters presented for each assay.
doi:10.1371/journal.pone.0080385.g001
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Visualization of results. DAG Expression normalized data

can be visualized via bar plots (NQ Plot; Figure 2) displaying

normalized data (Linear, Log10 or Log2) vs target or sample

(Figure 2A). Groups of samples can be also created to visualize the

data via bar plots; the software plots the arithmetic mean of the

normalized data (Linear, Log10 or Log2) of each group vs target or

group (Figure 2B).

Other utilities such as the ‘‘coefficient of variation inter-run’’ or

the ‘‘efficiency between genes’’ are also available in the DAG

expression software (See the user manual for more information).

Results and Discussion

DAG Expression was created to analyze the expression of 48

genes (44 target genes and 4 reference genes) in 115 samples, using

a 48.48 microfluidic dynamic arrayTM on the BioMarkTM system

(Fluidigm) (Ballester et al., manuscript in preparation, 2013).

However, the software can be used for the analysis of data

obtained from different instruments (See data import in software

features).

Data from our experiment were collected using the Fluidigm

Real-Time PCR analysis software 3.0.2 (Fluidigm), and the output

csv files were imported into DAG Expression, as is shown in

Figure 1A. The demo experiment (Help menu: Example results

data) shows the first experimental 48.48 dynamic array in which a

seven-point four-fold dilution series (1/4, 1/16, 1/64, 1/256, 1/

1024, 1/4096, 1/16389) per triplicate and 11 unknown samples

per duplicate were run. Following ‘‘The MIQE Guidelines for

Real-Time PCR Experiments’’ [12], standard curves covering at

least 3 orders of magnitude were constructed for each gene

(Figure 1C). PCR efficiencies were almost 90% for all of the assays

except for Gene35, which was expressed at low levels and was

discarded for further analysis. Reference genes Gene03 and

Gene28 showed the lowest M value [11] (Figure 1D) and were

selected as reference controls to perform subsequent analysis. To

calculate the inter-run coefficient of variation, the same unknown

sample was consecutively added in all the independent runs. We

obtained a very small coefficient of variation (1.9%), indicating a

good reproducibility of the microfluidic dynamic arrays (data not

shown) [2]. Next, standard curves were used to extrapolate the

quantities of the 115 unknown samples using linear regression

analysis, and data were normalized using the previously calculated

normalization factor (See the calculation step 3 in software

features). At this point, the user can visualize the results using the

Bar Plots tool to compare the relative expression levels among

multiple samples or to view the expression profile of multiple

genes. Furthermore, depending on the main aim of the study, data

can be easily exported for further statistical and biological

interpretation of gene expression data using other specialized

programs.

To assess the quality of the analysis performed by our software,

a comparison with other methods [5,8] was performed. First, we

compared our results against results obtained using conventional

qPCR on microliter volume samples and the comparative CT

(DDCT) method [8]. In a previous study, the expression profile of

the pig ELOVL fatty acid elongase 6 (ELOVL6) gene was evaluated by

qPCR using an ABI PRISM 7900HT Sequence Detection System

(Applied Biosystems). Results were analyzed using the RQ

manager v1.2.1 and the DataAssistTMv3.0 software (Applied

Biosystems) (for more details, see [13]). The same set of primers

(ELOVL6 and reference genes) was added into the 48.48

microfluidic dynamic arrayTM to be used as control. When the

22DDCT values (DataAssistTM) and the normalized quantity values

(DAG Expression) of the same 94 samples corrected by the same

calibrator sample were compared, a high correlation coefficient

(r = 0.928) was obtained (Figure 3A). The subtle differences

observed between the two methods are most probably due to

variations in the qPCR amplification efficiencies obtained between

experiments (conventional qPCR vs microfluidic array), although

slightly differences between measurement platforms cannot be

discarded [2]. In the former experiment, qPCR of ELOVL6 and

endogenous genes were optimized to obtain PCR efficiencies close

to 2 and equal between target and endogenous genes. This

optimization is time-consuming and expensive when profiling lots

of genes using high-throughput technologies such as 48.48

microfluidic dynamic arrays and, for that reason, the method

used by DAG expression, based on standard curves and linear

regression analysis, corrects for differences in PCR efficiencies

between target and endogenous genes without the need for further

qPCR optimization. On the other hand, our demo-results were

compared with the results obtained using the mathematical model

developed by [5]. For this comparison, we used the target gene

Gene17, the reference gene Gene03 and the control sample 11,

obtaining also a high correlation coefficient (r = 0.999) (Figure 3B).

In this case, both methods adjust for differences in PCR efficiency

between target and internal control using different equations.

Figure 2. Bar chart example. (A) NQ plot displaying linear normalized quantity (NQ) vs sample. (B) NQ plot by group displaying logarithmic (Log2)
normalized quantity (NQ) of each group (1 and 2) vs target.
doi:10.1371/journal.pone.0080385.g002
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Therefore, our software represents a reliable and accurate tool to

perform relative quantification of high-throughput gene-expres-

sion data.

Conclusions

In conclusion, recent advances in large-scale RT-qPCR

platforms have allowed for the generation of a great amount of

gene-expression data. Several methods to determine the relative

gene-expression levels have been developed over the years. DAG

Expression allows for the management and analysis of high-

throughput gene-expression data-sets obtained by RT-qPCR using

standard curves for relative quantification and one or multiple

genes for sample normalization.

Supporting Information

Figure S1 DAG expression flow chart. Workflow diagram

for the general processing analysis of DAG expression.

(TIFF)

Figure S2 Control gene stability flow chart. Workflow

diagram for the ‘find control gene stability’ tool.

(TIFF)
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