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Abstract

South Africa, having met the World Health Organisation’s pre-elimination criteria, has set a goal to achieve malaria
elimination by 2018. Mpumalanga, one of three provinces where malaria transmission still occurs, has a malaria season
subject to unstable transmission that is prone to sporadic outbreaks. As South Africa prepares to intensify efforts towards
malaria elimination, there is a need to understand patterns in malaria transmission so that efforts may be targeted
appropriately. This paper describes the seasonality of transmission by exploring the relationship between malaria cases and
three potential drivers: rainfall, geography (physical location) and the source of infection (local/imported). Seasonal
decomposition of the time series by Locally estimated scatterplot smoothing is applied to the case data for the
geographical and source of infection sub-groups. The relationship between cases and rainfall is assessed using a cross-
correlation analysis. The malaria season was found to have a short period of no/low level of reported cases and a triple peak
in reported cases between September and May; the three peaks occurring in October, January and May. The seasonal
pattern of locally-sourced infection mimics the triple-peak characteristic of the total series while imported infections
contribute mostly to the second and third peak of the season (Christmas and Easter respectively). Geographically,
Bushbuckridge municipality, which exhibits a different pattern of cases, contributed mostly to the first and second peaks in
cases while Maputo province (Mozambique) experienced a similar pattern in transmission to the imported cases. Though
rainfall lagged at 4 weeks was significantly correlated with malaria cases, this effect was dampened due to the growing
proportion of imported cases since 2006. These findings may be useful as they enhance the understanding of the current
incidence pattern and may inform mathematical models that enable one to predict the impact changes in these drivers will
have on malaria transmission.
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Introduction

Despite being a treatable and preventable mosquito-borne disease,

malaria is still an immense global health, economic and social burden.

In 2010, latest estimates suggest 219 million cases with an uncertainty

range of (154 million, 289 million) cases globally. There were 660 000

deaths due to malaria; with 90% of deaths occurring in Africa and

most cases and deaths occurring in sub-Saharan Africa [1]. Malaria

has been recognized as a disease of poverty with vulnerable groups

facing several barriers to access for antimalarial interventions [2,3].

South Africa, having experienced a sharp decline in malaria cases

since the last epidemic in 2000, already meets the pre-elimination

phase criteria set out by the World Health Organisation (WHO)

(v5 cases per 1000 population at risk) and has been ear-marked

to achieve elimination by 2018 [4]. Mpumalanga is one of three

provinces in South Africa where malaria transmission still occurs.

Malaria in Mpumalanga is seasonal, starting with the first rains in

October, peaking in January and remaining high till May; yet

transmission is still unstable and prone to sporadic outbreaks. As

government begins to intensify efforts and commit scarce resources

towards malaria elimination, there is a need to understand patterns in

transmission so that efforts may be targeted appropriately. Mathe-

matical modeling is increasingly being used to test policy interventions

so as to determine their impact on simulated transmission before

implementing the intervention in the field. Understanding the nature

of the seasonality of transmission will enable better mathematical

modeling and this may lead to better allocation of scarce resources

and ultimately a greater impact on malaria. This paper aims to

explore the seasonality of malaria cases in the Mpumalanga province

as part of a larger project in mathematical modeling of malaria

transmission and the impact of antimalarial interventions. We analyse

data on reported treated malaria cases from 2002 to 2012. In

particular, this paper explores the temporal and geographic behavior

patterns as well as potential drivers behind these patterns.

Malaria control in South Africa and Mpumalanga is well

documented [5–11]. Malaria is distributed mainly in the low-lying

areas bordering Swaziland and Mozambique, with a favourable

climate for malaria transmission. Nkomazi, Bushbuckridge,

Mbombela, Umjindi and Thaba Chewu local municipalities (part

of the Ehlanzeni district) are the districts mostly affected by

malaria (Figure 1). Kruger National Park and surrounding lodges

have been incorporated into the Bushbuckridge and Mbombela
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municipalities and comprise 1.7% of all cases in the study period.

Transmission is most intense in the municipalities bordering

Mozambique. Table 1 shows the incidence rates for all cases

treated in the province by local municipality using population

estimates from Statistics South Africa [12]. While there is a sharp

decrease in incidence in the province between 2002 and 2012, this

decrease is not consistent over the local municipalities. Plasmodi-

um falciparum is the predominant parasite that is transmitted

primarily by the Anopheles arabiensis vector [13]. As malaria is a

notifiable disease in South Africa, malaria information systems

have been developed to record all malaria cases that are

Plasmodium positive through a rapid diagnostic test or by slide

microscopy [14]. Active case detection, a strategy of following up

notified cases to verify the source of infection thereby allowing

further screening and treating of symptomatic people, is also

employed in the province. Owing to an increase in gametocyte

carriage following Sulphadoxine-Pyremethamine (SP) treatement

in 2002, the province made a switch to SP-artesunate in 2003,

followed by Artemether/Lumefantrine (AL) in 2006 [14–16].

Vector control in the province includes indoor residual spraying

(IRS) using primarily dichorodiphenyltrichloroethane (DDT) and

larviciding at identified breeding sites [6]. There are also two

collaborative cross-border initiatives aimed at reducing incidence

in participating countries. The Trans-Limpopo Malaria Initiative

targets the Matabeleland South province of Zimbabwe and

Limpopo province in South Africa, and the Lubombo Spatial

Development Initiative targets eastern Swaziland, Maputo and

Gaza provinces in Mozambique and Kwazulu-Natal province in

South Africa [11–17].

This paper will examine the seasonal pattern of malaria cases

using time series methods and explore the relationship between

cases and three potential drivers: rainfall, geography and source of

infection. The relationship between malaria transmission and

climate has been examined extensively [18–22] and Ngomane and

de Jager [6] showed that rainfall was the only significant climatic

factor in this Mpumalanga dataset examined between 2001 and

2009. Migration and its impact on malaria transmission are

affected by both the primary physical location where the infection

resides as well as the source of the infection. Migrant human

populations may affect transmission in two key ways. Firstly,

people from areas of low malaria transmission move to areas of

high transmission and having little or no immunity become

infected. In the second case, people from areas of high

transmission may harbour parasites and transmit these when they

move to areas of low transmission. Having partial or full

immunity, they may not exhibit clinical symptoms and hence

become hidden reservoirs of infection [23]. As Mpumalanga

shares a border with Mozambique (which has a higher malaria

prevalence) and Swaziland, it is of interest to assess both the

geography and source of infection as potential drivers of the

seasonality of cases in Mpumalanga.

Methods

Ethics statement
This study is an analysis of secondary data. Ethical approval for

use of the notification data was obtained from the University of

Cape Town Human Research Ethics Committee and the

Mpumalanga Department of Health. Written consent was given

by the patients for their information to be stored in the hospital

database and used for research.

Figure 1. The number of reported treated cases are depicted for all the municipalities in Mpumalanga Province for 2002 and 2012.
doi:10.1371/journal.pone.0076640.g001

Seasonality of Malaria in Mpumalanga, South Africa
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Data
To explore malaria cases, one would require data on both the

treated and untreated cases to capture the populations that are

unable to access treatment, as well as the asymptomatic

population. As asymptomatic people would not usually present

for treatment at a facility, it is rarely the case that such data is

available. The only data available in Mpumalanga are those cases

that presented for treatment at a public health facility and actively

detected cases where index cases are followed up in home and

malaria diagnostic tests are performed on nearby households. This

data is sourced from provincial Integrated Malaria Information

System (IMIS) under the management of the Malaria Elimination

Programme of the Department of Health. The data also included

the following information: date of diagnosis, age, gender, mortality

indicator, drug, facility name, administrative municipality, source

of infection (country, province, locality) and place of residence

(country, province, locality). Source of infection has been

determined for all cases in the province, whereby a case is

classified as imported if the patient travelled to a malaria-endemic

area in the past month or if there is no evidence of local

transmission(vectors or cases within 500 m radius of the place of

residence) [17]. Provincial border changes in the study period

required the addition of malaria cases from Bushbuckridge pre-

2006 (then part of Limpopo province) and the exclusion of cases

from Limpopo post-2006. Source of infection data was not always

available for this additional data, which comprises only 3.4% of all

cases. Monthly case data from the province of Maputo in

Mozambique was obtained for the study period from the

Mozambique National Ministry of Health. The analysis of the

relationship between rainfall and cases required obtaining monthly

rain data for the Ehlanzeni district from the South African

Weather Services for the study period.

Data Analysis
Case data was compiled in a weekly format in Stata 11 and

analysed using time series methods [24]. As case data usually

exhibits noise, it is often difficult to draw conclusions on seasonal

patterns based on the case data itself and hence there is a need to

extract the seasonal pattern from the data. In particular, Seasonal

decomposition of Time series by LOESS (STL) method of

extracting components was used to assess the seasonal pattern of

the data. Decomposition methods generally separate a time series

into a trend (moving average) component, a seasonal (systematic

temporal variation) component, a cyclical (repeated non-periodic

fluctuations) component and a residual (remainder; irregular

random) component [25]. STL is one such decomposition method

where LOESS (LOcally Estimated Scatterplot Smoothing) is

applied iteratively to the observations in moving time windows to

filter the time series in a way that results in estimates of trend and

seasonality that are robust to aberrant behaviour in the time series

(Cleveland, 1990).

Table 1. Malaria Incidence Rates.

Area 2002 Cases
2002 Incidence
per 1000 people 2012 Cases

2012 Incidence
per 1000 people

% Change in
Cases

Mpumalanga 7933 238 2745 68 265%

Nkomazi Municipality 6100 1793 1540 394 275%

Mbombela Municipality 1316 270 637 108 252%

Bushbuckridge Municipality 282 56 312 58 11%

Umjindi Municipality 177 320 120 172 232%

Thaba Chewu Municipality 34 41 23 23 232%

Table showing malaria incidence and the change in cases in Mpumalanga Province and the municipalities in Ehlanzeni District.
doi:10.1371/journal.pone.0076640.t001

Figure 2. The weekly and annual reported treated malaria cases in Mpumalanga Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g002

Seasonality of Malaria in Mpumalanga, South Africa
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The relationship between weekly rainfall and weekly reported

treated cases is assessed through a cross-correlation analysis of the

pre-whitened series (removing all autoregressive, moving average,

integrated components and seasonal dynamics to achieve a series

that has a zero mean, constant variance and no correlation

between observations at different points in time) to determine if

any lagged values of rainfall are significantly correlated with

reported treated cases. The series are pre-whitened using Seasonal

AutoRegressive Iterated Moving Average (SARIMA) methods.

Data analysis is performed in R v3.0.1 [26].

Results

The analysis for the case data is presented first followed by an

assessment of the relationship between cases and rainfall, cases and

physical geography and thirdly, cases and source of infection.

Case Data
Figure 2 shows the annual and weekly counts of reported

treated cases over the period 2002 to 2012. In this period, there

were 40650 reported malaria cases (imported and local) and 256

deaths due to malaria in the province. Efforts to scale-up IRS in

the province and the switch to artemisinin-based combination

therapy have contributed to the 65% decrease in reported cases

since 2002. Annual reported figures for malaria remained

consistently low after the surge of cases in 2006, but the 2011

and 2012 counts are considerably higher than preceding years.

The total time series of reported treated cases is decomposed into

trend, seasonal and random components using the STL decom-

position. The crude data series in Figure 3 (top panel) appears at

face value to have pronounced seasonal pattern from 2002 to

2006, but this becomes less distinct post-2006. The STL

decomposition however extracts the general seasonal pattern that

is unlike standard single-peaked sinusoidal annual seasonal

patterns. The seasons are characterized by very short periods of

Figure 3. STL decomposition on reported treated malaria cases in Mpumalanga Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g003

Figure 4. Two year seasonal trend of reported treated malaria
cases in Mpumalanga Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g004

Figure 5. Weekly malaria cases and monthly average rainfall in
Mpumalanga Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g005

Seasonality of Malaria in Mpumalanga, South Africa
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no/low level of reported cases and a triple peak in reported cases

between September and May. The trend component shows the

steady decrease in reported cases since 2002, with a sharp increase

in 2006 and a more moderate increase recently in 2011. The

remainder component is the component of the time series that

remains after the trend and seasonal components have been

removed from the series. It can be used to detect anomalies in the

data; points in the data set where the reported cases series has

deviated from the trend and seasonal patterns. For example, the

seasonal component suggests that the second peak is usually higher

than the first peak; yet in 2004 the upward spike in the remainder

component highlights that the first peak of the season was higher

than the second peak. The remainder component also depicts the

sharp increase in the series in 2006. Figure 4 focuses on 2 years so

as to highlight the timing of the season. It can be seen that the first

peak in reported cases occurs approximately between weeks 38

and 44 (mid-September to end-October), the second peak occurs

between weeks 52 and 4 (end-December to end-January) and the

third peak occurs between weeks 14 and 22 (start-April to end-

May).

Cases and Rainfall
Ngomane and de Jager [6] assessed the relationship between

malaria incidence and rainfall, relative humidity and minimum

and maximum temperature in an ARIMA framework and found

rainfall to be the only significant climatic factor. The seasonal

pattern of monthly rainfall coincides with the height of the malaria

season early on in the time series but appears to lag the season post

2006 (Figure 5). Further the period of higher rainfall pre-2006

appears to correspond with the higher number of cases reported

(and treated) in 2006, but this does not appear to be the case for

the higher number of cases in 2011 and 2012. The STL seasonal

decomposition of rainfall reveals a single peak that coincides

generally with the main peak of the case data (Figure 6). This

analysis is pursued as epidemiologically, rainfall has a delayed

impact on malaria incidence due to the incubation and latent

phases of the parasite in the vector and the host. Of interest is thus

to analyse the correlation between lagged rainfall values and

malaria incidence. A cross correlation analysis is performed

between lagged rainfall and the case data. The case and rain series

are pre-whitened to avoid spurious correlations. The series are

square-rooted first to stabilise the variance and then the Box-

Jenkins modeling algorithm is used to select the resultant

SARIMA(1,1,1)(0,1,1)12 model [27]. This model was selected as

it had the lowest Akaike Information Criterion value among all

models and made epidemiological sense. There is no autocorre-

lation or partial autocorrelation present in the residual series. It

was found that there is a significant positive correlation of 0.21

between values of monthly rain at lag 1 (4 weeks) and monthly

Figure 6. Seasonal trend of weekly malaria cases and monthly
average rainfall in Mpumalanga Province between 2002 and
2012.
doi:10.1371/journal.pone.0076640.g006

Figure 7. Seasonality and trend components of an STL decomposition of locally and foreign-sourced malaria cases in Mpumalanga
Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g007

Seasonality of Malaria in Mpumalanga, South Africa
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cases (assessing negative lags, as lagged cases cannot be used to

predict rainfall).

Cases and Source of Infection
To further explore the drivers behind the three-peaked seasonal

pattern of the case data, foreign and locally sourced case counts

are assessed. Each reported case is assessed to determine if the

infection is obtained from a local source (within South Africa) or

from a foreign source (outside South Africa). Figure 7 compares

the trend and seasonal components for locally and foreign-sourced

infections for all reported treated cases. Locally sourced infections

have been on a steady decrease since 2002, remaining at very low

levels while foreign-sourced infections show an increase in 2006,

with a further increase in 2010 and has remained at this level

since. The seasonal pattern of the locally-sourced infection mimics

the triple-peak characteristic of the total series while foreign-

sourced infections appear to contribute mostly to the second and

third peak of the malaria season, and not the first peak of the total

series (Figure 3: 2nd panel). The annual distribution of foreign and

locally sourced infections has changed considerably during the

study period (Figure 8). Foreign-sourced infections have dominat-

ed locally sourced infections since 2005, and this proportion has

been increasing since. At the end of 2012, 87% of all reported

treated cases had a foreign-source.

Figure 8. Percentage plot of locally and foreign-sourced malaria cases in Mpumalanga Province between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g008

Figure 9. Weekly malaria cases in Mpumalanga Province (orange) and Nkomazi, Mbombela and Bushbuckridge Municipalities
(blue) between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g009

Seasonality of Malaria in Mpumalanga, South Africa
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Cases and Physical Geography
Physical geography is assessed with regards to location within

Mpumalanga (local municipalities) and the pattern of cases in the

contiguous Maputo province in Mozambique. Nkomazi, Mbom-

bela and Bushbuckridge have consistently been the municipalities

with the highest number of reported treated cases. Figure 9 shows

the weekly counts of reported treated cases for each of the

municipalities against the backdrop of the time series for all

municipalities. Nkomazi is clearly home to most of the reported

malaria compared to Mbombela, and while Bushbuckridge on its

own, does not usually contribute greatly to total malaria, its

contribution is sporadic with unusually large number of cases in

2004, 2006 and 2010–2012. Looking at the seasonal components

extracted from these municipalities, one can see that both

Nkomazi and Mbombela municipalities exhibit the triple-peak

pattern as seen for the total series. Reported treated cases in

Bushbuckridge municipality also exhibit a triple-peak but the first

and second peaks are approximately the same size unlike in the

other municipalities (Figure 10). Of the 40650 cases analysed, 41%

of cases were sourced in South Africa and 54% sourced from

Mozambique (the remaining 5% being sourced from other African

and Asian countries). Figure 11 depicts the monthly case profile for

Maputo province and Figure 12 shows the seasonal profile for the

two provinces where the peak of the malaria season in Maputo

corresponds to the second and third peaks of the Mpumalanga

season. This is consistent with the seasonal pattern of foreign-

sourced infections presented earlier.

Discussion

Malaria transmission in Mpumalanga is characterized by a

Figure 10. Seasonal trend of weekly malaria cases in Nkomazi, Mbombela and Bushbuckridge Municipalities between 2002 and
2012.
doi:10.1371/journal.pone.0076640.g010

Figure 11. Monthly malaria cases in Mpumalanga and Maputo,
Mozambique between 2002 and 2012.
doi:10.1371/journal.pone.0076640.g011

Figure 12. Seasonal trend of monthly malaria cases in
Mpumalanga and Maputo, Mozambique between 2002 and
2012.
doi:10.1371/journal.pone.0076640.g012

Seasonality of Malaria in Mpumalanga, South Africa
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triple-peak in the season where the first peak occurs in September/

October, the second (and also main) peak occurs in January and

the third peak occurs in April/May. Assessing the STL seasonal

components of the source and geographical location of infection

shows that the first peak is driven by mainly locally-sourced

infections and the second and third peaks are driven mainly by

foreign-sourced infections. This is supported by the Maputo data

where the peak of the season in Maputo corresponds to the second

and third peak of the Mpumalanga season. Geographically,

Bushbuckridge, the northern most municipality, contributes

specifically to the first and second peaks, while the other two

municipalities studied contribute equally to all three peaks.

Monthly rainfall lagged at 1 month was found to be significantly

associated with monthly cases, yet the seasonal pattern of rainfall

does not appear to characterize the triple peak pattern of the case

data. The decline of local cases in Mpumalanga may be a reason

for this, where cases from a foreign source are more likely to be

affected by rainfall in the source area (e.g. Mozambique) than local

rainfall. If the increase in the proportion of foreign-sourced cases

persists, rainfall may become even less of a driver for malaria.

Having reduced its malaria burden significantly since 2002, South

Africa has embraced a malaria elimination target of 2018 [4]. To

achieve this, suites of malaria control interventions will be

deployed in Mpumalanga and other provinces affected by malaria.

The likely impact of these interventions may be measured through

mathematical modeling. The MalERA Consultative Group on

Modeling has recognized the contribution mathematical modeling

can make to the elimination of malaria globally and has developed

a framework of priority areas for modeling to assess and inform:

optimal resource allocation, strategies to minimize the evolution of

drug and pesticide resistance, new tools to interrupt malaria

transmission, combinations of tools, coverage targets and expected

timelines to achieve goals as well as to assess operational feasibility

with respect to costs and human resource capacities [28]. Using

mathematical modeling to adequately represent malaria transmis-

sion requires knowledge on the drivers of the geographic and

temporal trends in malaria transmission and this in turn may lead

to finding malaria control strategies that target these drivers

directly rather than strategies that may generally control

transmission but not interrupt it. The primary interest of

mathematical modeling in this setting is to provide practical

guidance to malaria programme managers on how to conduct

more efficient and effective control and elimination activities. This

paper assesses the seasonal trend of cases for different sub-groups

of the population, based on the source of infection and geography.

If an elimination activity such as the scale-up of larviciding is

under consideration, knowing the seasonal pattern of locally

sourced cases (larviciding impacts locally sourced cases directly)

allows managers to optimally time the larviciding activities with

the breeding patterns of the mosquitoes. While malaria elimina-

tion requires the reduction to zero of locally sourced cases only,

interventions aimed at reducing foreign sourced cases can reduce

onward transmission. Knowing the seasonal pattern of foreign

sourced cases allows programme managers to optimally time

interventions such as mass screen and treat campaigns at border

posts with travel/migration patterns. Understanding the seasonal

differences between managerial districts like municipalities can

also assist with optimal allocation of drugs and staff. These are

some of the many practical uses of mathematical modeling in

health management. The rising percentage of imported or foreign-

sourced cases suggests the need for intensive monitoring. The

second and third peaks of the season (which comprise mainly

foreign-sourced cases) correspond to holiday seasons (Christmas

and Easter). As the majority of cases are sourced from

Mozambique, there is a need to intensify cross-border collabora-

tions now and even more so after elimination has been achieved in

South Africa. This increase in foreign-sourced cases also highlights

the importance of including migration in mathematical models of

malaria transmission to obtain realistic estimates of the impact of

malaria control and malaria-elimination focused strategies.

There are two main limitations of this study. Firstly, the case data

available is for those who were treated at public health facilities and

some private practices and no malaria case information is known for

others treated in the private sector and the untreated population. The

untreated population may represent vulnerable groups such as the very

poor who are often unable to access treatment and illegal immigrants

who may avoid the health system. If the latter group has developed

immunity to malaria and is therefore asymptomatic, they could be

responsible for unknowingly transmitting the disease. Secondly, routine

surveillance data are also subject to errors in reporting that may bias

the analysis. The collection of notification data is still recommended by

WHO with active/passive case detection assisting in the identification

of additional asymptomatic cases. A provincial census or a mass screen

and treat campaign could provide cross-sectional data on the untreated

population, but this is both costly and non-informative temporally.

Conclusion

Mpumalanga province in South Africa has experienced a 65%

decrease in reported treated cases since 2002. In this time, the

percentage imported cases of this total has increased from 39% to

87%. Using weekly reported treated cases, the geographic and

temporal trends in malaria transmission was explored to reveal an

atypical triple-peak pattern in cases with a short period of few cases.

This seasonality was explored in relation to rainfall, source of

infection and geographic location. A cross correlation analysis

revealed that one month lagged rainfall was significantly associated

with reported treated cases, but the seasonality of rain did not appear

to explain the unusual pattern of malaria cases. Analysis of the source

of infection revealed that local cases contribute to all three peaks but

foreign cases contribute primarily to the Christmas and Easter peaks.

Geographically, Bushbuckridge municipality (northern most munic-

ipality) had a greater relative contribution of cases in the first

(September/October) peak. Malaria transmission in Mpumalanga

may be low, but it is also unstable and a change in climate and the

source of infection may lead to a spike in infection and generally a

modification of the incidence pattern. These findings may be useful

as they enhance the understanding of the current incidence pattern

and can be incorporated in mathematical models that enable one to

predict the impact changes in these drivers will have on malaria

transmission. Further, as mathematical modeling is being used to

assess timeframes for malaria elimination and the potential impact of

elimination-focused interventions, understanding the seasonal trends

of malaria is key to designing a targeted temporal and spatial

approach that can be applied in resource-scarce settings.
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