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Abstract

Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the
skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are
incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the
lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in
vivo. Human DEFB1 and orthologous mouse Defb7 mRNA are detectable in bladder and ureter homogenates, and
human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in
vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1”) mice. At 6, 18, and 48 hours following
transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of
Defb1” and wild type C57BL/6 mice. In wild type mice, bladder Defb7 mRNA levels decreased as early as two hours
post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14
mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein
expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed
dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder
UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the
lower urinary tract.
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Introduction

The epithelial lining of the kidney and urinary tract is
contiguous with the external environment via the urethra.
Despite the anatomic proximity of the urethra to the skin,
genital, and digestive tracts, urine generally lacks culturable
bacteria and urinary tract infections (UTIl) do not occur as
frequently as might be expected. The properties of the urinary
tract that promote sterility are not completely known. Proposed
mechanisms include roles for regular bladder emptying,
urothelium integrity, exfoliation of umbrella cells, elaboration of
cytokines and chemokines that promote leukocyte recruitment
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and activation, mucus production, and synthesis of bactericidal
and/or bacteriostatic peptides[1,2]. Antimicrobial peptides
(AMPs) comprise a diverse group of molecules with
bactericidal and immunomodulatory activity and may serve key
roles in host defense against UTI.

Defensins are one of the largest and most-studied families of
AMPs in mammals. They are produced by a variety of epithelial
and bone marrow derived cells and have broad-spectrum
antimicrobial activity against gram-positive and gram-negative
bacteria, viruses, fungi, and some protozoa[3—6]. Defensins are
small cysteine rich proteins with a molecular weight of 3-5
kilodaltons consisting of a B-sheet structure linked by three
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disulfide bonds, and are classified into a- and B-defensins
based on the pattern of disulfide bridges[6]. Over 28 B-defensin
(DEFB) genes have been identified in humans[7], and
expression has been localized to the kidney, skin, cornea, and
mucosal epithelial cells lining the digestive, respiratory, and
reproductive tracts[6]. The expression and biological relevance
of B-defensins in the lower urinary tract have not been
completely elucidated.

Human B-defensin 1 peptide (HBD-1), encoded by the
DEFB1 locus, was initially isolated from the ultrafiltrate of
patients undergoing chronic hemodialysis[8]. DEFB1 mRNA
expression is detected at high levels in the distal nephron and
collecting system of the kidney[9]. DEFB1T mRNA and HBD-1
peptide production were also observed in the distal ureter[10].
HBD-1 is synthesized as a 68 amino acid pro-peptide and
undergoes variable amino-terminal processing to generate
mature peptides ranging from 36 to 47 residues that are
detectable in uninfected human urine[9,11]. Mature HBD-1
peptide levels are increased in patients with pyelonephritis[12].
The sensitivity of uropathogenic Escherichia coli (UPEC) to the
bactericidal activity of HBD-1 peptide depends upon the length
of the peptide as well as the presence of sodium chloride at
physiological (micromolar) concentrations[9]. Given the
variability in the length of HBD-1 peptides and sodium content
of human urine, the potential protective capacity of HBD-1 in
controlling UTI is unknown[9].

Defb1 encodes murine BD-1 (mBD-1) and is orthologous to
the human DEFB1 gene[13—-15]. As observed in humans,
Defb1 mRNA is detected in collecting ducts of adult
kidneys[13—-15]. Similar to the HBD-1 protein, recombinant
mBD-1 protein exhibits salt-sensitive bactericidal activity in
vitro, but its contribution toward clearance of uropathogens has
not been tested in vivo[14—16]. Defb1 knockout (Defb77) mice
have a higher incidence of Staphylococcus spontaneous
bacteriuria[16]. Although this observation is suggestive of a
potential role in urinary tract defense, up to 70-80% of all UTI
are caused by gram-negative organisms, particularly UPEC. In
this study, we tested the hypothesis that Defb1 is required for
bacterial clearance of UPEC following transurethral challenge.

Methods

Study approval and procurement of human tissue and
urine

This study was approved by the Nationwide Children’s
Hospital Institutional Review Board (IRB-07-00383). Human
kidney, ureter, and bladder from pediatric patients without
recurrent UTI were obtained from the NCH Department of
Pathology as described[17].

UTI mouse model

Maintenance of all mice was in strict accordance of the
Institutional Animal Care and Use Committee (IACUC) rules
and regulations. The mice had a normal 12- hour light-dark
cycle and were maintained on standard chow diet (Harlan
Laboratories, Indianapolis, IN). The experiments presented in
this manuscript are approved (AR06-00119) by The Research
Institute at Nationwide Children’s Hospital Institutional
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Laboratory Animal Care and Use Committee (Welfare
Assurance Number A3544-01).Defb1- mice on a pure C57BL/6
background were a kind gift of Dr. Lisa Ryan and Dr. Gill
Diamond (UMDNJ-New Jersey Dental School) with permission
of Dr. James M. Wilson (U. Pennsylvania)[18]. Six to 12 week
old C57BL/6J (Jackson Laboratories, Bar Harbor, ME)r
C3H/HeN (Harlan Laboratories) female mice were allowed to
recover for at least 1 week following delivery. For inoculation,
animals were anesthetized with inhaled isoflurane, and the
urethra was catheterized as described[19]. 108 or 5x10° colony
forming units (CFU) UPEC strain UTI89 were transurethrally
introduced in 50 pl phosphate buffered saline (PBS). Once
infection had progressed for 2, 6, 16, 24, or 48 hours, animals
were re-anesthetized for sacrifice by cervical dislocation.

Bacterial burden - 102 CFU inoculum

Bladders and kidneys were harvested into RPMI medium
containing collagenase and DNase | at the time of sacrifice as
described[20]. Organs were finely minced and agitated at 500 g
for 30 minutes at 37°C. After filtering through 40 pm,
homogenates were adjusted to 5 ml with sterile PBS. Serial log
dilutions were plated on LB agar, and colonies were
enumerated after 14 hour incubation at 37°C. Colony counts
less than 9 were discarded, and the average colony counts for
each sample were log-transformed. The detection threshold
was 4500 CFU.

Bacterial burden - 5x10° CFU inoculum

Bladders and kidneys were harvested into 1x PBS as
described[21]. Kidneys were homogenized with 2.0 mm
zirconium oxide beads (ZROB20, Next Advance, Averill Park,
NY) in 0.4 ml 1x PBS using a Bullet Blender Blue BBX24B
Homogenizer (Next Advance) at the “8” setting for 2 minutes.
Bladders were homogenized with 3.2 mm stainless steel beads
(SSB32, Next Advance) in 0.5 ml 1x PBS at setting “8” for 3
minutes. Serial log dilutions of tissue homogenates were
prepared, plated onto LB agar, and colonies were counted after
14 hr incubation. The detection threshold was 100 CFU.

RT-PCR

Bladders and kidneys were bisected with sterile scissors,
snap frozen in liquid nitrogen, and stored at -80°C until mMRNA
isolation. Frozen tissue was pulverized in 1 ml Trizol reagent
(Invitrogen, Carlsbad, CA) using a Polytron homogenizer. Next,
RNA was extracted using the TRIzol® Plus RNA Purification
System (Invitrogen) and eluted in 50 pl sterile water. Up to 3 ug
of total RNA were reverse transcribed using random hexamer
oligonucleotides in a 20 pl reaction volume (Verso cDNA
Synthesis Kit, Thermo Scientific, Waltham, MA). After dilution
to 60 pl with sterile water, 2.5 pyl complementary (c)DNA was
used as template in a quantitative (q)RT-PCR reaction.
Duplicate PCR reactions were performed using 2x master mix
(Fisher). VIC-MGB labeled Gapdh, FAM-MGB labeled Defb1,
Defb3 and Defb14 primer/probe sets were used in separate
reactions (Applied Biosystems, Carlsbad, CA). Alternatively, to
measure Human DEFB1 expression, duplicate PCR reactions
were performed using 2x master mix containing Sybr Green
(Fisher) and the following primers: DEFB1 Forward 5-TCA
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CTC CCA GCT CAC TTG CAG C-3 and Reverse 5-ATG GCC
TCA GGT GGT AAC TTT CTC A-3’; GAPDH Forward 5-GGT
GGT CTC CTC TGA CTT CAA CA-3’' and Reverse 5-GTT
GCT GTA GCC AAA TTC GTT GT-3'[17]. PCR products were
amplified and detected using the 7500 Real-time PCR System
(Applied Biosystems). PCR threshold cycles (CT) were
determined, and each cDNA was normalized for GAPDH (or
Gapdh) content (ACT). For both human and mouse samples,
relative expression changes were calculated using the 27-
AACT method, normalizing to a common pool of uninfected
kidney or bladder cDNA[22].

HBD-1 and mBD-14 immunohistochemistry

The distribution of HBD-1 protein within human ureter and
bladder was evaluated as described[17]. Briefly, 4 ym sections
were deparafinized, rehydrated, and subjected to antigen
retrieval in a pressure cooker for 20 min using 10 mM sodium
citrate buffer (pH 6.0). After blocking endogenous biotin (Biotin
Block, ScytTek Laboratories, Logan, UT) and nonspecific
protein (Superblock, ScyTek), slides were incubated at 4 °C
overnight with polyclonal rabbit antibody against full-length
BD-1 diluted 1:500 (sc-20797, Santa Cruz Biotechnology,
Dallas, TX, affinity purified by the manufacturer) in PBS
containing 3% fetal bovine serum. The presence of antibody-
HBD-1 complexes was detected with biotinylated anti-
polyvalent secondary antibody (ScyTek) and UltraTek
Streptavidin/HRP (ScyTek). Sections were developed using
0.1% diaminobenzidine tetrahydrochloride (Arcos Organics,
Geel, Belgium) with 0.01% hydrogen peroxide and
counterstained with hematoxylin. The specificity for HBD-1
reactivity was confirmed through the use of unimmunized rabbit
serum in place of HBD-1 antibody. The distribution of mouse
BD-14 (mBD-14) protein was evaluated in a similar fashion,
using affinity-purified anti-mBD14 raised in goat (diluted 1:100)
[23] and detected using biotinylated anti-goat secondary
antibody (Scytek). We attempted to localize mBD-1 within the
bladder, but equivalent staining was observed in wild type and
Defb1- tissues over a wide range of antibody dilutions using
the following commercially available primary antibodies
directed against mBD-1: sc-25573 (rabbit polyclonal, Santa
Cruz Biotechnology), sc-10851, (goat polyclonal, Santa Cruz
Biotechnology), LS-C20902 (rabbit polyclonal, LifeSpan
Biosciences, Seattle, WA), and MBD11-A (rabbit polyclonal,
Alpha Diagnostic International, San Antonio, TX) indicating
non-specificity of commercially available anti-murine
antibodies.

Recombinant AMPs and bactericidal activity
Recombinant mBD-3 was synthesized in E. coli (5987-BD,
R&D Systems, Minneapolis, MN). Recombinant mBD-14 was
synthesized as a mature peptide in E. coli and purified as
described[23]. Antimicrobial activity of recombinant peptides
was evaluated by microdilution assay. Briefly, UTI89 bacteria
(10° CFU) were incubated with 0.3125, 0.625, 1.25, 2.5, 5, or
10 yM of mBD-3 or mBD-14 in 50 ul 0.1X PBS buffer for 3
hours at 37°C, then plated overnight on LB at 37°C. Next, the
number of CFU at each concentration of peptide was
determined. Using untreated bacteria as baseline, the minimum
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inhibition concentration (MIC) was identified by the lowest
peptide concentration inhibiting growth of 90% of the inoculum
as described previously[17]. Sensitivity of the UTI89 bacterial
strain to killing by antimicrobial peptides was verified with the
use of recombinant human RNase 7, yielding MIC of 0.2-0.4
UM, consistent with published data[24].

Statistics

For comparing bacterial burden in wild type versus Defb1”
mice, log-transformed CFU from kidneys and bladders were
compared by the Mann-Whitney test (GraphPad Software, La
Jolla, CA). For comparison of qRT-PCR results in infected
versus uninfected tissues, an unpaired Student’s 2-tailed t-test
assuming unequal variation was used. P values of < 0.05 were
considered significant.

Results

We evaluated the expression of human DEFB71 mRNA in
kidneys, ureters, and bladders obtained from individuals
without clinical or laboratory evidence of UTls. DEFB1T mRNA
is detectable throughout the human urinary tract, albeit at
significantly lower levels in bladder and ureter than those
observed in the kidney (Figure 1A). HBD-1 protein localized to
all layers of the transitional urothelium of both ureter and
bladder and was not detected in the submucosa or smooth
muscle lining layer (Figure 1B).

We detected Defb7 mRNA throughout the uninfected lower
urinary tract of adult female mice, with significantly higher
expression in kidneys than ureters and bladders (Figure 1C).
We attempted to evaluate mBD-1 protein expression by
immunohistochemistry but encountered equivalent staining in
wild type C57BL/6 and Defb1” tissues with all commercial
antibodies tested, arguing against antibody specificity for this
application.

Since Defb1”- animals have a reportedly higher incidence of
spontaneous bacteriuria[16], we hypothesized that the absence
of Defb1 would result in increased bacterial burden in bladders
and kidneys following transurethral inoculation of UPEC strain
UTI89 compared to age and strain matched wild type controls.
We confirmed absent expression of Defb7 mRNA in uninfected
Defb1- kidneys by RT-PCR (Figure 2A). Defb1 deficiency was
not associated with significant changes in the quantity of live
UPEC recovered from bladders and kidneys at 6, 16 and 48
hours post-inoculation (hpi) with 108 CFU of UTI89 (Mann-
Whitney test, p > 0.05; Figure 2B and 2C). In these same
experiments, UPEC clearance was observed in a greater
proportion of Defb1” than wild type kidneys at 6 hpi (Figure
2C). Since AMP deficiency has been associated with increased
susceptibility to lower UPEC inocula, we separately challenged
Defb1” and wild type control mice with 5x10° CFU of
UTI89[25]. At this lower inoculum, 100% (6/6) of Defb1”
animals demonstrated undetectable UPEC in their kidneys,
compared to 50% (2/4) of wild type animals (Figure 2D).

Decreased expression of Defb7 mRNA is a known immune
escape mechanism utilized by pathogens outside of the urinary
tract, and UPEC is known to actively suppress the production
of cytokines produced by bladder epithelium[26-33] We
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Figure 1. Expression of BD-1 in the uninfected urinary

tract. (A) Expression of human DEFB1 mRNA (TOP) and
mouse Defb? mRNA (BOTTOM). Samples were normalized for
GAPDH / Gapdh content and expressed as fold-difference
compared to a pool of uninfected human / mouse bladder
cDNA using the 2A-AACT method[22]. * indicates p < 0.05 in 2-
tailed student’s t-tests comparing indicated organ to kidney.
The average fold change + standard error of the mean (S.E.M.)
for each organ is shown (n=4 bladders, 2 ureters, 3 kidneys).
(B) HBD-1 protein localizes to bladder urothelium by IHC. US:
Urinary Space; Uro: Urothelium; M: Muscularis. Similar results
were seen in ureter (data not shown). 400x original
magnification.

doi: 10.1371/journal.pone.0077714.g001
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therefore evaluated bladder and kidney expression of Defb1
mRNA levels at 2, 6, 16, 24, and 48 hpi. UPEC significantly
decreased bladder Defb? mRNA levels as early as 2 hpi,
reaching a nadir by 6 hours (Figure 3A). In contrast, no
reduction in Defb1 mRNA levels was observed in kidneys
(Figure 3A) or ureters (Figure 3B). Defb7 mRNA levels were
also reduced to a comparable extent in the bladders of
C3H/HeN mice inoculated with UPEC, but kidney levels were
unaffected (Figure 3C).

Because Defb1 deficiency did not significantly affect UPEC
burden, we investigated whether additional B-defensins are
expressed in the murine lower urinary tract. We determined the
relative expression of Defb mRNAs within the urinary tract by
gRT-PCR using cDNA from whole tissue homogenates of
uninfected kidney, ureter, and bladder. Murine Defb2 and
Defb28 mRNA were detected only in the kidney (Figure 4A).
Defb29 and Defb42 mRNA were undetectable in the bladder,
but observed in the ureter and kidney. In contrast, Defb3 and
Defb14 mRNA expression was detected in all three urinary
tract tissues and selected for further analysis in the bladder
(Figure 4A). Variable Defb3 mRNA levels were observed at
baseline and throughout the 48 hour course of UPEC infection,
but these differences did not reach statistical significance
(Figure 4B). Defb14 mRNA levels were detectable in 100%
(4/4) uninfected bladders but below the limit of detection in
75% (3/4) bladders at 16 hpi (Figure 4C). IHC with a polyclonal
antibody toward mBD-14 revealed undetectable expression in
naive murine bladder, low levels of expression in bladder
urothelium within 2 hpi, and more intense staining throughout
the urothelium by 6 hpi that persisted at 16, 24, and 48 hpi
(Figure 5).

We next determined the potential susceptibility of UTI89
bacteria to the microbicidal activity of recombinant mBD-3 and
mBD-14 in vitro. The MICs for mBD-3 and mBD-14 were
1.25-2.5 yM and 0.13-0.25 uM, respectively.

Discussion

[34]The innate immune system plays key roles in the
detection and eradication of uropathogens, but the details of
the complex interactions between host urothelium, leukocytes,
and microbes remain incompletely elucidated[1]. Recent
studies stress the importance of epithelial derived AMPs in
maintaining sterility in the urinary tract[17,24,35-39]. For
example, mice deficient in genes encoding AMPs such as
cathelicidin-related antimicrobial peptide (Cramp) and Tamm-
Horsfall protein (Thp) displayed greater susceptibility to UPEC
than wild type controls[25,35,40]. In humans, when urinary
Ribonuclease 7 (RNase 7) is neutralized in vitro, uropathogenic
bacterial growth increases[17]. Deficiencies in these innate
mucosal defenses may result in acute and/or chronic infection
[6,37,39,41-43].

Our results demonstrate that murine Defb? and human
DEFB1 mRNA are abundantly expressed throughout the
urinary tract and that the bladder urothelium produces HBD-1
peptide. These findings complement the work of Valore et al.
who found that DEFB1 mRNA and HBD-1 peptide are
constitutively expressed by the epithelial lining of the nephron
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Figure 2. Effect of Defb1 deficiency on UPEC burden. (A) RT-PCR confirms absent expression of Defb7 mRNA in kidneys of
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in bladders and kidneys of wild type (WT) versus Defb1” (knockout, KO) mice at 24 hpi following inoculation with 5x10° CFU UTI89.

doi: 10.1371/journal.pone.0077714.g002

and secreted into the urinary stream[9]. Similarly, these
findings parallel our research group’s work demonstrating that
the renal collecting tubules and the urothelium of the lower
urinary tract produces RNase 7[17]. However, while the
kidneys and bladder secrete high concentrations of RNase 7
into the urinary stream sufficient to kill bacteria, urinary HBD-1
peptide expression is much lower[9,11,12]. Although urinary
levels of HBD-1 are insufficient to kill invading bacteria, HBD-1
may provide a fast-acting antimicrobial coating of tubular
lumens in the upper urinary tract to prevent infection by
inhibiting bacterial attachment to the urothelium and serving as
a second-line chemical shield[44].

PLOS ONE | www.plosone.org

In this study, our primary hypothesis was that Defb1
deficiency results in increased susceptibility to UPEC UTI. This
hypothesis was supported by published findings: (1) HBD-1
exhibits bactericidal activity toward UPEC in vitro [9]; and (2)
Defb1* mice display increased incidence of spontaneous
bacteriuria[16]. We challenged Defb7” animals with UPEC
because of the established nature of this gram-negative
infection model in C57BL/6 mice and the predominance of
UPEC among uropathogens in humans with UTI[1,19].
Interestingly, our experiments did not reveal any significant
impact of Defb1 deficiency on UPEC burden in bladders and
kidneys of infected mice. This finding may be due to the choice
of UPEC and/or mouse strains used in these experiments.
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doi: 10.1371/journal.pone.0077714.g003
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Figure 5. Bladder mBD-14 protein expression is induced by UPEC infection.
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Naive and infected bladders harvested at

indicated hpi were subject to mBD-14 IHC and counterstained with hematoxylin. Whereas mBD-14 is undetectable in uninfected
bladder, it is expressed throughout the urothelium as early as 2 hpi, with increased expression by 6 hpi (black arrows) that persists

at subsequent timepoints. 100x magnification.
doi: 10.1371/journal.pone.0077714.g005

Alternatively, mBD-1 may serve an important role in preventing
spontaneous infection or clearance of low bacterial inocula, but
may be dispensable for bacterial clearance when mice are
challenged with large bacterial inocula. This has been
previously observed in mice deficient in the Thp gene[25].
Whereas Thp” and wild type controls had comparable bladder
bacterial burden following inoculation with 1028 CFU UPEC, a
greater proportion of Thp” bladders was infected when the
inoculum ranged from 10* to 106 CFU[25]. However, when we
tested this hypothesis by infecting Defb1- and wild type mice
with a reduced inoculum, we did not observe any significant
difference in bladder bacterial recovery.

While Defb1 deficiency did not affect bladder bacterial
burden in experimental UTI caused by UPEC, we acknowledge
that Defb1” mice may exhibit greater susceptibility to gram-
positive uropathogens than wild type controls. This hypothesis
is supported by the observation that Staphylococcus species
were predominantly isolated from urine of Defb1” animals with
spontaneous bacteriuria[16]. The experimental UTI described
in this study were conducted in the C57BL/6 genetic
background, which has been shown to rapidly clear S.
saprophyticus from the bladder following transurethral
inoculation[45]. It is conceivable that genetic deficiency of
Defb1 may confer susceptibility of C57BL/6 mice to S.
saprophyticus. Future studies are required to test the
hypothesis that Defb1 deficiency confers susceptibility to gram-
positive uropathogens, to elucidate whether Defb1 expression
is modulated by gram-positive infection in wild type mice, and
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to determine if mBD-3 and mBD-14 display antimicrobial
activity toward gram-positive uropathogens in vitro.

The observed similarities in UPEC burden recovered from
Defb1* and wild type animals may be due to functional
diversification and/or redundancy among Defb genes within the
lower urinary tract. This hypothesis is supported by our
unexpected discovery that B-defensin expression in the naive
urinary tract is more complicated than previously suspected,
with multiple Defb transcripts detectable in each organ and
differential expression of Defb family members between the
kidney, ureter and bladder. Detection of Defb3 and Defb14
mRNA in the naive lower urinary tract led us to evaluate
expression following experimental UTI and to explore the
bactericidal activity of mBD-3 and mBD-14 toward UPEC.
Indeed, we found that mBD-14 protein is detectable in UPEC
infected bladder urothelium by IHC, and that mBD-3 and
mBD-14 exhibit microbicidal activity toward UPEC in the low
micromolar and nanomolar range, respectively. The MIC
values measured in this study for mBD-3 and mBD-14 are
comparable to those reported toward E. coli in the
literature[46,47]. These findings lead us to hypothesize that
Defb3 and Defb14 promote UPEC clearance in vivo. Future
studies using mice with single, double, or triple deficiencies in
Defb1, Defb3, and Defb14 will ultimately demonstrate the
relative contribution of these genes and their protein products
to UPEC clearance and establish whether eradication of UPEC
depends on a particular Defb gene or the coordinated,
functionally redundant expression of multiple Defb genes.
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Whereas Defb1 is dispensable for UPEC clearance in vivo,
we unexpectedly found that UPEC inhibits bladder expression
of Defb1 mRNA in wild type mice. This bladder-specific
decrease in Defb1 mRNA expression was observed at multiple
times after UPEC inoculation and reproducible in both C57BL/6
and C3H/HeN mouse strains. The decrease in Defb1
expression is not due to exfoliation of urothelium, as this was
detectable 2 hpi when the urothelium was intact. The
mechanisms responsible for UPEC regulation of Defb7 mRNA
expression are currently under further investigation. Since
reduced Defb1 mRNA levels are noted in lipopolysaccharide
hyporesponsive C3H/HeJ mice in bladder urothelium 24 hpi
with UPEC when compared to untreated or carrier-treated
control bladders (http://www.ncbi.nlm.nih.gov/sites/
GDSbrowser?acc=GDS2977), we hypothesize that intact Toll-
like 4 receptor signaling may not be required for Defb1
regulation[48]. Down-regulation of epithelial human DEFB1 or
murine Defb1 mRNA expression has been demonstrated
following bacterial and viral infection in the digestive and
respiratory tract[30-33]. While the exact significance of Defb1
mRNA down-regulation by UPEC remains unknown, this
observation adds to the repertoire of host effector molecules
such as interleukin (IL)-6 and IL-8 that are modulated by UPEC
to subvert host innate immune responses[26,28,29].

While Defb1 was dispensable for clearance of UPEC, we
cannot exclude a direct role for Defb? in the host immune
response to UPEC, which was not evaluated in this study.
HBD-1 is expressed by a variety of immune cells including
platelets, monocytes, and plasmacytoid dendritic cells[33,49].
HBD-1 triggers mast cell chemotaxis[50] and formation of
neutrophil  extracellular traps by  polymorphonuclear
leukocytes[49]. Whereas comparable expression patterns and
activities have not yet been demonstrated with mBD-1, the
other lower urinary tract BDs identified in this study also exhibit
immunomodulatory activity outside of the urinary tract.
Recombinant mBD-3 exhibits differential regulation of pro-
inflammatory cytokines in vivo during murine influenza A
infection, with upregulation of interferon-y and interleukin
(IL)-12 and downregulation of tumor necrosis factor (TNF)-
a[51]. Recombinant mBD-14 has been implicated in stimulation
as well as suppression of the innate immune response in
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