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Abstract

Annotating protein functions and linking proteins with similar functions are important in systems biology. The rapid growth
rate of newly sequenced genomes calls for the development of computational methods to help experimental techniques.
Phylogenetic profiling (PP) is a method that exploits the evolutionary co-occurrence pattern to identify functional related
proteins. However, PP-based methods delivered satisfactory performance only on prokaryotes but not on eukaryotes. This
study proposed a two-stage framework to predict protein functional linkages, which successfully enhances a PP-based
method with machine learning. The experimental results show that the proposed two-stage framework achieved the best
overall performance in comparison with three PP-based methods.
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Introduction

Various protein functions are essential to diverse biological

processes in a living cell. Elucidating these protein functions and

linking functional related proteins helps our understanding of the

mechanisms of biological systems at the molecular level [1]. With

the increasing quantity of sequenced genomes, using biological

experiments to identify all functional related proteins is impractical

in terms of time and cost. This calls for the development of

computational methods.

Various computational methods have been proposed to predict

protein functional linkages based on the observation that

functionally related proteins have some co-occurrence patterns.

Shoemaker and Panchenko have provided a good review of these

methods [2]. Gene neighbor and gene cluster methods infer

functional linkages from the observation that genes producing

interacting proteins usually cluster within a transcription unit, an

operon, in the genome [3,4,5]. The Rosetta Stone method is based

on the pattern that certain interacting proteins have homologues

forming a fused protein chain, named a Rosetta Stone protein, in

other organisms [6,7,8,9]. Gene neighbor, gene cluster, and the

Rosetta Stone method have a common disadvantage that only

very limited functional linkages have such specific co-occurrence

patterns. Thus, the recent co-occurrence-based methods shifted to

phylogenetic profiling (PP), a more general co-occurrence pattern.

The basic assumption in PP-based methods is that the co-presence

and co-absence of proteins across organisms, the co-evolve

pattern, result from the inter-dependence between those proteins

[10,11,12,13,14]. Though PP-based methods delivered satisfactory

performance, they have been applied mainly to prokaryotes. This

is due to that a collection of organisms, called ‘‘reference

collection’’ in the context, is required to construct a PP.

Completely sequenced eukaryotic genomes are much less than

prokaryotic ones and a prokaryotic reference collection is not

suitable for eukaryotic proteins because of the different genomic

organizations between prokaryotes and eukaryotes [13,14].

This study proposed a two-stage framework to analyze protein

functional linkages by integrating machine learning (ML) with a

PP-based method. ML techniques have been widely used to

predict protein relations in many studies [15,16,17,18], in which

several techniques have been developed to capture the important

features of protein pairs. Shen et al. proposed the ‘‘conjoint triad’’

feature, which employs the frequency of three continuous amino

acids to encoded protein sequences into feature vectors [15]. They

used the support vector machine (SVM) [19] to construct the

abstract model of the feature vectors. Guo et al. adopted the SVM

and proposed an auto cross covariance-based mechanism to

encode proteins [16]. Chang et al. showed that the features

extracted from the protein surface are critical in predicting protein

interactions [17]. They used the relaxed variable kernel density

estimator (RVKDE) [20] to construct the abstract model. Yu et al.

adopted the RVKDE and proposed a probability-based mecha-

nism to consider the natural amino acid distribution in encoding

protein sequences [18]. The most advantage of the above ML-

based methods is that they did not rely on auxiliary information

such as localization data and/or interactions from orthologues.

The two-stage framework proposed in this study contained a

unique filter to verify the reliability of PPs. The first stage

constructs and compares the PPs of the input proteins. Protein

pairs with similar PPs are then analyzed by the RVKDE at the

second stage. The performance of the proposed framework was

compared to three PP-based methods. The effect of the proposed
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PP verification step and using different reference collections was

also evaluated. The experimental results show that the proposed

two-stage framework successfully integrated the ML techniques

with the PP-based method and achieved the best prediction

performance. Furthermore, the performance advantage of the first

stage of this study over other PP-based methods reveals that the

proposed PP verification step is critical to PP-based methods.

Materials and Methods

The proposed predictor of protein functional linkages is a two-

stage framework (Figure 1). A PP-based approach is employed,

where only protein pairs with high phylogenetic similarity are

submitted to the second stage, to reduce the data at the first-stage.

A unique feature of the first stage of this study to other PP-based

approaches is a non-zero filter (marked by an asterisk in Figure 1),

which verifies if the phylogenetic similarity is reliable. Next, a ML-

based approach is applied on the reduced data for the final

prediction. The following subsections describe the details of how to

construct and compare the phylogenetic profiles, the non-zero

filter, and the adopted features and classifier of the second stage.

Phylogenetic profile
PP-based methods are based on the observation that genes with

similar PPs tend to exist in the same protein complex, biochemical

pathway or sub-cellular compartment. Here the PP of a gene is a

vector, representing the presence or absence of homologues to that

gene across the reference collection. There are two major

components in a PP-based method: (i) how to construct a PP of

a given gene and (ii) how to determine the similarity of two PPs.

First, the presence or absence of homologues can be determined

by sequence alignment scores, such as a BLAST [21] E-value. A

protein is considered as ‘‘presence’’ in an organism if the sequence

alignment score of the protein between at least one proteins in the

organism exceeds a threshold. Such binary vectors were improved

as real valued vectors of normalized alignment scores without

arbitrarily determining a score threshold. A real valued PP was

adopted in this study. Suppose that there is a collection of n

reference organism used to build the PP of a query gene. The first

step is to compare the open reading frame (ORF) of the query

gene to all ORFs of the n reference organism using BLAST. The

best bit score of the query gene a and all ORFs of a reference

organism b is used to measure the presence of a in b, called ‘‘S-

value of gene a and organism b’’ and denoted as Sab. As non-

homologous genes have certain chance to form an alignment with

the bit score higher than 50 [22], S-value is trimmed to zero if it is

lower than 50. Considering that the bit score depends on the

sequence of a, S-value is further normalized as R-value by the

following equation:

Rab~
Sab

Saa

,

where Saa is the score obtained by aligning a to itself. The n-

dimensional vector of R-values obtained by BLASTing a gene to n

reference organisms represents the phylogenetic profile of that

gene. In addition the non-zero R-values of all genes of the query

organism to a reference organism are normalized by dividing the

average score. This procedure prevents the similarity between two

phylogenetic profiles of two genes being dominated by a few large

R-values obtained from phylogenetically close organisms.

Second, any similarity/distance function, such as the cosine

similarity or Euclidean distance [23], of vectors can be used to

define the similarity of PPs. Enault et al. have examined four widely

used distance functions and concluded that the inner product is a

good indicator [12]. In this study, the similarity between two genes

i and j is defined as follows:

Sim(i,j)~

Pn
k~1

Rik|Rjk

Pn
k~1

R2
ij

� �
|

Pn
k~1

R2
jk

� �� �1=2

.

Non-zero filter
The non-zero filter (marked by an asterisk in Figure 1) is

designed for rare genes that have homologues in only a few

reference organisms. Accordingly, the PP of a rare gene contains

only a few non-zero values. The similarity between two rare genes

highly depends on these non-zero values. This condition is similar

to using a small reference collection, thereby reduces the reliability

of the calculated similarity. An extreme example is that if two

genes present in only a reference organism, a high similarity of

their PPs may result from the similar phylogenetic characteristic or

the rareness. Thus, this study introduced a threshold, denoted as

nz, to solve this problem. If the number of non-zero elements of

either PP vector of two genes i and j are less than nz, their PP

similarity is regarded as unreliable based on the adopted reference

collection.

Figure 1.Workflow of the proposed two-stage framework of
functional linkage prediction. Given a query protein pair, the first
stage constructs and compares their phylogenetic profiles. A unique
feature of the first stage is a non-zero filter (marked by an asterisk),
which delivers no prediction (denoted as n/a) if either phylogenetic
profile contains too less non-zero elements. A pair with similar
phylogenetic profiles is submitted to the second stage for the final
prediction.
doi:10.1371/journal.pone.0075940.g001
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Feature encoding
The second stage of this work encodes a gene pair into a feature

vector and then invokes a classifier to perform the prediction. This

subsection describes the feature encoding while the next subsection

describes the classification algorithm.

The used feature set considers the conjoint triads observed in

the protein sequence [15]. A conjoint triad regards three

continuous residues as a unit. Each gene pair is then encoded by

concatenating the two feature vectors of the two individual genes.

However, considering all 203 conjoint triads requires a 16000-

dimensional feature vector to encode a gene pair, which is too

large for contemporary classifiers to analyze. Thus, Shen et al.

clustered the 20 amino acid types into seven groups based on the

dipole strength and side chain volumes to reduce the dimensions of

the feature vector. The seven amino acid groups are listed in Table

1.

The process of encoding a protein sequence is shown in Figure

2. First, the protein sequence is transformed into a sequence of

amino acid groups. Then the triads are scanned along the

sequence of amino acid groups. Each scanned triad is counted in

an occurrence vector, O. Each element oi in O represents the

number of the i-th type of triad observed in the sequence of amino

acids groups. Accordingly, each protein sequence is represented as

a 343-dimentional occurrence vector. For a protein pair, the two

vectors of both protein sequences are concatenated to form a 686-

dimensional feature vector.

Relaxed variable kernel density estimator
This study adopts the relaxed variable kernel density estimator

(RVKDE) to construct the abstract model of the encoded feature

vectors. The RVKDE has been shown achieved excellent

performance in predicting protein interactions [18]. It sacrificed

a slight prediction performance but largely reduces the execution

time by 1% compared to the well-known support vector machine

(SVM). One main distinctive feature of the RVKDE is that it

features an average time complexity of O(nlogn) for carrying out

the training process, where n is the number of instances in the

training set. The concept of the RVKDE is described as follows.

Let fs1,s2 . . . sng be a set of instances randomly and indepen-

dently taken from the distribution governed by fx in the m-

dimensional vector space. Then the probability density function of

fx at point v is estimated by the following equation:

f̂fX (v)~
1

jnj
X

si

1ffiffiffiffiffiffi
2p
p

:si

� �a

exp {
jjv{sijj2

2s2
i

 !
,

where

Table 1. Amino acid groups adopted in this study.

Group no. Amino acids

1 Ala, Gly, Val

2 Ile, Leu, Phe, Pro

3 Tyr, Met, Thr, Ser

4 His, Asn, Gln, Trp

5 Arg, Lys

6 Asp, Glu

7 Cys

This table follows the Shen et al.’s work [15].
doi:10.1371/journal.pone.0075940.t001

Figure 2. Schematic diagram of encoding a protein sequence into a feature vector. Step 1: Transform the amino acid sequence into the
group sequence. Step 2: Scan the group sequence and count the triads in the occurrence vector O.
doi:10.1371/journal.pone.0075940.g002
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1. si~b:R(si)
ffiffiffi
p
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ksz1)C(
a

2
z1)

a

r
2. R(si) is the maximum distance between si and its ks nearest

training samples;

3. C(:) is the Gamma function [24];

4. a, b and ks are parameters to be set either through cross

validation or by users.

When using the RVKDE to predict functional linkages, two

probability density functions are constructed to approximate the

distributions of functional related and unrelated protein pairs in

the training set. A query protein pair (represented as the feature

vector v) is predicted to the class that gives the maximum value

among the two likelihood functions defined as follows:

Figure 3.Performance of the proposed two-stage approach and the individual stages. The y-axis is the ratio of correct predictions
predicted in the top n predictions (x-axis).
doi:10.1371/journal.pone.0075940.g003

Figure 4.Comparison of the proposed two-stage approach to three PP-based techniques. The y-axis is the ratio of correct predictions
predicted in the top n predictions (x-axis).
doi:10.1371/journal.pone.0075940.g004

Predict Functional Linkages with a Hetero Method

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e75940



Lj(v)~
jSj j:f̂fj(v)P

h

jShj:f̂fh(v)
,

where jSj j is the number of class-j training instances, and f̂fj(v) is

the probability density function corresponding to class-j training

samples. In this study, j is either ‘‘related’’ or ‘‘unrelated’’. In order

to improve the efficiency, the RVKDE includes only kt nearest

training samples of v when computing f̂fj(v). The parameter kt is

set either through cross-validation or by users.

Results

This study conducted several experiments to evaluate the

proposed two-stage predictor of protein functional linkages. The

first subsection describes the data collection of these experiments.

The second subsection shows the performance of the two-stage

predictor as well as of individual stages. The performance was also

compared with three PP-based predictors in the third subsection.

Finally, the last subsection discusses the suitable nz thresholds of

the non-zero filter using different reference collections.

Data collection
This study retrieved 6,290 genes and 92 pathways of

Saccharomyces cerevisiae from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database released at May 1, 2012 [25]. A

protein whose gene sequence is longer than 150 nt and protein

sequence contains only proteinogenic amino acids was preserved.

Proteins that participate none of the collected 92 pathways were

excluded. The final collection of S. cerevisiae in this study consisted

of 1,466 proteins, which form 1,073,845 pairs. Two proteins that

participate at least a common pathway was defined as a positive

pair, otherwise a negative pair. There were 224,376 positive and

849,469 negative pairs in the S. cerevisia collection. In this study, S.

cerevisia was used as the query organism, namely the evaluation

organism, of which the prediction performance was used to

evaluate methods.

In addition to an evaluation organism, the first stage of the

proposed framework requires a reference collection to construct

PPs. This study used the 829 prokaryotes and 132 eukaryotes in

the KEGG database to compile a prokaryotic and a eukaryotic

Table 2. Area under curve (AUC) comparison at specific recalls.

Recall Sun et al. Date and Marcotte Enault et al. Two-stage First stage Second stage

0.001 0.0003 0.0006 0.0003 0.0007 0.0006 0.0006

0.002 0.0006 0.0012 0.0007 0.0014 0.0012 0.0011

0.003 0.0008 0.0017 0.0010 0.0020 0.0018 0.0017

0.004 0.0011 0.0022 0.0014 0.0027 0.0023 0.0022

0.005 0.0014 0.0025 0.0017 0.0034 0.0029 0.0027

The AUCs are calculated in the recall (x)-precision (y) plane. The best precision at a specific recall is highlighted in bold.
doi:10.1371/journal.pone.0075940.t002

Figure 5.Performance of using different non-zero (nz) thresholds. The y-axis is the ratio of correct predictions predicted in the top n
predictions (x-axis).
doi:10.1371/journal.pone.0075940.g005
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Figure 6.The relationships among the number of predictions (x-axis), the non-zero thresholds (y-axis) and the prediction
performance (color) with different reference collections of (a) 829 prokaryotes and (b) 132 eukaryotes. Since different applications
might require different number of predictions, the colors of a specific abscissa were normalized from red to green. Thus, one can quickly identify the
best non-zero threshold under a specific number of predictions.
doi:10.1371/journal.pone.0075940.g006

Figure 7.Performance using different reference collections. The y-axis is the ratio of correct predictions predicted in the top n predictions (x-
axis).
doi:10.1371/journal.pone.0075940.g007

Predict Functional Linkages with a Hetero Method

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e75940



reference collection, respectively. S. cerevisiae was not included in

the eukaryotic reference collection. In addition, a third reference

collection consisting of only the 220 prokaryotic organisms

released before 2006 was compiled for a fair comparison with

other approaches of PPI prediction. The newest strain was used if

multiple strains were available for an organism. In these reference

organisms, only the gene and protein sequences were required.

Since the functional linkage information of the reference

organisms was not used, these organisms were not training data

in machine learning. For a fair comparison, the reference

collection of 220 prokaryotes was used in the second and third

subsections. The other two reference collections were used in the

fourth subsection to analyze the effect of using different reference

collections.

Finally, the second stage of the proposed framework needs a

training organism of which the functional linkage information is

required. This study retrieved 4,493 proteins and 106 pathways of

Escherichia coli from the KEGG database. After applying the same

filters as the query organism, the training organism of this study

consisted of 1,355 E. coli proteins, which form 217,155 positive and

700,180 negative pairs.

All the parameters of the RVKDE (a, b, ks and kt) are decided

using five-fold cross validation on the training data. The best

parameter combination was selected by using a grid search

approach to maximize the F-measure on the E. coli data.

Contribution of each stage
This subsection reports the performance of the proposed two-

stage approach as well as the performance of the first and the

second stage individually. Conventional PP-based methods need to

determine a similarity threshold, where protein pairs with

similarity higher than the threshold are predicted as functional

related proteins. In this study, the PP-based first stage was a filter

to reduce the input data of the second stage. The threshold was

selected to preserve the most reliable data while making the second

stage computationally applicable. In this experiment, an extremely

loose threshold was used—only protein pairs with zero similarity

were filtered—since the resulting data of 2,163 protein pairs can

be processed by the RVKDE in a minute. The non-zero filter was

also set to an extremely loose threshold nz = 1, namely only PPs

with all zeros were filtered. As will be illustrated in the fourth

subsection, the non-zero filter, though it was very loose, did help

the prediction performance.

The preparation of using either stage as an individual predictor

was similar to the procedure of the two-stage framework except

that (i) the individual first stage used the PP similarity, instead of

the likelihood reported by the RVKDE, to rank protein pairs and

(ii) the input data of the individual second stage was selected

randomly from the pairs that passed the non-zero filter while

preserving the quantities of positive and negative samples equal to

those selected by the first stage. The two-stage, the individual first

stage and the individual second stage are respectively denoted as

Predboth, Pred1st and Pred2nd in the context. Since the preparation

of Pred2nd involved randomness, the prediction process of Pred2nd

was repeated ten times to alleviate bias. When regarding the

second stage as an individual predictor, an advantage of the

Pred2nd over the Predboth is that its coverage is not limited by the

Pred1st. The coverage of the Predboth and Pred1st was less than

0.5% (1,052/224376, where only 1,052 of the 2,163 protein pairs

are functional related). However, ML techniques are computa-

tionally infeasible for genome-wide prediction with contemporary

computers. A sampling procedure, usually random sampling in

practice, must be performed before applying ML techniques. Our

results show that the Pred1st is suitable for this procedure.

Figure 3 depicts the precision, as measured by positive

predictive value (PPV), of the 2000 highest ranked predictions

made by the Predboth (the blue line), Pred1st (the red line) and

Pred2nd (the purple line). The green line indicates the performance

of Pred2nd without the non-zero filter, which is used in the ‘‘Effect

of the non-zero filter’’ section. The Predboth achieved the best

performance, especially in the high-precision area. Compared to

the Pred1st, the Predboth had an advantage of precision by .10%

at the top 250 predictions and this advantage remained .5% until

the top 1,350 predictions. The diminishing advantage is reason-

able since the Predboth used the Pred1st as a filter to obtain a

smaller data of the 2,163 samples of the query organism. Their

performances were getting close as the number of predictions

approaching 2,163. Compared to the Pred2nd, the Predboth

outperformed by 13.8–2.3% from top 50 to 2000 predictions.

The Pred1st was better than the Pred2nd in this experiment. A

possible explanation is that the Pred1st utilized 220 reference

organisms while the Pred2nd utilized only E. coli. Another

observation is that the Pred2nd was more stable than the Pred1st.

In summary, the proposed two-stage yielded better performance

than either stage and was as stable as the Pred2nd. It means that

this study has combined two different types of approaches

successfully.

Comparison with existing methods
This subsection compares the proposed two-stage framework to

three PP-based methods [10,11,12]. The first PP-based method is

the binary PP—the occurrence pattern of a protein to an organism

is either 0 or 1—optimized for prokaryotes by Sun and colleagues

[11]. The second PP-based method is the quantized PP—the

occurrence pattern is discretized into one of 11 bins—proposed by

Date and Marcotte [10]. This method has been shown effective in

both E. coli and S. cerevisiae. The third PP-based method is the

continuous PP—the occurrence pattern is a real number—

proposed by Enault and colleagues [12]. The first stage of this

study was improved from the third PP-based method by

introducing the non-zero filter.

Figure 4 shows the performance of the proposed two-stage

approach and the compared methods. The preparation procedure

of the PP-based methods was identical to that for the Pred1st

described in the previous subsection. When comparing the Pred1st

(the green dashed line in Figure 4) with the three PP-based

methods, the Pred1st delivered comparable performance to Date

and Marcotte in the high-precision area and achieved the best

overall performance. The Pred1st was improved from the Enault et

al. method by introducing the non-zero filter. The notable

performance difference between the Pred1st and the Enault et al.

method reveals the importance of the proposed non-zero filter.

The effect of the non-zero filter will be elaborated in the next

subsection. In summary, the first stage of the proposed method

was better than all the compared methods. Furthermore, the

proposed method achieved the best performance without

depending on the number of predictions. It stably yielded .10%

precision advantage over the compared methods in the range of

top 300–1100 predictions.

Table 2 and Table 3 show the area under curves (AUCs) at

specific recalls (i.e., coverage) of the proposed two-stage approach

and the compared methods. The AUCs in Table 2 were calculated

in the recall (x)-precision (y) plane. This plane is slightly different to

Figure 4 of which the x-axis is number of predictions. The AUCs

in Table 2 were extremely low because of the adopted recalls,

which were chosen according to the ,0.5% coverage of the

Predboth and Pred1st. Table 3 shows the adjusted AUCs by

dividing the AUC that a perfect predictor can achieve at the

Predict Functional Linkages with a Hetero Method
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corresponding recall. Namely, Table 3 shows the AUC ratios of

methods to a perfect predictor. The results of the two tables

indicate that the Predboth achieved the best performance and the

Pred1st achieved the second best performance, which were

consistent with Figure 4.

Effect of the non-zero filter
Comparing the Pred1st and the Enault et al. method in Figure 4

reveals the effect of the non-zero filter to the first stage. The Pred1st

was improved from the Enault et al. method by introducing the

non-zero filter. Surprisingly, the Pred1st delivered the best

performance while the Enault et al. method delivered the worst

performance in the high-precision area in Figure 4. By manually

examining the generated PPs, we concluded that some PP pairs

had high similarity in the Enault et al. method only because of

having too many zeros. Thus, their similarities depended only on a

few reference organisms and were less reliable. This observation

explains the good performance of the Pred1st, whose non-zero

filter was designed to solve this problem. On the other hand,

comparing the ‘‘Second stage’’ (the purple line) and the ‘‘Second

stage without nz’’ (the green line) in Figure 3 reveals the effect of

the non-zero filter to the second stage. The results show that the

non-zero filter did not obviously contribute to the second stage.

The performance of the second stage with the non-zero filter in the

top 200 predictions was even worse than then that without the

non-zero filter. This is reasonable since that the non-zero filter

only helped to extracting protein pairs with reliable PPs. The

extracted pairs are not necessarily more functional related than

those with unreliable PPs.

However, to choose a proper threshold of nz raises a new

problem. This subsection further elaborates whether different nz

thresholds largely affect the prediction performance. Figure 5

shows the performance of the Pred1st using different nz thresholds.

Using a larger nz made fewer predictions (from 2,163 to 939

predictions in Figure 5) as less protein pairs passed the non-zero

filter. In theory, using a larger nz requires PPs having more non-

zero elements for similarity calculation and achieves a higher

precision. This tendency can be observed from nz = 0 to nz = 3.

However, increasing the nz threshold to four and five decreased

the prediction performance. The result that the best nz threshold is

small indicates that the PPs of many proteins in the query

organism did contain many zero elements. This could be resulted

from that (i) the reference collection was small or (ii) the reference

collection was dissimilar to the query organism. To further

elucidate this phenomenon, the prediction performances of using

different nz thresholds were also analyzed on two other reference

collections.

First, the larger prokaryotic reference collection of 829

prokaryotes was used. Figure 6(a) shows the best nz threshold

using this reference collection. The best nz threshold was larger

than that using the reference collection of 220 prokaryotes,

especially in the high-precision (namely, few-prediction) region.

This echoes that the size of the reference collection does affect the

suitable nz thresholds. Figure 6(a) also reveals how many non-zero

elements are required to represent the PP of a S. cerevisiae protein

based on the prokaryotic reference collection. If researchers focus

on the top 150 predictions (.80% precision, see the blue solid line

in Figure 7), the best nz threshold is close to five and any nz

thresholds in the range of 20–30 are fine; if researchers focus on

the top 150–400 predictions (75–80% precision), the best nz

threshold decreases from five to two and any nz thresholds in the

range of 1–10 are fine. As more predictions are desired, the nz

threshold should be set to near two and not exceeding five.

In this study, a reference collection of 132 eukaryotes was also

compiled. In comparison with the reference collection of 220

prokaryotes, the reference collection of 829 prokaryotes is a more

comprehensive collection while the reference collection of 132

eukaryotes is a collection more similar to the query organism.

Figure 6(b) shows the best nz threshold using the eukaryotic

reference collection. The results indicate that 5–15 non-zero

elements are required to represent the occurrence pattern of a S.

cerevisiae gene constructing from prokaryotes. The best nz threshold

is consistent without depending on the number of predictions. The

best nz threshold was more stable than that using the previous two

prokaryotic reference collections. Furthermore, with the eukary-

otic reference collection, the Pred1st achieved .90% and .80%

precision in the top 50 and 100 prediction, respectively. This

performance is better than that using the prokaryotic reference

collections. Hence, the prediction performance of the proposed

method was re-evaluated using the eukaryotic reference collection

(Figure 7).

The performance of the PP-based first stage using 132

eukaryotes (the red dashed line Figure 7) was superior over those

Table 3. Adjusted area under curve (AUC) comparison at specific recalls.

Recall Sun et al. Date and Marcotte Enault et al. Two-stage First stage Second stage

0.001 0.2818 0.6100 0.3177 0.6778 0.6040 0.5728

0.002 0.2838 0.6020 0.3258 0.6783 0.5986 0.5657

0.003 0.2826 0.5836 0.3358 0.6795 0.5911 0.5571

0.004 0.2784 0.5518 0.3416 0.6781 0.5843 0.5497

0.005 0.2749 0.5190 0.3430 0.6720 0.5761 0.5421

The adjusted AUCs are the AUCs in Table 2 divided by the AUC that a perfect predictor can achieve at the corresponding recall. The best precision at a specific recall is
highlighted in bold.
doi:10.1371/journal.pone.0075940.t003

Table 4. Number of pairs that passed the non-zero filter and
the first stage using different reference collections.

Reference collection (the best nz value) Number of pairs

220 prokaryotes (1) 2,163

829 prokaryotes (2) 1,651

132 eukaryotes (8) 263,779

961 organisms (7) 268,397

This table reveals the number of pairs with reliable and similar PPs using
different reference collections.
doi:10.1371/journal.pone.0075940.t004
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using prokaryotes (the green and blue dashed lines in Figure 7) as

the reference collection. On the other hand, the performance

using 829 prokaryotes (the blue dashed line) was not obviously

better than that using 220 prokaryotes (the green dashed line).

This suggests that PP-based methods rely more on the similarity to

the query organism, rather than the size, of the reference

collection. Combining 829 prokaryotes and 132 eukaryotes as

the reference collection (961 organisms) delivered slightly better

overall performance then that using 132 eukaryotes, except in the

very top predictions. This suggests that enlarging the reference

collection helps the prediction of protein pairs with relatively low

phylogenetic similarity. Finally, changing the reference collections

influences not only the prediction accuracy but also the number of

predictions (i.e. pairs that pass the non-zero filter and the first

stage) that the predictor can deliver. Table 4 shows the number of

pairs that passed the non-zero filter and the first stage, namely

number of pairs with reliable and similar PPs, obtained using

different reference collections.

The previous studies concluded that PP-based approaches are

not capable for eukaryotes [12,13]. Furthermore, they found that

using eukaryotes as the reference collection led to worse

performance than using prokaryotes due to the insufficiency of

completely sequenced eukaryotes. However, through introducing

the proposed non-zero filter, this study slightly refined the

conclusion of previous studies to that PP-based methods are

promising for eukaryotes based on currently available eukaryotic

genomes with an appropriate mechanism to verify the reliability of

PPs.

Conclusions

This study proposed a two-stage predictor of protein functional

linkages, which successfully integrates machine learning tech-

niques with phylogenetic profiling-based methods as well as

introduces a non-zero filter to enhance the reliability of

phylogenetic similarity. The experimental results show that the

proposed two-stage framework achieved good performance and

preserved the advantages of both categories of techniques: (i) high

performance in the top predictions of phylogenetic profiling and

(ii) stable performance of machine learning. In addition, the

proposed non-zero filter has been shown that phylogenetic

profiling-based methods are promising for eukaryotes based on

currently available eukaryotic genomes. The discovery of this

study helps analyzing protein functional linkages and encourages

developing hybrid framework in the future.
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