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Abstract

Humans and animals readily generalize previously learned knowledge to new situations. Determining similarity is
critical for assigning category membership to a novel stimulus. We tested the hypothesis that category membership is
initially encoded by the similarity of the activity pattern evoked by a novel stimulus to the patterns from known
categories. We provide behavioral and neurophysiological evidence that activity patterns in primary auditory cortex
contain sufficient information to explain behavioral categorization of novel speech sounds by rats. Our results
suggest that category membership might be encoded by the similarity of the activity pattern evoked by a novel
speech sound to the patterns evoked by known sounds. Categorization based on featureless pattern matching may
represent a general neural mechanism for ensuring accurate generalization across sensory and cognitive systems.
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Introduction

When faced with a sensory stimulus that could indicate a
predator, prey, or a mate, accurate generalization is critical for
survival [1]. For example, vervet monkeys learn to emit
different warning calls for each class of predator in their
environment, and monkeys who hear these calls exhibit distinct
behaviors that indicate they understand the category that each
type of call represents [2]. Humans and animals possess the
remarkable ability to quickly and accurately determine how
similar any image, sound, or smell is to previously learned
stimuli.

The first step in categorizing a novel stimulus appears to be
quantifying its similarity to known category members [3,4].
Many studies have documented the presence of a
generalization gradient for stimuli varying along a single
dimension. Pigeons trained to peck a colored light also respond
to colors of similar wavelength [5]. Following conditioning to a
tone, both humans and animals respond to tones of similar
frequency and respond less as similarity decreases [6,7].
However, physical similarity does not always predict perceptual
similarity even for stimuli that vary along a single dimension
[8-10].

The similarity of real world stimuli is notoriously difficult to
predict. The consonants /d/ and /t/ (as in “dad and “tad”) have

different voice onset times, pitch contours, formant transition
durations, formant onset frequencies, F1 cutbacks, and burst
intensities [11]. Male and female voices have different pitches,
levels of breathiness, formant frequencies, and formant
amplitudes [12]. Any of these features is sufficient to
distinguish between ambiguous sounds, but none of these
features is necessary to identify the phoneme or gender
[13-15]. The so-called “lack of invariance” problem in speech
perception also occurs in face perception [16,17]. Dozens of
physical differences, including pupil to pupil distance, chin
shape, and nose length, can be used to distinguish between
faces but no single feature or set of features is required.
Modern face recognition algorithms use template matching
because feature-based approaches failed to support robust
recognition [18].

Commercial systems for speech and music recognition have
also abandoned the use of feature-based approaches [19,20],
but psychophysical and neurophysiological studies continue to
focus on the representation of a small set of speech features
[21-24]. In this study, we test the hypothesis that the similarity
of activity patterns in sensory cortex supports effective speech
sound categorization without the need to compute a set of
particular acoustic features. Our study provides a direct
demonstration that, like face recognition, featureless template
matching accounts for speech categorization performance.
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Materials and Methods

Twenty-one rats were trained to categorize speech sounds
by voicing or gender. We trained rats to press a lever in
response to a single speech sound and refrain from lever
pressing to a second speech sound. We then tested their ability
to generalize to novel speech sounds. Half of the rats in our
study were trained to categorize sounds based on speaker
gender (female vs. male, Gender Task group), while the other
half were trained to categorize speech sounds based on
voicing (‘dad’ vs. ‘tad’, Voicing Task group). Behavioral
performance on four generalization tasks was compared to
multiunit activity recorded at 441 primary auditory cortex (A1)
sites from eleven experimentally naïve rats and 903 A1 sites
from twenty-one speech trained rats (female Sprague Dawley
rats were obtained from Charles River Laboratories). Our
datasets are freely available upon request. Behavioral training
and A1 recording procedures are identical to our previous
studies [25,26].

Ethics statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The
protocol was approved by The University of Texas at Dallas
Institutional Animal Care and Use Committee (Protocol
Number: 99-06). All surgery was performed under sodium
pentobarbital anesthesia, and every effort was made to
minimize suffering.

Speech stimuli
The stimulus set for these experiments was designed so that

each sound can be categorized based on (1) the gender of the
speaker or (2) the voicing of the initial dental consonants (/d/
vs. /t/). We used the voiced word ‘dad’ and the voiceless word
‘tad’ spoken in isolation by 3 male and 3 female native English
speakers (n = 12 sounds, Figure 1). The sound names were
shortened in the figures; for example, ‘DM3’ refers to the sound
‘dad’ spoken by the 3rd male speaker, ‘TF2’ refers to the sound
‘tad’ spoken by the 2nd female speaker, and ‘D90’ refers to the
sound ‘dad’ temporally compressed to 90% of the original
stimulus length. As in our earlier studies using the same
sounds, the speech sounds were shifted up by one octave
using the STRAIGHT vocoder [27] in order to better match the
rat hearing range [25,28-33]. The intensity of these sounds was
adjusted so that the loudest 100 ms of the vowel was 60 dB
SPL. Nine temporally compressed versions of ‘dad’ and ‘tad’
spoken by a single female speaker (female 1) were generated
using the STRAIGHT vocoder (n = 18 sounds). These stimuli
were compressed in increments of 10% down to 10% of the
original stimulus length. A version of the female 1 ‘dad’ was
also created using STRAIGHT with the pitch one octave lower
for use during the discrimination training task prior to gender
categorization.

Behavioral training
Our previous study demonstrated that rats can rapidly learn

to discriminate English consonant pairs that differ only in their

voicing, place, or manner of articulation [25]. In this study, we
tested the ability of rats to categorize sets of 5, 6, 10, or 18
novel sounds based on voicing or gender.

The Voicing Task group (n = 6 rats) was trained for two
weeks to press a lever in response to ‘dad’ and not to ‘tad’
spoken by female 1. After training, the rats were tested for their
ability to correctly categorize eighteen temporally compressed
versions of ‘dad’ and ‘tad’. For this go/no-go task, rats were
rewarded for responding to any version of ‘dad’ and received a
brief time out for false alarming to any version of ‘tad’.
Following two weeks of testing on the temporal compression
voicing task, the rats were tested for their ability to correctly
generalize to ‘dad’ and ‘tad’ produced by five new talkers (2
female and 3 male).

The Gender Task group (n = 5 rats) was trained to lever
press in response to ‘dad’ spoken by female 1, but not to the
same word when the pitch was shifted down by one octave (F0

of 225 Hz) using the STRAIGHT vocoder. After two weeks of
pitch discrimination training, the rats were tested for their ability
to categorize gender using the novel ‘dad’ stimuli from three
male and two female speakers. Rats were rewarded for
pressing in response to ‘dad’ spoken by a female, but received
a time out for pressing in response to ‘dad’ spoken by a male.
Following two weeks of testing on the ‘dad’ gender task, the
rats were tested for their ability to correctly categorize gender
using the three male and three female ‘tad’ stimuli. Rats were
rewarded for lever pressing in response to ‘tad’ spoken by a
female, but received a time out for lever pressing in response
to ‘tad’ spoken by a male.

Training took place in double-walled booths that each
contained a speaker (Optimus Bullet Horn Tweeter, Radio
Shack), house light, and cage (8” length x 8” width x 8” height)
with a lever and pellet dish. The pellet dispenser was mounted
outside of the booth to minimize sound contamination. Rats
received a 45 mg sugar pellet reward for pressing the lever in
response to the target sounds, and received a time out where
the house light was extinguished for a period of approximately
6 seconds for pressing the lever in response to the non-target
sounds. Rats were food deprived to provide task motivation.
Additional food was provided as needed to keep rats between
80% and 90% of their full feed weights.

Rats were first trained to press the lever to receive a sugar
pellet reward. Each time the rat was near the lever, the rat
heard the target sound and received a 45 mg sugar pellet.
Pellets were then given only if the rat was touching the lever,
and eventually the rat began to press the lever independently.
After each lever press, the rat heard the target sound and
received a pellet reward. Once they reached the criteria of
independently pressing the lever 100 times per session for two
sessions, they advanced to the detection phase of training.
During this phase, rats from all groups learned to press the
lever after hearing the ‘dad’ speech stimulus spoken by female
1. Rats started with an 8 second lever press window (hit
window) after each sound presentation, and the hit window was
decreased in 0.5 second increments every few sessions as
performance increased, down to a hit window of 3 seconds.
When rats reached the criteria of a d’ ≥ 1.5 for 10 sessions
(average of 26 ± 2 sessions), they advanced to the
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discrimination task. d’ is a measure based on signal detection
theory of the discriminability of two sets of samples. From this
phase on, rats performed each task for 20 sessions over 2
weeks (2 one-hour training sessions per day). Six rats in the
Voicing Task group trained on a ‘dad’ vs. ‘tad’ discrimination
task for two weeks, followed by a ‘dad’ vs. ‘tad’ temporal
compression categorization task for two weeks, followed by a
‘dad’ vs. ‘tad’ multiple speaker categorization task for two
weeks. Five rats in the Gender Task group trained on a ‘dad’
pitch discrimination task for two weeks, followed by a ‘dad’
gender categorization task for two weeks, followed by a ‘dad’
and ‘tad’ gender categorization task for two weeks. The final
categorization task in each group used the exact same stimuli,
‘dad’ and ‘tad’ spoken by multiple male and female speakers.
The Voicing Task group was trained to categorize these stimuli
based on voicing, while the Gender Task group was trained to
categorize these stimuli based on gender.

Anesthetized recordings
We recorded multi-unit activity (n = 441) in the right primary

auditory cortex of eleven experimentally naïve female Sprague-
Dawley rats in response to each of the 15 ‘dad’ and 15 ‘tad’
stimuli tested behaviorally. Multi-unit recordings were also
collected in the right primary auditory cortex of five gender
trained rats (n = 280 sites) and four voicing trained rats (n =
168 sites). Rats were initially anesthetized with pentobarbital
(50 mg kg-1), and received dilute pentobarbital (8 mg ml-1) as
needed. Four Parylene-coated tungsten microelectrodes (1–2
MΩ, FHC, Bowdoin, ME, United States) were used to record
action potentials ~600 μm below the cortical surface.
Recording sites were selected to evenly sample A1 without
damaging the cortical surface vasculature.

Each speech sound was presented 20 times (randomly
interleaved with a 2 second interstimulus interval). To
determine the characteristic frequency of each site, 25 ms
tones were presented at 81 frequencies (1 to 32 kHz) and 16

Figure 1.  Spectrograms of each speech sound grouped by gender and voicing.  Rows differ in voicing (top row is ‘dad’,
bottom row is ‘tad’), while columns differ in gender (left three columns are female, right three columns are male). Frequency is
represented on the y axis (0–35 kHz) and time on the x axis (-50 to 500 ms). Speech sounds were shifted one octave higher to
accommodate the rat hearing range.
doi: 10.1371/journal.pone.0078607.g001
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intensities (0 to 75 dB). Stimulus generation, data acquisition,
and spike sorting were performed with Tucker-Davis (Alachua,
FL, United States) hardware (RP2.1 and RX5) and software
(Brainware). Multi-units include action potentials from more
than one nearby neuron. The University of Texas at Dallas
Institutional Animal Care and Use Committee approved all
protocols and recording procedures.

Awake recordings
We recorded multi-unit A1 responses (n = 65) in seventeen

experimentally naive awake rats using chronically implanted
microwire arrays, which were described in detail in previous
publications [25,34]. Fourteen-channel microwire electrodes
were implanted in the right primary auditory cortex using a
custom-built mechanical insertion device to rapidly insert
electrodes in layers 4/5 (depth ~600 µm) [34]. Recordings were
made in response to the 12 ‘dad’ and ‘tad’ stimuli spoken by 3
male and 3 female speakers, the 18 temporally compressed
versions of ‘dad’ and ‘tad’, and the sound ‘dad’ spoken by
female 1 with a low pitch (the non-target sound used for
discrimination training prior to the gender categorization task).
Awake rats were passively exposed to these speech sounds,
and were not performing the categorization tasks.

Data analysis
Neurograms were constructed by arranging the responses

from each of the A1 recording sites on the y axis from low
characteristic frequency to high characteristic frequency sites.
The neurogram response for each sound at each site is the
average of 20 repeats of that sound played at that site. Neural
similarity was computed using Euclidean distance. The
Euclidean distance between any two activity patterns is the
square root of the sum of the squared differences between the
firing rates for each recording site. The onset response to each
sound was defined as the 50 ms interval beginning when
average neural activity across all sites exceeded the
spontaneous firing rate by three standard deviations.
Neurograms were temporally binned into a single 50 ms bin.
The Euclidean distance was calculated between the activity
pattern for a novel sound and both the activity pattern for the
target sounds that the rats had previously trained on, and the
activity pattern for the non-target sounds that the rats had
previously trained on. For the initial gender ‘dad’ categorization
task, the previously trained target and non-target template
patterns were the response to the high pitch ‘dad’ and low pitch
‘dad’, respectively. For the initial voicing compression task, the
template patterns were the response to ‘dad’ and ‘tad’ spoken
by female 1. For the second gender task, gender ‘tad’, the
template target pattern was the average of the response to the
target sounds heard on the previous task (3 female exemplars
of ‘dad’), while the template non-target pattern was the average
of the response to the non-target sounds heard on the previous
task (3 male exemplars of ‘dad’). For the second voicing task,
the template target pattern was the average of the response to
the target sounds heard on the previous task (10 compressed
versions of ‘dad’), while the template non-target pattern was
the average of the response to the non-target sounds heard on
the previous task (10 compressed versions of ‘tad’). For each

novel sound, the distance to the target pattern was subtracted
from the distance to the non-target pattern, so that responses
with positive values are more similar to the target pattern, while
responses with negative values are more similar to the non-
target pattern. Pearson's correlation coefficient was used to
examine the relationship between neural similarity and
generalization performance on the first day of each of the
categorization tasks. Our measure of neural similarity is not
dependent on the Euclidean distance measure. Neural
similarity quantified using City Block distance and Minkowski
distance also significantly predicts generalization behavior on
all four tasks. To test the importance of spectral precision,
neural recordings from 441 A1 sites were binned into subsets
containing 1, 2, 3, 4, 5, 7, 9, 10, 15, 20, 25, 55, 110, 220, or
441 sites (441, 220, 147, 110, 88, 63, 49, 44, 29, 22, 17, 8, 4,
2, or 1 bins, respectively). Each bin contained sites tuned to a
specific range of frequencies. For example, when the data
were divided into four bins, the frequency ranges were 1-6,
6-10, 10-15, and 15-31 kHz.

Results

Rats categorize novel speech sounds by speaker
gender and voicing

Rats accurately generalized to novel sounds after training to
discriminate a single sound from each of two distinct
categories. The Gender Task group of rats (n = 5) was first
trained to discriminate the word ‘dad’ with a high pitch from the
word ‘dad’ with a low pitch. Following pitch training, the rats
were tested on their ability to categorize the gender of novel
‘dad’ sounds spoken by different male and female speakers.
Rats were able to perform the task well above chance on the
first day of testing (d’ = 1.32 ± 0.3 mean ± se, 83 ± 4% lever
press to female vs. 37 ± 10% lever press to male, p = 0.008,
Figure 2a). Following two weeks of training on the ‘dad’
categorization task, the rats were then tested for their ability to
generalize to novel ‘tad’ stimuli spoken by the same three male
and three female speakers. The Gender Task rats were able to
categorize the novel sounds by gender on the first day of
testing (80 ± 8% lever press to female sounds vs. 22 ± 3%
lever press to male sounds, d’ = 1.76 ± 0.2, p = 0.001, Figure
2b). These results demonstrate that pitch trained rats were able
to accurately categorize speech sounds by gender while
ignoring differences in speaker and voicing.

Another group of rats (Voicing Task, n = 6) was trained to
categorize the same sounds but was required to categorize by
voicing while ignoring gender (Figure 1). The Voicing Task
group initially learned to discriminate the word ‘dad’ from the
word ‘tad’, spoken by a single female speaker. These rats were
then tested for their ability to categorize these sounds when
temporally compressed to create a set of 9 novel ‘dad’ sounds
and 9 novel ‘tad’ sounds (with durations 10 - 90% of the
original length). The Voicing Task rats were able to generalize
to these new stimuli, and accurately categorized 16 of the 18
novel temporally compressed sounds on the first day of training
(86 ± 2% lever press to ‘dad’ vs. 34 ± 7% lever press to ‘tad’, d’
= 1.53 ± 0.2, p = 0.00002, Figure 2c). This same group of rats
was next tested for their ability to generalize to novel ‘dad’ and
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‘tad’ stimuli spoken by three male and two female speakers.
This set of sounds was identical to the sounds presented to the
Gender Task rats for their second generalization task. Voicing
Task rats accurately categorized the novel sounds by voicing
on the first day of testing (83 ± 6% lever press to ‘dad’ vs. 38 ±
6% lever press to ‘tad’, d’ = 1.38 ± 0.1, p = 0.00008, Figure 2d).
These results demonstrate that voicing trained rats were able

to generalize to novel stimuli while ignoring significant variation
in stimulus duration, speaker, or gender.

We analyzed the first trial behavioral response to each new
sound for each of the four tasks to confirm that categorization
behavior recorded on the first day was indeed due to
generalization rather than rapid learning. For the first
presentation of each sound, rats pressed the lever consistently

Figure 2.  Generalization performance for the gender and voicing categorization tasks.  (a) Gender Task rats successfully
generalized from the pitch discrimination task, and accurately pressed the lever more often in response to novel female ‘dad’
sounds than novel male ‘dad’ sounds on the first day of testing. Red symbols represent target sounds, blue symbols represent non-
target sounds, and black symbols represent target or non-target sounds from the previous task. Circle symbols indicate ‘dad’ stimuli,
while triangle symbols indicate ‘tad’ stimuli. Error bars indicate s.e.m. across rats. The solid line indicates average percent lever
press to silent catch trials, with s.e.m. indicated by the dotted lines. (b) Gender Task rats successfully generalized from the gender
‘dad’ categorization task, and accurately pressed the lever more often in response to novel female ‘tad’ sounds than novel male ‘tad’
sounds on the first day of testing. The sounds presented in subplot d are identical. (c) Voicing Task rats successfully generalized
from the voicing discrimination task, and accurately pressed the lever more often in response to novel temporally compressed ‘dad’
than novel temporally compressed ‘tad’. (d) Voicing Task rats successfully generalized from the voicing temporal compression
categorization task, and accurately pressed the lever more often in response to ‘dad’ spoken by multiple novel speakers than ‘tad’
spoken by multiple novel speakers.
doi: 10.1371/journal.pone.0078607.g002
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more often in response to sounds in the target category
compared to sounds in the non-target category (average of
72±4% target lever press vs. 44±6% non-target lever press, p =
0.0005). These results confirm that rats are able to accurately
categorize novel sounds based on experience with as few as
one member of each category.

Simple acoustic features cannot fully explain gender
and voicing categorization by rats

Historically, speech scientists concluded that each speech
category is defined by a set of acoustic features such as pitch,
formant frequencies, or voice onset time [35,36]. We measured
multiple acoustic features for each of the trained sounds (Table
1), and our results confirm that these features are correlated
with generalization performance in rats. The pitch (fundamental
frequency, F0), first formant peak and second formant peak of
each sound are positively correlated with categorization as a
female sound by rats (F0: R2 = 0.73, p = 0.0004; F1: R2 = 0.41,
p = 0.03; F2: R2 = 0.35, p = 0.04, for both gender tasks). These
cues are also correlated with gender judgments by humans
[36,37].

Multiple acoustic features are correlated with generalization
performance in the Voicing Task rats. Voice onset time (VOT)
and burst duration (the duration of the stop consonant release
burst) are both correlated with categorization as an unvoiced
consonant by rats (VOT R2 = 0.6, p = 0.0001 voicing
compression task; VOT R2 = 0.75, p = 0.0002 voicing multiple
speaker task; Burst duration R2 = 0.46, p = 0.001 voicing
compression task; Burst duration R2 = 0.67, p = 0.001 voicing
multiple speaker task; Table 1). These acoustic cues also
predict voicing categorization in humans [35,36]. Previous
literature, however, demonstrates that simple acoustic
parameters, such VOT and pitch, cannot explain speech
perception, especially in difficult listening conditions. Studies in
humans and rats have clearly demonstrated that behavioral
performance is preserved when background noise or
degradation by noise vocoder are used to eliminate VOT,
formant, and pitch cues [15,30,31,38,39].

Our behavioral results suggest that the rats do not use a
single acoustic feature to accurately categorize sounds by
voicing or gender. The behavioral results were inconsistent
with the prediction that rats use pitch (fundamental frequency,
F0) to discriminate female from male speakers. Rats reliably
categorized ‘tad’ spoken by one of the male speakers (TM1) as
a sound spoken by a female even though the pitch was 117
Hz. If the rats categorized the sound based on pitch, they
would have been expected to respond as if it was one of the
male sounds (F0: 114, 116, 111, 118, & 108 Hz) and not as if it
was one of the female sounds (F0: 225, 241, 205, 236, 260, &
196 Hz).

The behavioral results were inconsistent with the prediction
that rats use VOT to discriminate ‘dad’ from ‘tad’. Previous
studies have shown that humans and rodents categorize
sounds as voiced when they have a VOT of less than 35 ms
[9]. After our rats were trained to lever press to ‘dad’ (VOT = 19
ms) and not to ‘tad’ (VOT = 79 ms), the rats were tested on
versions of these sounds that were temporally compressed
such that their VOTs were shortened to 10 to 90% of their initial

durations (i.e. 2 to 71 ms, see Table 1). Rats accurately
rejected compressed forms of ‘tad’ even when the VOT was
much lower than 35 ms (T20 – T40 in Table 1). Importantly, the
rats continued to accurately reject compressed ‘tad’ sounds
even when the VOT was below the value for the trained target
‘dad’ sound (19 ms). These behavioral responses occurred on
the first presentation of these novel sounds, which proves that
the categorical boundary was not shifted by experience. If the
rats categorized the sounds based on a single acoustic feature,
it would be expected that they would respond (i.e. lever press)
to any stimulus with a VOT less than 20 ms. However, the rats
failed to respond to the ‘tad’ with a VOT of 16 ms (because it
was compressed to 20% of the original duration). The fact that
the rats continued to reliably press to the 19 ms ‘dad’
demonstrates that they do not categorize the sounds based on
a simple measure of acoustic similarity, such as VOT.

Table 1. Values for the acoustic cues F0, F1, F2, VOT, and
burst duration for each sound.

Sound F0 (Hz) F1 (Hz) F2 (Hz) VOT (msec) Burst duration (msec)
DF1 225 846 2286 19 11.9

DF2 241 908 1921 32 16.9

DF3 205 995 1970 23 14.3

DM1 114 751 1748 9 6.5

DM2 116 753 1816 12 7.1

DM3 111 798 1760 7 3.9

TF1 236 957 1984 79 35.7

TF2 260 950 1918 128 66.2

TF3 196 917 1820 106 28.6

TM1 117 757 1709 49 26.6

TM2 118 798 1774 43 10.4

TM3 108 850 1808 76 10.4

D90 225 846 2286 17.1 10.7

D80 225 846 2286 15.2 10.7

D70 225 846 2286 13.3 9.9

D60 225 846 2286 11.4 8.9

D50 225 846 2286 9.5 7.1

D40 225 846 2286 7.6 6.3

D30 225 846 2286 5.7 6.6

D20 225 846 2286 3.8 4.2

D10 225 846 2286 1.9 3.6

T90 236 957 1984 71.1 33.1

T80 236 957 1984 63.2 25.9

T70 236 957 1984 55.3 24.9

T60 236 957 1984 47.4 18.8

T50 236 957 1984 39.5 14.1

T40 236 957 1984 31.6 14.3

T30 236 957 1984 23.7 11

T20 236 957 1984 15.8 8.2

T10 236 957 1984 7.9 5.3

The acoustic cues pitch (F0), formant frequencies F1 and F2, VOT, and burst
duration were quantified for each sound using Praat [96] and WaveSurfer [97]
software. Please note that the values of F0, F1, and F2 that the rats heard were
twice the values listed in the table, while VOT and burst duration were unaffected.
doi: 10.1371/journal.pone.0078607.t001
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The single acoustic features analyzed here (for example, F0
or VOT) cannot fully explain the response errors; however,
combinations of acoustic features may have the potential of
accounting for the behavioral results [40]. Based on our
previous findings that the similarity of speech evoked
spatiotemporal activity patterns was correlated with
discrimination ability [25,26,30,31], we predicted that neural
similarity would be able to explain generalization behavior.
Neural similarity provides a single, biologically plausible
method to explain speech sound categorization without the
need to propose multiple specialized features for each speech
contrast.

Neural activity pattern similarity explains gender and
voicing categorization

We predicted that rats would compare the neural pattern of
activity evoked by each novel sound with stored templates of
the target and non-target sounds. Rats made generalization
errors more often for some sounds than others, and these
errors were well explained by comparing the activity pattern for
those sounds with the template patterns. For each task, neural
similarity was calculated between the activity pattern for a
novel sound and the average activity patterns for the target and
non-target sounds from the previous task (Figure 3, Figure S1,
and Methods). For the first gender generalization task, rats had
previously been trained to discriminate the word ‘dad’ with a
high pitch from the word ‘dad’ with a low pitch. Since the rats
only had experience with the two ‘dad’ sounds, the stored
target template for the first gender generalization task was the
activity pattern in response to the word ‘dad’ with a high pitch,
and the stored non-target template was the activity pattern in
response to the word ‘dad’ with a low pitch. For the second
gender generalization task, the rats had experience with ‘dad’
spoken by 3 female speakers and 3 male speakers. The stored
target template for the second gender generalization task was
the average activity pattern in response to ‘dad’ spoken by the
3 female speakers, while the stored non-target template was
the average activity pattern in response to ‘dad’ spoken by the
3 male speakers.

The pattern of generalization errors on the gender tasks was
well explained by the similarity of the activity patterns evoked
by each of the novel sounds to the patterns evoked by each of
the trained sounds. As we predicted, rats were most likely to
make generalization errors in response to the novel sounds
which evoked neural activity patterns that were intermediate
between the patterns evoked by the target and non-target
sounds. We used a Euclidean distance metric to quantify the
similarity of primary auditory cortex responses. Response
patterns consisted of the onset response from 441 multiunit A1
sites from 11 anesthetized experimentally naive rats. As
predicted, neural similarity between the novel sound and the
trained sounds was strongly correlated with generalization
performance for both gender generalization tasks (R2 = 0.92, p
= 0.009 novel ‘dad’ sounds; R2 = 0.94, p = 0.001 novel ‘tad’
sounds, Figures 3 & 4a,b). These findings support our
hypothesis that neural similarity provides a biologically
plausible metric of perceptual similarity.

Generalization errors were well explained by comparing the
neural response pattern evoked by each of the novel sounds to
the patterns evoked by the trained sounds. For example, during
the second gender task, rats frequently incorrectly pressed the
lever for the ‘tad’ spoken by male 1 (TM1, Figure 4b). Based
solely on the acoustic feature pitch, the rats should have
responded as though the sound was male instead of female
(see Acoustic features section above). This error is well
explained using neural similarity, where the sound more closely
resembles the female template compared to the male template
(Figure 4b). By examining the neurogram for this sound (Figure
3), it is clear that the sound evokes a strong high frequency
response, which makes the response more closely resemble
the female sounds (which also evoke a strong high frequency
response) compared to the other male sounds (which evoke a
weak high frequency response).

The pattern of generalization errors on the voicing tasks was
well explained by the similarity of the activity patterns evoked
by each of the novel sounds to the patterns evoked by each of
the trained sounds. As we predicted, neural similarity between
the novel sound and the trained sounds was correlated with
generalization performance for both voicing generalization
tasks (R2 = 0.82, p < 0.0001 voicing compression task; R2 =
0.76, p = 0.0009 voicing multiple speaker task, Figures 3 &
4c,d). As seen for the gender tasks, generalization errors on
the voicing tasks were well explained by the neural responses.
Rats frequently incorrectly responded to the most compressed
versions of ‘tad’ as though they were ‘dad’ (Figure 4c). The
generalization errors to the most compressed versions of ‘tad’
can be explained by neural responses but are not well
explained by the acoustic feature voice onset time. Results
from the Voicing Task group confirm our hypothesis that novel
speech sounds are assigned to the speech category whose
members generate an average activity pattern that most
closely resembles the activity pattern evoked by the novel
sound. This finding is consistent with earlier predictions that
have never been tested. In the natural world, humans and
animals generally have experience with more than one
exemplar per category. The similarity-based prototype model
proposes that a category prototype is the most typical member
of the category [41]. An extension of this model proposes that
instead of category prototypes being the best examples from
their categories, prototypes are an abstraction composed of the
average category member [42]. As we predicted, rats with
previous categorization experience appear to store templates
of the target and non-target sounds based on the average
neural responses evoked by the sounds they have
experienced, and compare the pattern of activity evoked by
each novel sound in the new task to these stored average
templates.

Generalization performance is not well correlated with
spectrogram similarity

For each task, spectrogram similarity was calculated
between the power spectrum for a novel sound and the
average power spectrums for the target and non-target sounds
from the previous task. The Euclidean distances between the
spectrograms of the speech onsets (45 ms) were only
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moderately correlated with behavior (R2 = 0.35, p = 0.01
voicing compression task; R2 = 0.43, p = 0.04 voicing multiple
speaker task; R2 = 0.47, p = 0.20 gender ‘dad’ task; R2 = 0.13,
p = 0.48 gender ‘tad’ task; Figure 5). The first 45 ms of the
spectrograms were used to match the 50 ms neural analysis
window, excluding 5 ms to account for minimum neural delay.
A similar pattern of correlation was observed across a wide
range of analysis windows. Analysis of the onset power
spectrum alone is not able to accurately predict generalization
behavior for the four tasks because spectral analysis is only

influenced by spectral energy and does not take into account
the temporal characteristics of the acoustic energy or the
neural response properties. Thus, it is perhaps not surprising
that neural analysis more accurately predicts behavior.

Responses from trained rats are correlated with
generalization performance

Previous studies have documented primary sensory cortex
plasticity following categorization training [43]. We tested

Figure 3.  Neurograms depicting the onset response of rat A1 neurons to speech sounds.  Multi-unit data was collected from
441 recording sites in eleven anesthetized experimentally naïve adult rats. Average post-stimulus time histograms (PSTH) derived
from twenty repeats were ordered by the characteristic frequency (kHz) of each recording site (y axis). Time is represented on the x
axis (-5 to 50 ms). The firing rate of each site is represented in grayscale, where black indicates 450 spikes/s. For comparison, the
mean population PSTH evoked by each sound is plotted above the corresponding neurogram. To facilitate comparison between the
naïve and trained responses, the mean PSTH y axis is set to 450 Hz for all neurogram figures. For naïve rats, ‘tad’ female #3
evokes the maximum peak firing rate (351 Hz) across the twelve sounds. As in Figure 1, rows differ in voicing (top row is ‘dad’,
bottom row is ‘tad’), while columns differ in gender (left three columns are female, right three columns are male).
doi: 10.1371/journal.pone.0078607.g003
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whether voicing and gender categorization training led to long
lasting changes in A1 responses and if so, whether these
changes would be expected to improve categorization. After
two weeks of training, performance on each task was
significantly better than first day performance (two-way
ANOVA, F1,39 = 10.31, p = 0.0026). Across all tasks, rats
categorized the speech sounds 34% more accurately on the
last day compared to the first day (last day d’ = 2.08 ± 0.27 vs.

first day d’ = 1.55 ± 0.09). Several studies have suggested that
enhanced neural responses are responsible for improved
categorization [43-45]. The response strength to the trained
sounds (i.e. ‘dad’ and ‘tad’ spoken by female and male
speakers) in both trained groups did not increase compared to
naïve controls (2.5 ± 0.2 spikes in trained rats vs. 2.5 ± 0.2
spikes in naïve rats, p = 0.97). The response strength to
untrained speech sounds (‘pad’, ‘kad’, ‘zad’, ‘wad’, ‘had’) was

Figure 4.  Neural correlates of generalization performance for the gender and voicing categorization tasks.  (a) The
normalized Euclidean distance (neural similarity) between the response pattern for each novel sound and the response pattern for
each of the two template sounds is correlated with generalization performance on the gender ‘dad’ task. Positive values are more
similar to the target template, while negative values are more similar to the non-target template. Target sounds are red, and non-
target sounds are blue. The sound name abbreviation is printed next to each data point, see Methods. Solid lines indicate the best
linear fit. (b) The neural similarity between each novel sound and the template sounds is correlated with generalization performance
on the gender ‘tad’ task. (c) The neural similarity between the response pattern for each novel sound and the response pattern for
each of the two template sounds is correlated with generalization performance on the voicing temporal compression categorization
task. (d) The neural similarity between each novel sound and the template sounds is correlated with generalization performance on
the voicing multiple speaker task.
doi: 10.1371/journal.pone.0078607.g004
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also not increased in trained rats compared to naïve control
rats (1.9 ± 0.3 spikes in trained rats vs. 1.7 ± 0.2 spikes in
naïve rats, p = 0.53), but the response strength to tones was
decreased in trained rats (2.1 ± 0.1 spikes in trained rats vs. 3
± 0.3 spikes in naïve rats, p = 0.005). The onset latency to the
trained sounds in both trained groups did not change compared
to naïve controls (11.1 ± 0.7 ms in trained rats vs. 11.5 ± 0.6
ms in naïve rats, p = 0.64).

While these results show that categorization training does
not enhance auditory cortex response strength, it does not rule

out that plasticity plays a role in generalization performance. To
determine if auditory cortex plasticity enhanced the distinction
between sounds from different categories, we compared the
correlation between neural similarity and generalization
performance using neural responses collected from voicing and
gender trained rats (Figure S2). If auditory cortex plasticity is
required in order to accurately predict performance, we would
have expected a stronger correlation between neural similarity
and generalization performance using neural responses
collected from trained compared to naïve rats. The neural

Figure 5.  Spectrogram correlates of generalization performance for the gender and voicing categorization tasks.  (a) The
Euclidean distance (spectral similarity) between the spectrogram for each novel sound and the spectrogram for each of the two
template sounds is weakly correlated with generalization performance on the gender ‘dad’ task. Positive values are more similar to
the target template, while negative values are more similar to the non-target template. The sound name abbreviation is printed next
to each data point, see Methods. Solid lines indicate the best linear fit. (b) The spectral similarity between each novel sound and the
template sounds is weakly correlated with generalization performance on the gender ‘tad’ task. (c) The spectral similarity between
the spectrogram for each novel sound and the spectrogram for each of the two template sounds is weakly correlated with
generalization performance on the voicing temporal compression categorization task. (d) The spectral similarity between each novel
sound and the template sounds is weakly correlated with generalization performance on the voicing multiple speaker task.
doi: 10.1371/journal.pone.0078607.g005
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similarity between the novel sound and template sound
responses collected in trained rats predicted generalization
performance on both gender categorization tasks (R2 = 0.91, p
= 0.01, gender ‘dad’ task; R2 = 0.96, p = 0.0006, gender ‘tad’
task; Figure S3a,b) and both voicing categorization tasks (R2 =
0.71, p < 0.0001, voicing compression task; R2 = 0.58, p =
0.01, voicing multiple speaker task; Figure S3c,d). Neural
similarity was highly correlated with generalization performance
on each of the four tasks whether the neural responses were
recorded in naïve or trained rats (naïve average R2 = 0.86, p <
0.01; trained average R2 = 0.79, p < 0.02). This result is
consistent with earlier reports that speech sounds evoke
distinct neural patterns before training begins [25,26,30,31,46].
The average Euclidean distance between stimuli from different
categories was not increased in trained rats compared to naïve
rats (p > 0.05). Our observation suggests that changes in A1
are not responsible for improved performance (see Text S1).
Previous studies have detailed the complexity of training-
induced plasticity, which is dependent on both the auditory field
and the time course of training. Birds trained to discriminate
songs have shown either an increase or a decrease in the
response strength to familiar songs compared to unfamiliar
songs depending on the auditory field [44,47]. Earlier studies
have also reported improved categorization in the absence of
plasticity in primary sensory cortex [48-52]. Training induced
map plasticity in A1 can later return to a normal topography
without negatively impacting behavioral performance [49,53].
Improved performance may result from changes in higher
cortical fields, such as the superior temporal gyrus or prefrontal
cortex, that exhibit categorical responses to speech sounds
[54-57].

Analysis of categorization by different neural
subpopulations

The patterns of neural activity evoked by each of the sounds
suggest that gender differences are encoded in the onset
response of high frequency neurons, while voicing differences
are encoded in the onset response of low frequency neurons
(Figures 3, 6 and S4). For the gender tasks, sounds spoken by
a female evoked 207% more spikes than sounds spoken by a
male in high frequency neurons between 16 and 32 kHz (p <
0.0001, Figure 6a,b), but there was no significant difference in
the firing rate in low frequency neurons between 1 and 2 kHz (p
= 0.66). In contrast to gender firing differences, ‘dad’ sounds
evoked 302% more spikes than ‘tad’ sounds in low frequency
neurons between 1 and 2 kHz (p < 0.0001, Figure 6c,d), but
there was a much smaller difference in the firing rate in high
frequency neurons between 16 and 32 kHz (16% fewer spikes,
p = 0.05). This finding contrasts with earlier reports suggesting
that voicing is encoded in the temporal interval between two
activity peaks [22], and pitch is encoded in low frequency
neurons [21]. Our results suggest that the spatial activity
pattern can be used to accurately categorize these speech
sounds.

The temporal activity pattern also contains information that
can be used to accurately categorize the sounds by voicing or
gender. For the gender tasks, sounds spoken by a female
evoked 45% more spikes than sounds spoken by a male in

neurons responding to a tone faster than 10 ms (< 0.0001,
Figure 7a,b and Figure S5), but there was no significant
difference in the firing rate in neurons responding slower than
13 ms. In contrast to gender firing differences, ‘dad’ sounds
evoked 28% more spikes than ‘tad’ sounds in neurons
responding to a tone slower than 13 ms (p = 0.001, Figure 7c,d
and Figure S5), but there was no significant difference in the
firing rate in neurons responding faster than 10 ms. Our results
suggest that both the spatial and the temporal activity pattern
can be used to accurately categorize these speech sounds.

There are many potential methods to compute the similarity
between neural response patterns that accurately predict
generalization performance. Neural similarity was highly
correlated with generalization performance for all four tasks
whether Euclidean, City Block, or Minkowski distance metrics
were used (R2 > 0.73, p < 0.03). The correlation remains high if
the window used to quantify the neural response ends 30 to
120 ms after sound onset (R2 > 0.51, p < 0.03, Figure S6a and
Figure S7). Neural similarity is only correlated with
generalization performance when the onset response is
included in the analysis window (p < 0.05, Figure S6b). This
finding is consistent with classic studies showing speech
sounds can be accurately categorized using only the initial few
tens of milliseconds [58,59]. Although our initial analyses
considered the neural responses of each A1 recording site
separately, to determine the amount of spectral precision that
is necessary, we divided sites into bins that were tuned to
specific characteristic frequency ranges. The correlation
between generalization performance and neural similarity
remains high even if the sites are binned by characteristic
frequency into as few as two bins (R2 > 0.61, p < 0.01) [30].
The consistency of our results across a wide range of
parameters supports our hypothesis that the similarity to
previously learned patterns is used to categorize novel stimuli.
These results are consistent with recent imaging results that
even neural metrics with poor spatial and temporal precision
can be well correlated with categorization performance [60,61].

Neural similarity accurately predicts generalization
performance using both awake and anesthetized neural
responses. The correlation between neural similarity and
generalization performance using neural responses from
experimentally naïve awake rats was strong for the gender
‘dad’ task (R2 = 0.89, p = 0.02), the voicing temporal
compression task (R2 = 0.61, p = 0.0001), the gender ‘tad’ task
(R2 = 0.78, p = 0.02), and the voicing multiple speaker task (R2

= 0.44, p = 0.04). This result strengthens our finding in
experimentally naïve anesthetized rats that auditory cortex
plasticity is not required to predict generalization performance.
Using both anesthetized and awake responses, we examined
how large of a neural population must be sampled to accurately
estimate neural similarity and generalization performance.
Given the great diversity of response properties in A1 [62], we
expected that a large sample size might be necessary. We
randomly selected groups of 1, 2, 5, 10, 20, 50, 100, 200, 300,
or 441 anesthetized A1 sites and randomly selected groups of
1, 2, 5, 10, 20, 30, 35, 50, 60, or 65 awake A1 sites to
determine the minimum population size required in order to
predict generalization. We found that the correlation between
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neural similarity and generalization performance becomes
significant when more than 20 randomly selected multi-unit
clusters were used to estimate each neural activity pattern and
asymptotes at approximately 100 (p < 0.05, Figure 8).

Neural similarity was not better correlated with generalization
behavior when A1 neurons were selected to maximize the
difference in the evoked responses. Selecting subpopulations
also did not reduce the number of A1 sites needed to generate
a significant correlation. For example, when A1 sites with low
frequency tuning (< 8 kHz, Figure 6) and long latency (>13 ms,
Figure 7) were used to compute neural similarity and compared
with performance on the voicing task, approximately the same

number of sites were required to generate a similar correlation
coefficient compared to neural similarity based on a randomly
selected set of A1 sites. The consequence was the same when
subpopulations were used that generated the maximum
response difference for the gender task (i.e. high frequencies
and short latencies). These results confirm earlier observations
that population responses most accurately reflect behavioral
ability [25,63]. There is now strong evidence that the degree of
abstraction increases with distance from the receptor surface
(e.g. cochlea) and that categorization is the result of neural
processing distributed across many brain regions [64].

Figure 6.  Peak firing rate differences in high and low frequency neurons for gender and voicing distinctions.  Peak firing
rate for target and non-target sounds differs in high frequency neurons for gender distinctions, and differs in low frequency neurons
for voicing distinctions. (a) For the gender task using ‘dad’ stimuli, target female ‘dad’ sounds evoke a larger response in high
frequency neurons compared to non-target male ‘dad’ sounds. Each of the 441 A1 recording sites from experimentally naïve rats
were binned by characteristic frequency into one of five bins each spanning one octave. Error bars indicate s.e.m. across each of
the sounds. (b) For the gender task using ‘tad’ stimuli, target female ‘tad’ sounds evoke a larger response in high frequency neurons
compared to non-target male ‘tad’ sounds. (c) For the voicing temporal compression task, target ‘dad’ sounds evoke a larger
response in low frequency neurons compared to non-target ‘tad’ sounds. (d) For the voicing multiple speaker task, target ‘dad’
sounds evoke a larger response in low frequency neurons compared to non-target ‘tad’ sounds.
doi: 10.1371/journal.pone.0078607.g006
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Discussion

We tested the hypothesis that the similarity between neural
activity patterns predicts speech sound generalization without
the need to compute multiple acoustic features. Speech
sounds are widely believed to be categorized based on the
integration of dozens of acoustic features. At least sixteen
features have been proposed to contribute to differences in
voicing, including voice onset time, pitch contour, burst
intensity, and F1 cutback [11]. Separate sets of acoustic
features can be used to distinguish between speech sounds
differing in gender, place of articulation, vowel, or frication
[12,37,65-69]. While any of these features is sufficient to
categorize a speech sound, no particular acoustic difference is
required to accurately categorize a sound [13,14]. Our results
from four voicing or gender speech categorization tasks
suggest that template matching in the brain can account for the

classic “lack of invariance” of speech perception without
requiring storage and analysis of the relationship between a
large number of discrete features. Our study failed to find
evidence of neurons tuned exclusively to one acoustic feature
of speech sound (i.e. VOT or pitch). This result is consistent
with a recent study demonstrating that responses in auditory
cortex neurons can be influenced by multiple acoustic features
of speech sounds [70].

The behavioral and physiological results from our study
confirm and extend findings from earlier studies [40]. Our
observation that rats trained to discriminate sounds based on
voicing or gender can accurately categorize novel sounds even
on the first presentation confirms previous studies showing that
animals can categorize sounds based on voicing or gender
differences [9,51,71]. The neural responses collected in this
study are similar to earlier reports of speech sound responses
in humans and animals [22,51,72,73].

Figure 7.  Peak firing rate differences in fast and slow latency neurons for gender and voicing distinctions.  Peak firing rate
for target and non-target sounds differs in fast neurons for gender distinctions, and differs in slow neurons for voicing distinctions.
(a) For the gender task using ‘dad’ stimuli, target female ‘dad’ sounds evoke a larger response in fast neurons that respond to tones
in less than 10 ms compared to non-target male ‘dad’ sounds. Each of the 441 A1 recording sites from experimentally naïve rats
were binned by onset latency into one of five bins each spanning one millisecond. Error bars indicate s.e.m. across each of the
sounds. (b) For the gender task using ‘tad’ stimuli, target female ‘tad’ sounds evoke a larger response in fast neurons compared to
non-target male ‘tad’ sounds. (c) For the voicing temporal compression task, target ‘dad’ sounds evoke a larger response in slow
neurons that respond to tone slower than 13 ms compared to non-target ‘tad’ sounds. (d) For the voicing multiple speaker task,
target ‘dad’ sounds evoke a larger response in slow neurons compared to non-target ‘tad’ sounds.
doi: 10.1371/journal.pone.0078607.g007
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Our demonstration that speech perception can be explained
without explicit extraction of specialized acoustic features
closely parallels recent advances in face processing which no
longer relies on the computation of features such as pupil to
pupil distance, nose length, or chin shape. Instead it appears
that biological systems and more effective artificial systems
represent the visual input as activity among a large diverse set
of broadly tuned filters and categorize novel inputs based on
their similarity to stored templates. Importantly, there is no
need to extract any particular features. Recent software
applications use a similar featureless template-based method
to allow for identification of millions of songs based on poor
quality versions sung, whistled, hummed, or played by
amateurs [19,20,74].

Our results are consistent with other studies of category
formation in other modalities [57,75-80]. Previous studies have

shown that there is a gradual transformation of sensory
information to a category decision through the ascending
somatosensory, visual, and auditory pathways [75,76,81]. The
earlier stages of sensory processing are driven by physical
properties. Responses in primary sensory cortex are more
abstract and are often shaped by multiple feature combinations
[82-85]. Higher cortical fields are shaped by behavioral
requirements and neurons become more sensitive to the
meaning of stimuli and less sensitive to changes in physical
characteristics that are irrelevant to category membership.
Neurons in prefrontal cortex exhibit strong category selectivity
and likely contribute to the behavioral response (i.e. motor
output) [8,76,86,87].

Speech responses in inferior colliculus are strongly
influenced by physical features, while responses in A1 are
more abstract [28,60,79]. Responses in higher auditory fields

Figure 8.  Average percent of variance explained across the four generalization tasks using awake and anesthetized
responses.  Percent of variance explained (R2) increases as the population size increases. Neural similarity using the onset activity
pattern from individual anesthetized (black line) or awake (gray line) multi-unit sites was best correlated with behavior when more
than 20 sites were used. Error bars indicate s.e.m. across the four tasks.
doi: 10.1371/journal.pone.0078607.g008
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follow different processing streams that extract different
features from speech [32,53,81,88-90]. For example, anterior
auditory field is responsible for categorization based on
temporal properties and posterior auditory field is responsible
for categorization based on spatial location [88]. Macaques
trained to discriminate between human speech sounds have
neurons in the superior temporal gyrus and prefrontal cortex
that respond categorically to the trained sounds [56,57].
Prefrontal neurons (but not the superior temporal gyrus
neurons) are modulated by the monkeys' behavioral
responses, which confirms that speech categories result from
the gradual transformation of acoustic information across
multiple brain regions.

We do not believe that categorization takes place in A1. Our
results are consistent with earlier theoretical studies showing
that categorical responses can be created from the activity
patterns observed in sensory cortex [54,91-93]. For example, a
biologically plausible model of A1 neurons can categorize
speech sounds and correctly generalize to novel stimuli [54].
These theoretical studies combined with our neurophysiology
study suggest a potential biological mechanism for
generalization, which has been described as “the most
fundamental problem confronting learning theory” [94].

Based on our observation that neural similarity can
accurately predict categorization on four auditory generalization
tasks, we propose that speech sound generalization results
from assigning novel stimuli to the category of stimuli that
evokes the most similar activity pattern. Animal studies provide
the opportunity to carefully control the sensory experience of
the subjects and to precisely manipulate neural function.
Artificial stimuli produced by the Klatt speech synthesizer could
be used to explore the co-variation between the acoustic
features which were not varied systematically in this study [12].
It would be interesting to determine how well neural similarity
predicts generalization behavior 1) in the face of greater
variability among stimuli from the same category, 2) for
categories of stimuli involving multiple modalities, and 3) for
more abstract cognitive categories. It would also be interesting
to relate behavioral reaction time and neural similarity by using
nose poke withdrawal to more accurately measure reaction
time. Patterned optogenetic stimulation could be used to
directly test whether the activity patterns observed in our study
are sufficient for speech sound categorization [95].
Simultaneous multichannel recordings in awake behaving
animals would make it possible to relate neural correlation
patterns to behavior. Recording, lesion and microstimulation
experiments in A1 and higher regions are needed to further
evaluate our hypothesis that neural response similarity is
responsible for the remarkable ability of humans and animals to
rapidly and accurately generalize from small training sets.

Supporting Information

Figure S1.  Neural similarity between two novel sounds
and the trained target and trained non-target. Multi-unit data
was collected from 441 recording sites (x axis) in eleven
anesthetized rats and is ordered by the characteristic
frequency (kHz) of each recording site. The number of spikes

fired in response to each sound during the first 50 ms of the
response is represented on the y axis. (a) The response to the
known target sound (red, ‘dad’ spoken by female #1) and (b)
known non-target sound (blue, ‘tad’ spoken by female #1). (c)
The response to a novel ‘dad’ sound and a novel ‘tad’ sound
(d). Both sounds were spoken by female #1 and temporally
compressed by 50%. (e-h) The response pattern difference
between the novel ‘dad’ sound and the target (e) and non-
target sounds (f), and the novel ‘tad’ sound and the target (g)
and non-target sounds (h). The difference between the novel
‘dad’ and the target (e, 309) was smaller than the difference
between the novel ‘dad’ and the non-target (f, 536), indicating
that the novel ‘dad’ and the target are more similar. The
difference between the novel ‘tad’ and the non-target (h, 267)
was smaller than the difference between the novel ‘tad’ and the
target (g, 535), indicating that the novel ‘tad’ and the non-target
are more similar.
(PDF)

Figure S2.  Neurograms depicting the onset response of
gender trained and voicing trained rat A1 neurons. (a)
Multi-unit data was collected from 280 recording sites in five
anesthetized gender trained rats. Average post-stimulus time
histograms (PSTH) derived from twenty repeats were ordered
by the characteristic frequency (kHz) of each recording site (y
axis). Time is represented on the x axis (-5 to 50 ms). The firing
rate of each site is represented in grayscale, where black
indicates 450 spikes/s. For comparison, the mean population
PSTH evoked by each sound is plotted above the
corresponding neurogram. To facilitate comparison between
the naïve and trained responses, the mean PSTH y axis is set
to 450 Hz for all neurogram figures. For gender trained rats,
‘tad’ female #3 evokes the maximum peak firing rate (330 Hz)
across the twelve sounds. As in Figure 1, rows differ in voicing
(top row is ‘dad’, bottom row is ‘tad’), while columns differ in
gender (left three columns are female, right three columns are
male). (b) Neurograms depicting the onset response of voicing
trained rat A1 neurons to each of the twelve sounds shown in
Figure 1. Multi-unit data was collected from 168 recording sites
in four anesthetized voicing trained rats. For voicing trained
rats, ‘tad’ female #2 evokes the maximum peak firing rate (414
Hz) across the twelve sounds.
(PDF)

Figure S3.  Neural correlates of generalization
performance using neural responses from gender and
voicing trained rats. (a) The normalized Euclidean distance
(neural similarity) between the response pattern for each novel
sound and the response pattern for each of the two template
sounds is correlated with generalization performance on the
gender ‘dad’ task. Positive values are more similar to the target
template, while negative values are more similar to the non-
target template. Red symbols represent target sounds and blue
symbols represent non-target sounds. Circle symbols indicate
‘dad’ stimuli, while triangle symbols indicate ‘tad’ stimuli. The
sound name abbreviation is printed next to each data point,
see Methods. Solid lines indicate the best linear fit. (b) The
neural similarity between each novel sound and the template
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sounds is correlated with generalization performance on the
gender ‘tad’ task. (c) The neural similarity between each novel
sound and the template sounds is correlated with
generalization performance on the voicing temporal
compression task. (d) The neural similarity between each novel
sound and the template sounds is correlated with
generalization performance on the voicing multiple speaker
task.
(PDF)

Figure S4.  Peak firing rate differences in high and low
frequency neurons for gender and voicing distinctions. (a)
For the gender task using ‘dad’ stimuli, target female ‘dad’
sounds (red line) evoke a larger response in high frequency
neurons compared to non-target male ‘dad’ sounds (blue line).
Each of the 280 A1 recording sites from gender trained rats
were binned by characteristic frequency into one of five bins
each spanning one octave. Error bars indicate s.e.m. across
each of the sounds. (b) For the gender task using ‘tad’ stimuli,
target female ‘tad’ sounds evoke a larger response in high
frequency neurons compared to non-target male ‘tad’ sounds.
(c) For the voicing temporal compression task, target ‘dad’
sounds evoke a larger response in low frequency neurons
compared to non-target ‘tad’ sounds. Each of the 168 A1
recording sites from voicing trained rats were binned by
characteristic frequency into one of five bins each spanning
one octave. (d) For the voicing multiple speaker task, target
‘dad’ sounds evoke a larger response in low frequency neurons
compared to non-target ‘tad’ sounds.
(PDF)

Figure S5.  The percentage of sites responding at different
onset latencies. Each of the 441 A1 recording sites from
experimentally naïve rats were binned by onset latency in
response to tones. Sites were binned into one of five bins: sites
responding faster than 10 ms, between 10 - 11 ms, 11- 12 ms,
12- 13 ms, or slower than 13 ms.
(PDF)

Figure S6.  Average percent of variance explained (R2) in
anesthetized animals across the four generalization tasks
using varying response windows. (a) The average R2 across
the 4 generalization tasks using a 30 -120 ms neural response
analysis window is significantly correlated with generalization
performance. Filled symbols indicate statistically significant
correlations between neural similarity and behavior. (b) The
average R2 across the 4 generalization tasks using a 50 ms
analysis window with a varying start time. The correlation is
strongest using the onset response information.
(PDF)

Figure S7.  Average percent of variance explained (R2) in
awake animals across the four generalization tasks using
varying response windows. The average R2 across the 4
generalization tasks using a 50 - 60 ms neural response
analysis window in awake animals is significantly correlated
with generalization performance. Filled symbols indicate
statistically significant correlations between neural similarity
and behavior.
(PDF)

Text S1.  (DOC)
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