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Abstract

Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment
and prevention of Alzheimer’s disease (AD). In this study we investigated to which extent long-term consumption of two
specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old
AbPPswe-PS1dE9 mice. Starting from 2 months of age, male AbPP-PS1 mice and wild-type littermates were fed either a
control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the FortasynH Connect (FC) diet enriched with the DEU
diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic
resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better
understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our
results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets
differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific
nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet
in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair.
Both diets elevated interleukin-1b mRNA levels in AbPP-PS1 and wild-type mice. The FC diet additionally restored
neurogenesis in AbPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and
AbPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field
behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic
processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological
disorders.
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Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative

disorder that affects over 36 million people worldwide. The exact

cause of AD is still largely unknown despite over 100 years of

extensive research, and still no curative treatments are available.

Aging is recognized as the main risk factor for the late-onset

sporadic form of AD (SAD), while early-onset familial AD (FAD)

has been linked to autosomal dominant mutations in the gene for

the amyloid-b precursor protein (AbPP) and the genes for the

presenilin 1 (PS1) and presenilin 2 (PS2) proteins [1,2]. Both SAD

and FAD share specific neuropathologic features, including

neurofibrillary tangles, amyloid-b (Ab) plaques, neuronal loss,

white matter lesions and synaptic changes in vulnerable brain

regions such as the hippocampus and neocortex [3,4]. For

decades, the production and accumulation of the Ab peptide has

been proposed to be the primary trigger of the pathological

cascade leading to neurodegeneration and the development of AD.

Besides Ab, several other (risk) factors have been proposed to play

an important role in the development of AD.

Many large epidemiological studies have demonstrated that

vascular disorders, such as hypercholesterolemia and atheroscle-

rosis, are important risk factors for AD [5–7]. Furthermore,

cardiovascular disease risk factors, such as a sedentary lifestyle,

high saturated fatty acid (SFA) intake, diabetes, smoking and

obesity, are associated with a higher risk of developing AD and
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other dementias [8–11]. Many of these cardiovascular risk factors

are modifiable. Modifying cardiovascular risk factors, for example

by changing lifestyle, might ultimately also affect the risk of

developing AD.

Due to the limited and short-lasting efficacy of the current drugs

available [12], recent work has focused on the use of dietary

interventions for the treatment and prevention of AD. Omega-3

long-chain poly-unsaturated fatty acids (n3 lc-PUFAs), such as

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA),

have shown protective properties with regard to risk of age-related

cognitive decline and AD [13–16]. The mechanisms by which

these dietary nutrients exert protective properties against AD are

still under investigation, but several lines of evidence have shown

beneficial effects of n3 lc-PUFAs on the cardiovascular system

[17,18] and on neuronal membrane properties [19,20]. These

beneficial effects on the cardiovascular system have been explained

by the capacity to decrease blood pressure [21], lower plasma

triacylglycerols [22,23], prevent arrhythmias [24], improve vas-

cular reactivity [25,26], decrease atherosclerosis [27], and suppress

inflammatory processes [28]. Furthermore, high levels of n3 lc-

PUFAs replace omega-6 fatty acids (n6 FAs) and cholesterol from

cell membranes, leading to increased membrane fluidity, increased

number of receptors, enhanced receptor binding and affinity,

better ion channel functionality, and modulation of gene

expression of many enzyme proteins involved in signal transduc-

tion processes [29–31]. As a result, this will lead to improved

neurotransmission and signaling [32], which is important for

optimal cognitive functioning [33]. Other dietary components, like

B vitamins and antioxidants, have also been shown to protect the

brain from oxidative and inflammatory damage [34–36], and

synaptic and neuronal loss [37,38]. However, when tested in a

clinical setting supplementation with single nutrients is marginally

effective in improving disease status [39–42]. It has been suggested

that approaches with multiple nutritional components might be

more promising, since not individual nutrients but dietary patterns

were identified as a factor influencing the risk of developing AD

[43].

Combined administration of different nutrients has shown

increased effectiveness in altering specific parameters involved in

AD. Supplementation with DHA or uridine monophosphate

(UMP) improved water maze performance of environmentally

impoverished rats. However, the combined administration of

DHA and UMP was more effective in improving learning abilities

[44]. Furthermore, performance on the four-arm radial maze, T-

maze and Y-maze tests by normal adult gerbils was improved by

supplementation of DHA and choline, and was even further

enhanced by coadministering UMP [45]. In addition to enhancing

cognitive performance, combinations of nutrients were shown to

be more effective than single nutrients in counteracting neurode-

generative aspects of AD [38,46,47] and enhancing processes

involved in neuronal regeneration and function [48–50]. More-

over, clinical trials with combinations of nutrients have shown

beneficial effects on memory performance in patients with mild

AD [51–53].

In the current study, we wanted to investigate the extent to

which long-term consumption of two specific multi-nutrients diets

can modulate behavior, cognition, hippocampal metabolite levels,

neurogenesis and inflammation in 11-12-month-old AbPP-PS1

mice. Starting from 2 months of age, animals were fed either a

control diet, a multi-nutrient diet enriched with DHA, EPA and

UMP (DEU), or a multi-nutrient diet enriched with DHA, EPA,

UMP, phospholipids, choline, folic acid, vitamins B6, B12, C,E

and selenium (FortasynH Connect). We performed behavioral

testing, proton magnetic resonance spectroscopy (1H MRS),

immunohistochemistry, biochemical analyses and quantitative

real-time PCR to gain a better understanding of the potential

mechanisms by which these multi-nutrient diets may exert

protective properties against AD.

Animals, Materials and Methods

Ethics statement, animals and housing conditions
The experiments were performed according to Dutch federal

regulations for animal protection and were approved by the

Veterinary Authority of the Radboud University Nijmegen

Medical Centre (Permit Number: RU-DEC 2008-126h). All

efforts were made to minimize suffering of the animals.

The AbPPswe-PS1dE9 founders were originally obtained from

Johns Hopkins University, Baltimore, MD, USA (D. Borchelt and

J. Jankowsky, Dept. of Pathology) and a colony was established at

the Radboud University Nijmegen Medical Centre, The Nether-

lands. In short, mice were created by co-injection of chimeric

mouse/human AbPPswe (mouse AbPP695 harboring a human Ab
domain and mutations K595N and M596L linked to Swedish

familial AD pedigrees) and human PS1dE9 (deletion of exon 9)

vectors controlled by independent mouse prion protein promoter

elements. The two transfected genes co-integrate and co-segregate

as a single locus [54,55]. This line (line 85) was originally

maintained on a hybrid background by backcrossing to C3HeJ 6
C57BL6/J F1 mice (so-called pseudo F2 stage). For the present

work, the breeder mice were backcrossed to C57BL6/J for 13

generations to obtain mice for the current study. Throughout the

experiment, animals were housed in groups of 2–6 mice per cage

in a controlled environment, homogenously illuminated by normal

fluorescent room light at 60 lux, with room temperature at 21uC,

and an artificial 12:12 h light:dark cycle (lights on at 7 a.m.). Food

and water were available ad libitum.

Male transgenic AbPP-PS1 mice and their wild-type littermates

were fed either 1] a standard Control diet (CO diet), 2] a multi-

nutrient diet enriched with DHA, EPA and UMP (DEU diet), or

3] a multi-nutrient diet, called FortasynH Connect (FC diet),

containing precursors and cofactors in membrane synthesis and

maintenance via the Kennedy cycle [56], such as DHA, EPA,

UMP, phospholipids, choline, vitamins B6, B9, B12, C and E, folic

acid and selenium. The diets differed in composition with regard

to the fat blends used, as well as a number of supplemented

nutrients as indicated in Table 1. Diets were isocaloric and were

manufactured by Research Diet Services (Wijk bij Duurstede, The

Netherlands). In order to minimize oxidation of the n3 lc-PUFAs,

the experimental diets were stored at 220uC in 2-day supply

aliquots. Feeding the diets started when the mice reached the age

of 2 months and was maintained for the remainder of the

experiment. Animals underwent behavioral testing at 11 months of

age and subsequently MRI measurements at 12 months of age

(Figure 1). In total, 85 mice were used in the current study. Table 2

describes the number of mice used in each experimental group.

The body weight of the mice was determined one week before the

start of the behavioral tests at 11 months of age, and again on the

day of the MRI measurements at 12 months of age.

Behavioral analyses
Behavioral testing was performed in the following order

(Figure 1): First open field, followed by the Morris water maze

(MWM), and finally the reversal MWM (rMWM). All testing

sessions were performed during the light phase (between 9 a.m.

and 5 p.m.) and were recorded for computer-assisted analysis using

Ethovision XT 7.0 software (Noldus Information Technology

B.V., Wageningen, The Netherlands). All behavioral testing was

Diet Effect on AD Mice Brain Structure & Function
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performed in the same room, homogenously illuminated by

normal fluorescent room light at 60 lux.

Open field. To analyze explorative and anxiety-related

behavior, mice were placed individually in the center of a square

open field (50650640 cm) with white Plexiglas walls. Animals

were observed for 30 minutes, and the durations (seconds) of

walking, wall leaning, rearing, sitting and grooming were scored

and analyzed. These open field parameters were defined as

described previously [57,58]. In addition, total walking distance,

mean velocity, and the time spent in the corners and in the center

of the open field were obtained from the recorded sessions. The

center of the open field was defined as a square measuring

20620 cm, and the corners of the open field were defined as the

sum of all four 10610 cm squared corners.

Morris water maze (MWM). To investigate spatial learning

abilities, mice were tested in the Morris water maze (MWM). In

short, mice were placed in a pool (104 cm diameter) at different

starting positions and were trained to find a submerged platform

by using distant visual cues in the room. The water was made

opaque by the addition of milk powder, and was kept at a constant

temperature of 21-22uC. The maze was surrounded by white

curtains at a distance of 0.5 meter, which were marked by four

spatial cues varying in shape, size and color. The 8 cm diameter

round platform was submerged 1 cm below the water surface and

was placed in the middle of the northeast (NE) quadrant at a

distance of approximately 26 cm from the wall. The researcher

was always present at the same location in the room during all

trials (close to the southwest quadrant.

Acquisition (spatial learning): Mice were trained to find the

location of the submerged escape platform in 4 acquisition trials

per day (maximal swimming time 120 s; 30 s on the platform;

inter-trial interval 60 min) during 4 consecutive days. The latency

time (s) to find the hidden platform was scored. Starting positions

during the 4 trails/day were: south (S), north (N), east (E), west

(W). After each trial, mice were placed back in their home cage,

and a paper towel was available inside the cage for additional

drying.

Probe (spatial memory): All mice performed a single probe trial

60 min after the last trial on day 4. The platform was removed

from the swimming pool and mice were allowed to swim for 120 s.

The time spent swimming and searching in the NE quadrant

(former platform quadrant), the total swimming distance, the mean

velocity and the time spent swimming at the exact former platform

location were measured.

Reverse Morris water maze (rMWM). Four days after the

standard MWM probe trial, a simplified reversal MWM [58,59]

was performed in which the platform was relocated to a new

position in the southwest (SW) quadrant of the pool. In this

procedure, memory retrieval needs to be selective for the most

recently learned location, introducing an episodic like component

in the spatial memory task [60]. Acquisition and probe sessions

were performed similarly to the standard MWM sessions, except

that starting positions were E, W, S, and N, the target quadrant

was SW, and training lasted only 2 days (4 trials/day).

Magnetic resonance imaging (MRI)
MRI measurements were performed on a 11.7T BioSpec

Avance III small animal MR system (Bruker Biospin, Ettlingen,

Germany) equipped with an actively shielded gradient set of

600 mT/m. A circular polarized volume resonator was used for

signal transmission and an actively decoupled mouse brain

quadrature surface coil was used for signal detection (Bruker

BioSpin). During the experiments, mice were anesthetized with

3.5% isoflurane (Nicholas Primal (I) limited, London, United

Kingdom) for induction and 2% isoflurane for maintenance in a

mixture of N2O and oxygen (1:2) through a nose cone. The

anesthetic concentration was adjusted during the experiment in

order to maintain the breathing frequency at 70–100 per minute.

Respiration of the animal was monitored using a pneumatic

cushion respiratory monitoring system (Small Animal Instruments

Inc., NY, USA). Body temperature was measured using a rectal

thermometer and maintained at 37uC using a heated air flow

device. Mice were placed in a stereotactic holder in order to

immobilize the head and prevent unwanted movement during the

Figure 1. Time line of experimental design. At 2 months of age, AbPP-PS1 mice and their wild-type littermates were put on either a control diet
(CO), a DHA, EPA and UMP diet (DEU) or a FortasynH Connect diet (FC) for the remainder of the experiment. Behavioral testing was performed at 11
months of age. Animals were weight one week before starting the behavioral testing battery. In the first week of behavioral testing, animals were
exposed to the open field once for 30 minutes. In the second week, animals were trained in the Morris water maze (MWM) for 4 days. In the third
week, animals were trained in the reverse Morris water maze (rMWM) for 2 days. MR imaging was performed at 12 months of age. Mice were weighed
before MR scanning and sacrificed immediately after MR imaging.
doi:10.1371/journal.pone.0075393.g001
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scanning. Gradient echo (GE) images in the axial, sagittal and

coronal orientation were acquired to visualize the anatomy of the

mouse brain structures. Imaging parameters were: echo time

(TE) = 5 ms, repetition time (TR) = 630 ms, flip angle = 12 deg,

field of view (FOV) = 40640 mm, matrix size = 5126512, slice

thickness = 0.345 mm.

Magnetic resonance spectroscopy (MRS). Metabolite

concentrations in the hippocampus were determined using 1H

Table 1. Compositions of the experimental diets used, based on AIN-93M [172] with minor revisions.

Dietary groups

Source Control (CO) DHA, EPA, UMP (DEU) FortasynH Connect (FC)

g/100 g of diet g/100 g of diet g/100 g of diet

Corn Starch 35.57 34.57 33.12

Casein (.85% protein) 14.00 14.00 14.00

Corn dextrin 15.50 15.50 15.50

Sucrose 10.00 10.00 10.00

Dextrose 10.00 10.00 10.00

Fibers 5.00 5.00 5.00

Mineral mix (AIN-93M-MX) 3.50 3.50 3.50

Vitamin mix (AIN-93-VX) 1.00 1.00 1.00

Fats

Soy oil 1.900 – –

Coconut oil 0.900 0.100 0.100

Corn oil 2.200 1.870 1.870

Fish oil – 3.030 3.030

Additions

L-cysteine 0.180 0.180 0.180

Choline bitartrate (41.1% choline) 0.250 0.250 0.250

Tert-butylhydroquinone 0.0008 0.0008 0.0008

Pyridoxine-HCl – – 0.00328

Folic acid (90%) – – 0.00067

Cyanocobalamin (0.1% in mannitol) – – 0.00350

Ascorbic acid (100% pure) – – 0.160

dl-a-tocopheryl acetate (500 IU/g) – – 0.4650

UMP disodium (24% H2O) – 1.0 1.0

Choline chloride (74.576%) – – 0.402

Soy lecithin – – 0.402

Sodium selenite (46% min) – – 0.00023

Energy (kcal/100 g chow) 376.9 372.9 367.1

All diets were isoenergetic, contained 5% fat and standard vitamin and mineral premix, providing recommended daily amounts of these nutrients.
DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; UMP = uridine monophosphate.
doi:10.1371/journal.pone.0075393.t001

Table 2. Overview of the number of mice used in each experimental group.

Genotype Diet Total OF (r)MWM MRS IHC BCH

Wild-type CO 20 20 20 13–15 15 9

DEU 17 17 17 13–15 8 8

FC 16 16 16 14–15 16 7

AbPP-PS1 CO 14 14 13 10 5–7 5

DEU 8 8 8 7 4–5 3

FC 10 10 10 7 4–6 4

CO = Control diet; DEU = DHA, EPA, UMP diet; FC = FortasynH Connect diet; OF = open field; (r)MWM = (reverse) Morris water maze; MRS = magnetic resonance
spectroscopy; IHC = immunohistochemistry; BCH = biochemistry.
doi:10.1371/journal.pone.0075393.t002
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MRS with single voxel technique. The spectroscopic volume of

interest (VOI) of 1.061.062.0 mm was positioned unilaterally in

the right hippocampus based on the acquired anatomical images.

Water-suppressed 1H-MRS spectra were acquired with a point-

resolved spectroscopy sequence (PRESS) with a short echo time

with imaging parameters: TE = 10.905 ms, TR = 2500 ms,

T1 = 6.31 ms, T2 = 4.59 ms, and 800 signal averages. Total

acquisition time for 1H MRS was 27 min per animal.

Quantification of the metabolite concentration was performed

using a the Linear Combination (LC) model software package

(LCModelTM, S. Provencher, Oakville, Canada). The quantifica-

tion algorithm of LCModelTMapplies linear combinations of

model spectra to calculate the best fit of the experimental

spectrum. The model spectra (dataset of prior knowledge) were

calibrated to match the magnetic field strength, sequence type and

sequence parameters used for data acquisition.

The criteria to select reliable metabolite tissue concentrations

were based on the Cramér-Rao lower bounds (CRLB), which are

estimates of the S.D. of the fit for each metabolite [61] as

determined by LCModelTM. Only CRLB#20% were included in

the analysis. Concentrations with CRLB.20% were classified as

not detected. Six metabolites fulfilled the criteria: choline +
glycerophosphocholine + phosphocholine (tCho; choline-contain-

ing compounds), creatine + phosphocreatine (tCre), glutamine +
glutamate (Glx), myo-Inositol + glycine (mI+Gly), N-acetylaspartate

+ N-acetylaspartylglutamate (tNAA) and taurine (Tau). Although

the exact functions of these metabolites are not fully known, tNAA

is considered to be a marker of neuronal viability, tCre is involved

in energy metabolism, mI is a putative marker for microglia and

astrogliosis, and tCho is required for the synthesis of the

neurotransmitter acetylcholine, and of phosphatidylcholine, a

major constituent of membranes, and is therefore associated with

membrane turnover [62].

Tissue sampling
Directly following the MR measurements at 12 months of age,

half of the number of mice was sacrificed by cervical dislocation to

collect blood samples and brain tissue for biochemical analyses,

and the other half was sacrificed by transcardial perfusion fixation

with 4% paraformaldehyde (4% paraformaldehyde in 0.1 M

phosphate buffered saline (PBS; pH = 7.3) to collect brains for

immunohistochemical stainings. Blood samples were collected via

eye extraction, and subsequently processed to obtain blood serum.

Blood serum was stored at -80uC, before further biochemical

processing. Non-perfused brains were snap frozen in liquid

nitrogen and then stored at 280uC, before further biochemical

processing. Perfused brains were collected and postfixed for 15 h

at 4uC in 4% paraformaldehyde fixative and subsequently stored

in 0.1 M PBS with 0.01% sodium azide at 4uC before further

immunohistochemical processing.

Immunohistochemistry
Before cutting, the brain tissue was cryoprotected by immersion

in 30% sucrose in 0.1 M PBS. Six series of 40 mm coronal sections

were cut through the brain using a sliding microtome (Microm

HM 440 E, Walldorf, Germany) equipped with an object table for

freeze sectioning at 260uC.

Immunohistochemistry was performed using standard free-

floating labeling procedures, and was carried out on a shaker table

at room temperature.

Doublecortin staining. Immature neurons were visualized

with anti-doublecortin antibody (polyclonal goat anti-doublecortin

(C18): sc-8066, Santa Cruz Biotechnology, Inc., Santa Cruz, CA,

USA) using one complete subseries of brain sections per animal

with 240 mm distance between the sections. Doublecortin is a

microtubule-associated protein that is exclusively found in somata

and processes of migrating and differentiating neurons [63,64]. In

short, after blocking the brain sections against endogenous

peroxidase with 0.3% H2O2 in 0.1 M PBS for 30 minutes, the

sections were pre-incubated with PBS-BT (0.1 M PBS with 0.1%

Bovine Serum Albumin and 0.3% Triton-X-100) for 30 minutes.

Brain sections were incubated overnight with polyclonal goat anti-

doublecortin (1:3000 diluted in PBS-BT) as primary antibody.

After incubating for 90 minutes with donkey anti-goat biotin

secondary antibody (1:1500 diluted in PBS-BT, Jackson Immu-

noResearch, West Grove, PA, USA), sections were transferred to a

solution containing Vector ABC-elite (1:800 in PBS-BT; Vector

Laboratories, Burlingame, CA, USA) for another 90 minutes.

Visualization of doublecortin-positive cells was achieved by

incubation with 0.02% 3-39diaminobenzidin tetra hydrochloride

with 0.3% ammonium nickel sulphate as an intensifier in 0.05 M

Tris buffer (DAB-Ni solution, pH = 7.6) with 0.006% H2O2 for

10 min. After washing with 0.1 M PBS, all stained sections were

mounted on gelatin-coated slides (0.5% gelatin and 0.05%

chrome-alum), dried overnight in a stove at 37uC, dehydrated in

alcohol series, cleared with xylol and mounted in Entellan.

Quantification. Quantification of the doublecortin-positive

newly formed immature neurons in the subgranular zone of the

hippocampus was performed using a Zeiss Axioskop microscope

equipped with hardware and software from Microbrightfield

(Williston, VT, USA). Appropriate sections were digitized using a

computer-assisted analysis system (Stereo Investigator). Three

sections per animals were used at 2.70, 22.18 and 22.46

posterior to bregma, based on the mouse brain atlas of Franklin

and Paxinos [65]. Contours were drawn along the borders of the

hippocampus at 2.56 magnification and doublecortin-positive

(Dcx+) cells were counted at 206 magnification. All quantifica-

tions were performed by two independent raters who were blind to

the experiment groups. Measurements were averaged to obtain a

single value per animal.

Biochemical analyses
Serum and brain sterol analysis. Serum cholesterol levels

and the cholesterol precursor lathosterol and its oxidative brain

specific metabolites, 24S-hydroxycholesterol and 27-hydroxycho-

lesterol, were measured by gas-chromatography-mass-spectrome-

try-selected ionmonitoring (GC-MS-SIM) as described in detail

previously [66–68]. Brains were homogenized and sterols were

extracted overnight by chloroform/methanol trimethylsilylated

prior to GC-MS-SIM analysis [66,67].

Brain fatty acid analysis. Fatty acid analyses were per-

formed with a part of the brain homogenate (described above).

Total lipid was extracted from brain homogenates by methanol

and chloroform. Subsequently, samples were centrifuged at

3000 rpm for 10 min and the lower phase (chloroform and lipids)

was removed. Chloroform was added to the upper phase, samples

were centrifuged again at 3000 rpm for 10 min and the lower

phase was combined with the first one. The chloroform fractions

were dried in a SpeedVacH and 2 ml methanol and 40 ml

concentrated sulfuric acid were added to the dried extract. The

samples were heated at 100uC for 60 min, and 2 ml hexane and

0.5 ml 2.5 M sodium hydroxide solution were added. After

vortexing and centrifuging the samples for 5 min at 3000 rpm,

the upper layer was collected and evaporated in a SpeedVacH.

The fatty acids (FAs) were dissolved in 125 ml iso-octane and

analyzed on a GC-FID with a CP-SIL88 column (50 m60.25 mm

id. 0.22 film thickness). The n6/n3 ratio was calculated as the sum

of analyzed n6 FAs divided by the sum of n3 FA.
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Quantitative real-time PCR (qRT-PCR). A part of the

frozen brain tissue, including both hippocampi, were collected in

1 ml cold Trizol (Invitrogen, Paisley, UK) and homogenized by

sonification. After chloroform extraction and isopropyl alcohol

precipitation, RNA was dissolved in 25 ml RNase-free DEPC-

treated water. The RNA concentrations were measured with a

Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific Inc,

Wilmington, DE, USA). cDNA synthesis was performed using

1 mg RNA dissolved in 10 ml RNase-free DEPC-treated water

containing 2 ml 56 iScript reaction mix and 0.5 ml iScript reverse

transcriptase (iScript cDNA synthesis kit, Bio-Rad Laboratories

B.V., Veenendaal, The Netherlands) at 25uC for 5 min, at 42uC
for 30 min and at 85uC for 5 min (Eppendorf Thermoblock

Mastercycler 5330).

Quantitative real-time PCR (qRT-PCR) was performed in a

total volume of 10 ml buffer solution containing 2 ml of template

cDNA, 5 ml 26 SYBR Green Master mix (Applied Biosystems,

Foster City, CA, USA), 2.92 ml RNase-free DEPC-treated water

and 0.04 ml of each primer (100 mM). Primers for cluster of

differentiation 36 (CD36), glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), interleukin-1b (IL-1b), interleukin-6 (IL-6),

monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis

factor-a (TNF-a) were designed using Vector Primer Express

software (Applied Biosystems). Primer pairs were as follows:

CD36: 59- ATGGGCTGTGATCGGAACTG-39 and 59-

GTCTTCCCAATAAGCATGTCTCC-39; GAPDH: 59-

AGGTCGGTGTGAACGGATTTG-39 and 59-TGTAGAC-

CATGTAGTTGAGGTCA-39;

IL-1b: 59-GCAACTGTTCCTGAACTCAACT-39 and 59-

ATCTTTTGGGGTCCGTCAACT-39; IL-6: 59-CAAGTCG-

GAGGCTTAATTACACATG-39 and 59-ATTGCCATTGCA-

CAACTCTTTTCT-39; MCP-1: 59-CCCAATGAGTAGGCTG-

GAGA-39 and 59-TCTGGACCCATTCCTTCTTG-39; and

TNF-a: 59-CAGACCCTCACACTCAGATCATCT-39 and 59-

CCTCCACTTGGTCCTTTGCTA-39. The optimal tempera-

ture cycling protocol was determined to be 95uC for 10 min

followed by 40 reaction cycles at 90uC for 15 s and at 60uC for

1 min, using a StepOnePlus real time PCR system (Applied

Biosystems, Foster City, CA, USA). The absolute quantities were

determined using standard curves, and the validity of the results

was checked by running appropriate negative controls. The

quantity of cDNA was calculated for each sample with StepOne

Software version 2.2.2. Relative gene expression ratios, calculated

according to the comparative CT method (also referred to as the

22DCT method) [69], were used to evaluate differences. Relative

CT (DCT) values were calculated by subtracting the CT value of

the housekeeping gene GADPH from the CT values of CD36, IL-

1b, IL-6, MCP-1 or TNF-a. For each primer, two independent

qRT-PCR runs were performed, and the means of their relative

values were used for statistical analysis.

Statistical analysis
Data are expressed as mean 6 SEM and were analyzed with

SPSS for windows 18.0 software (SPSS Inc. Chicago, IL, USA).

The repeated measures ANOVA was used for the acquisition

phase of the MWM and rMWM (with the repeated measure: trial

block), followed by a Bonferroni post hoc to analyze possible

interactions between trial block, genotype and/or diet. If

interactions between trial block, genotype and/or diet (between-

group-factors) were present, the data were split for the concerning

factor and thereafter analyzed again with the repeated measures

ANOVA. Multivariate ANOVA’s (MANOVAs) were conducted

with between group factors: genotype and diet, to analyze possible

differences between wild-type and AbPP-PS1 mice and the

different diet groups in the open field test, the probe trials of the

MWM and rMWM, the body weight and brain weight,

hippocampal metabolite concentrations, the amount of immature

neurons, and the biochemical analyses. If interactions between

genotype and diet (between-group-factors) were present, the data

were split for the concerning factor and thereafter analyzed again

with the MANOVA. If no interactions between the genotype and

diet were present and overall analysis revealed a significant effect

of diet, the separate diet groups were analyzed post hoc by using

Tukey’s HSD test. For clarity reasons, F-values are not displayed.

Furthermore, only between-group interactions that reached

statistical significance are specified in detail. Statistical significance

was set at p,0.05.

Results

Body and brain weight
All mice were weighed one week before starting the behavioral

test battery and again on the day of the MR measurements (1–2

months later). Since body weights within the groups did not

change significantly between those two time points (ANOVA,

p.0.50), the mean weight was used for further statistical analyses.

Body weight was affected by genotype (ANOVA, p,0.001), but

not by dietary intake (ANOVA, p = 0.913). No significant

genotype6diet interaction was observed (ANOVA, p = 0.164).

Overall mean body weight was 39.660.7 g in the AbPP-PS1 mice

and 35.260.6 g in the wild-type mice. Absolute brain weight was

not affected by genotype (ANOVA, p = 0.733) or by diet

(ANOVA, p = 0.543). No significant genotype6diet interaction

was observed (ANOVA, p = 0.078). Overall mean brain weight

was 0.5360.00 g in AbPP-PS1 animals and 0.5360.01 g in wild-

type mice.

Behavioral analyses
Open field. In the open field, locomotor activity and active

exploration parameters (walking, sitting, wall leaning, rearing) and

grooming were scored for 30 minutes. In addition, total walking

distance, mean walking velocity, and the time spent in the corners

respectively the center of the open field were obtained from the

recorded sessions.

AbPP-PS1 mice were more active in the open field than wild-

type mice, independent of diet (genotype6diet interaction, walking

p = 0.777; sitting p = 0.857; distance moved p = 0.926; velocity

p = 0.927). AbPP-PS1 mice walked more (Figure 2A; ANOVA

p = 0.015) and sat less (Figure 2B; ANOVA p,0.001) than wild-

type mice. This resulted in an increased distance moved (Figure 2F;

ANOVA p,0.001) and higher mean walking speed in AbPP-PS1

mice compared to wild-type animals (ANOVA p,0.001; wild-type

4.260.1 cm/s, AbPP-PS1 5.160.3 cm/s). Dietary intake affected

the time spent sitting (ANOVA, p = 0.015), the distance moved

(ANOVA, p = 0.006) and the mean velocity (ANOVA, p = 0.006).

Dietary intervention with the FC diet had no effect on these

parameters (post hoc, p.0.05). However, animals fed the DEU

diet sat less than animals fed the CO diet (Figure 2B; post hoc

p = 0.025), but did not differ from the mice fed the FC diet (post

hoc, p = 0.322). Furthermore, mice fed the DEU diet also traveled

a greater distance (Figure 2F; post hoc p = 0.009) with a higher

mean velocity (post hoc, p = 0.009; CO diet 4.260.2 cm/s, DEU

diet 5.160.3 cm/s, FC diet 4.560.2 cm/s) than animals fed the

CO diet, but again did not differ from the animals fed the FC diet

(post hoc, p = 0.098). Overall analysis revealed a tendency for a

diet effect on the time spent walking (p = 0.053), but since this did

not reach statistical significance, no additional post hoc tests were

performed to compare the different diet groups.
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Moreover, AbPP-PS1 mice displayed less explorative behavior

away from the walls of the open field, e.g. rearing (Figure 2C;

ANOVA p = 0.030) compared to wild-type animals, but more

explorative behavior against the walls of the open field, e.g. wall

leaning (Figure 2D; ANOVA p,0.001), independent of diet

(genotype6diet interaction, rearing p = 0.468; wall leaning

p = 0.513). Rearing behavior was not affected by dietary interven-

tion with the DEU and FC diets (ANOVA, p = 0.355). Wall

leaning behavior however was affected by diet (ANOVA,

p = 0.001). Animals fed the DEU diet leaned more against the

walls of the open field than mice fed the FC diet (Figure 2D; post

hoc p = 0.007), and also slightly more than animals fed the CO diet

(post hoc, p = 0.070), although this did not reach statistical

significance. No significant differences between wild-type and

AbPP-PS1 mice (Figure 2E; ANOVA p = 0.744) nor between the

dietary groups (ANOVA, p = 0.620) were observed for grooming

behavior (genotype6diet interaction, p = 0.172).

Furthermore, AbPP-PS1 mice spent slightly less time in the

center of the open field than wild-type mice (Figure 2G; ANOVA

p = 0.064), although it did not reach statistical significance. No

differences were observed between the dietary groups in the time

spent in the center of the open field (ANOVA, p = 0.116). No

genotype6diet interaction was observed for the time spent in the

center of the open field (p = 0.356). AbPP-PS1 mice did however

spent significantly more time in the corners of the open field

compared to wild-type animals (Figure 2H; ANOVA p = 0.001),

independent of diet (genotype6diet interaction, p = 0.085). Dietary

intake affected the time spent in the corners of the open field

(ANOVA, p = 0.007), such that animals fed the FC diet spent

significantly less time in the corners of the open field than mice fed

the CO diet (post hoc, p = 0.038) and the DEU diet (post hoc,

p = 0.033).

Altogether these data show increased activity, but decreased

explorative behavior in AbPP-PS1 mice. Furthermore, AbPP-PS1

mice also display increased anxiety-related behavior, as indicated

by the increased time spent wall leaning and increased time spent

in the corners of the open field [58,70]. Dietary intervention with

the DEU diet increased general locomotor activity and anxiety-

related exploration (e.g. wall leaning) in wild-type and AbPP-PS1

mice. Our results might suggest that the FC diet could have an

anxiolytic effect, since it decreased the time spent in the corners of

the open field in both wild-type and AbPP-PS1 mice.

Morris water maze (MWM). The Morris water maze is

designed to test spatial learning by training the mice to find a

hidden platform (acquisition phase) in a pool. Spatial memory is

tested in a trial in which the platform is removed from the maze

(probe trial) following the last trial of the acquisition phase.

Both AbPP-PS1 and wild-type mice showed a decrease in

escape latency during training (Figure 3A; ANOVA p,0.001). No

significant time6genotype, time6diet or time6genotype6diet

interactions were observed (p.0.05), indicating that all animals

learned the position of the hidden platform equally well. However,

escape latencies were significantly higher in AbPP-PS1 mice

compared to wild-type animals (Figure 3A; ANOVA p,0.001),

independent of dietary intake (genotype6diet interaction,

p = 0.097), indicating that spatial learning was affected by

genotype. Escape latencies did not differ between the animals

fed the CO diet, DEU diet or FC diet (Figure 3B; ANOVA

p = 0.203). During acquisition training, swim speed decreased in

both AbPP-PS1 and wild-type mice over time (data not shown;

ANOVA p,0.001). No significant time6genotype, time6diet or

time6genotype6diet interactions were observed (p.0.05). How-

ever, the average swim speed was significantly higher in AbPP-PS1

mice compared to wild-type animals during training (ANOVA

p = 0.001; wild-type 10.560.3 cm/s; AbPP-PS1 12.560.5 cm/s),

independent of dietary intake (genotype6diet interaction

p = 0.652). The mean swim speed did not differ (ANOVA,

p = 0.341) between the animals fed the CO diet (11.560.4 cm/

s), DEU diet (10.660.4 cm/s) or FC diet (11.560.6 cm/s).

During the probe trial, AbPP-PS1 mice spent less time in the

target NE quadrant (Figure 3C, ANOVA p = 0.033) than wild-type

mice, independent of diet (genotype6diet interaction, p = 0.688),

indicating impaired spatial memory. Furthermore, AbPP-PS1

mice also spent less time in the exact area where the platform had

been located (Figure 3D; ANOVA p = 0.010) and had a higher

latency to reach the former platform location (Figure 3E; ANOVA

p = 0.003) than wild-type animals, independent of diet, again

reflecting impaired spatial memory. Dietary intervention with

DEU and FC had no effect on these parameters of spatial memory

(ANOVA, p.0.05). Overall statistical analysis indicated significant

genotype6diet interactions for the swim distance (p = 0.004) and

mean velocity (p = 0.004).

Dietary intake affected the swim distance (ANOVA, p = 0.014)

and mean velocity (ANOVA, p = 0.015) in AbPP-PS1 mice, such

that AbPP-PS1 mice on the FC diet displayed a shorter swim

distance (Figure 3F; post hoc p = 0.013) and lower mean swim

velocity than the AbPP-PS1 animals on CO diet (post hoc,

p = 0.015; AbPP-PS1-CO diet 17.360.4 cm/s, AbPP-PS1-FC diet

13.861.2 cm/s), and compared to the wild-type animals on FC

diet (ANOVA, p = 0.009; wild-type-FC diet 16.960.4 cm/s), but

not compared to the AbPP-PS1 animals on DEU diet (post hoc,

p = 0.079; AbPP-PS1-DEU diet 16.860.9 cm/s).

Reverse Morris water maze (rMWM). In the reverse

Morris water maze (rMWM), mice have to learn to find a novel

position for the hidden platform. This task is considered to be a

test for new learning abilities, in which a previous successful

strategy must be inhibited and a new strategy should be developed.

Both AbPP-PS1 and wild-type mice showed a decrease in

escape latency during training (Figure 4A; ANOVA p = 0.016). No

significant time6genotype, time6diet or time6genotype6diet

interactions were observed (p.0.05), indicating that all animals

learned the new platform position equally well. Escape latencies

did not differ between AbPP-PS1 and wild-type mice (Figure 4A;

ANOVA p = 0.160), nor did they differ between the animals on

CO diet, DEU diet and FC diet (Figure 4B; ANOVA p = 0.274).

No genotype6diet interaction was observed for the escape

latencies (p = 0.922).

During acquisition training with a new platform location, swim

speed decreased in both AbPP-PS1 and wild-type mice over time

(data not shown; ANOVA p,0.001). No significant time6
genotype, time6diet or time6genotype6diet interactions were

observed (p.0.05). However, the average swim speed was

significantly higher in AbPP-PS1 mice compared to wild-type

animals during revere MWM training (ANOVA p = 0.008; wild-

type 5.760.2 cm/s; AbPP-PS1 6.860.4 cm/s), independent of

dietary intake (genotype6diet interaction p = 0.827). The mean

swim speed did not differ (ANOVA, p = 0.511) between the

animals fed the CO diet (5.960.3 cm/s), DEU diet (6.560.4 cm/

s) or FC diet (6.060.4 cm/s).

During the probe trail, AbPP-PS1 mice spent less time in the

target SW quadrant (Figure 4C; ANOVA p = 0.006) than wild-

type mice, independent of diet (genotype6diet interaction,

p = 0.120), although all animals performed well above 25% chance

level, indicating good memorization of the platform quadrant.

However, AbPP-PS1 mice also spent less time in the exact area

where the platform had been located after relocation (Figure 4D;

ANOVA p,0.001), indicating impaired spatial memory. Further-

more, they displayed a slightly higher latency to reach the former
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platform location than wild-type animals (Figure 4E; ANOVA

p = 0.054), although this did not reach statistical significance.

Dietary intervention with DEU and FC had no effect on these

parameters of spatial memory (ANOVA, p.0.05). No differences

were observed between AbPP-PS1 and wild-type animals in the

swim distance (Figure 4F; ANOVA p = 0.909) or in the mean swim

velocity (ANOVA p = 0.918; wild-type 16.360.2 cm/s, AbPP-PS1

16.260.4 cm/s). Overall statistical analysis indicated a significant

Figure 2. Open field behavior of 11-month-old AbPP-PS1 and wild-type mice on control and specific multi-nutrient diets. Open field
parameters were measured within a 30 min period. A: AbPP-PS1 mice spent more time walking than wild-type mice (*p = 0.015). Walking was not
affected by dietary intake. B: AbPP-PS1 mice spent less time sitting than wild-type mice (*p,0.001). Animals on the DHA, EPA and UMP (DEU) diet sat
let than animals on control (CO) diet (a* p = 0.025), but did not differ from the mice on the FortasynH Connect (FC) diet. C: AbPP-PS1 mice spent less
time rearing than wild-type mice (*p = 0.030). Rearing behavior was not affected by dietary intake. D: AbPP-PS1 mice spent more time wall leaning
than wild-type mice (*p,0.001). Animals fed the DEU diet leaned more against the walls than mice fed the FC diet (c* p = 0.007), and also slightly
more than animals fed the CO diet (a# p = 0.070), although this did not reach statistical significance. E: Grooming behavior was similar among wild-
type and AbPP-PS1 mice, and was not affected by dietary intake. F: AbPP-PS1 mice traveled a longer distance than wild-type mice (*p,0.001). Mice
fed the DEU diet traveled a greater distance than animals fed the CO diet (a* p = 0.009), but did not differ from the animals fed the FC diet. G: AbPP-
PS1 mice spent slightly less time in the center of the open field than wild-type mice (#p = 0.064), although this did not reach statistical significance.
The time spent in the center of the open field was not affected by dietary intake. H: AbPP-PS1 mice spent more time in the corners of the open field
compared to wild-type mice (*p = 0.001). Animals fed the FC diet spent less time in the corners of the open field than mice fed the CO diet (a*
p = 0.038) and animals fed the DEU diet (b* p = 0.033).
doi:10.1371/journal.pone.0075393.g002
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effect of diet on swim distance (ANOVA, p = 0.030) and mean

swim velocity (ANOVA p = 0.031; CO diet 16.660.3 cm/s, DEU

diet 16.560.3 cm/s, FC diet 15.660.5 cm/s). However, Tukey’s

post hoc analysis revealed no significant differences between any of

the diet groups (post hoc, p.0.1).

Magnetic resonance imaging (MRI)
Magnetic resonance spectroscopy (MRS). To determine

hippocampal metabolite concentrations, single voxel 1H MRS at

11.7 T was used (Figure 5). No differences were observed between

wild-type and AbPP-PS1 mice (Figure 5A), nor between the

different diet groups (Figure 5B) in the levels of creatine and

phosphocreatine (tCre; ANOVA p.0.05). Therefore, tissue

concentrations of metabolites are given relative to tCre as applied

by others [71,72].

AbPP-PS1 mice had significantly lower levels of N-acetylaspar-

tate and N-acetylaspartylglutamate (tNAA; ANOVA p = 0.030)

than wild-type mice, independent of diet (genotype6diet interac-

tion, p = 0.513), indicating decreased neuronal integrity

(Figure 5A). Wild-type and AbPP-PS1 mice had similar levels of

choline-containing compounds (tCho; ANOVA p = 0.079), gluta-

mine and glutamate (Glx; ANVOA p = 0.963), myo-Inositol and

glycine (mI+Gly; ANOVA p = 0.196) and taurine (Tau; ANOVA

p = 0.475).

Statistical analysis indicated a significant effect of dietary intake

on tCho levels, independent of genotype (Figure 5B; ANOVA

p = 0.035). Post hoc analysis revealed that animals fed the FC diet

Figure 3. Morris water maze performance of 11-month-old AbPP-PS1 and wild-type mice on control and multi-nutrient diets. Spatial
learning was measured in a 4-day acquisition phase, by determining the latency to find a hidden platform in the NE quadrant. Spatial memory was
tested in the probe phase in which the percentage of time spent in the target NE quadrant, the time spent in the former platform area, the latency to
the former platform area and the total distance moved were measured. A: Both AbPP-PS1 and wild-type mice showed a decrease in latency during
training. Overall escape latencies were higher in AbPP-PS1 mice (*p,0.001), independent of dietary intake. B: Animals on control (CO), the DHA, EPA
and UMP (DEU) and FortasynH Connect (FC) diets showed a similar decrease in latency during training, independent of genotype. Overall escape
latencies were not affected by dietary intake. C: AbPP-PS1 mice spent less time in the target NE quadrant than wild-type mice, independent of dietary
intake (*p = 0.033). Time spent in the NE quadrant was unaffected by dietary intake. D: AbPP-PS1 mice spent less time in the former platform area
than wild-type mice (*p = 0.010), independent of dietary intake. Time spent in the exact former platform area was unaffected by dietary intake. E:
AbPP-PS1 mice had a higher latency to reach the former platform location than wild-type mice (*p = 0.003), independent of dietary intake. Latency to
reach the former platform location was unaffected by dietary intake. F: AbPP-PS1 mice on FC diet displayed a shorter swim distance compared to
wild-type mice on FC diet (*p = 0.009) and compared to AbPP-PS1 mice on CO diet (*p = 0.013), but not compared to AbPP-PS1 mice on DEU diet.
doi:10.1371/journal.pone.0075393.g003
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had significant lower tCho levels than animals fed the CO diet

(post hoc, p = 0.039), but no difference compared to the animals

fed the DEU diet (post hoc, p = 0.228). No differences were

observed between the different diets in relative concentrations of

Glx (ANOVA, p = 0.627), mI+Gly (ANOVA, p = 0.400), tNAA

(ANOVA, p = 0.156) and Tau (ANOVA, p = 0.523).

Immunohistochemistry
Doublecortin staining. Immature neurons were visualized

with a polyclonal antibody against doublecortin. Doublecortin-

positive (Dcx+) cells were counted in three alternating hippocam-

pal sections as a measure for neurogenesis.

Overall statistical analysis indicated a significant genotype6diet

interaction (ANOVA, p = 0.004) for the relative amount of Dcx+
cells. In wild-type animals, the relative amount of Dcx+ cells were

similar for all diet groups (ANOVA, p = 0.530). However, in

AbPP-PS1 mice, the relative amount of Dcx+ cells was affected by

dietary intake (ANOVA, p = 0.017). Post hoc analysis revealed that

AbPP-PS1 mice on CO diet showed a decreased amount of Dcx+
cells compared to wild-type mice on CO diet (Figure 6; ANOVA,

p = 0.004), indicating decreased neurogenesis in AbPP-PS1 mice

on a normal control diet. Moreover, AbPP-PS1 mice fed the FC

diet had a significantly higher relative amount of Dcx+ cells than

AbPP-PS1 animals fed the CO diet (post hoc, p = 0.015),

suggesting that the FC diet restored neurogenesis in AbPP-PS1

Figure 4. Reverse Morris water maze in 11-month-old AbPP-PS1 and wild-type mice on control and multi-nutrient diets. Spatial
learning with an extra episodic memory component was measured in a 2-day acquisition phase, by determining the latency to find a hidden platform
in the SW quadrant. Spatial memory was tested in the probe phase in which the percentage of time spent in the target SW quadrant, the time spent
in the former platform area, the latency to the former platform area and the total distance moved were measured. A: Both AbPP-PS1 and wild-type
mice showed a decrease in latency during training, independent of dietary intake. Overall escape latencies did not differ between AbPP-PS1 and wild-
type mice. B: Animals on control (CO), the DHA, EPA and UMP (DEU) and FortasynH Connect (FC) diets showed a similar decrease in latency during
training, independent of genotype. Overall escape latencies were unaffected by dietary intake. C: AbPP-PS1 mice spent less time in the target SW
quadrant than wild-type mice, independent of dietary intake (*p = 0.006), although all animals performed well above 25% chance level. Time spent in
the SW quadrant was unaffected by dietary intake. D: AbPP-PS1 mice spent less time in the former platform area than wild-type mice (*p,0.001),
independent of dietary intake. Time spent in the exact former platform area was unaffected by dietary intake. E: AbPP-PS1 mice had a slightly higher
latency to reach the former platform location than wild-type mice (#p = 0.054), although this did not reach statistical significance. Latency to reach
the former platform location was unaffected by dietary intake. F: No differences were observed between AbPP-PS1 and wild-type animals in the swim
distance. Overall statistical analysis indicated a significant diet effect on the swim distance (p = 0.030). However, Tukey’s post hoc analysis revealed no
significant differences between any of the diet groups.
doi:10.1371/journal.pone.0075393.g004
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mice. Furthermore, AbPP-PS1 mice on FC diet also had a slightly

higher relative amount of Dcx+ cells than wild-type animals on FC

diet (ANOVA, p = 0.053), although this did not reach statistical

significance.

Biochemical analyses
Serum and brain sterol analysis. Brain cholesterol levels

(Figure 7A) were similar between wild-type and AbPP-PS1 mice

(ANOVA, p = 0.369), and between the diet groups (ANOVA,

p = 0.637). However, dietary intervention significantly affected

serum cholesterol levels (Figure 7B) in wild-type mice (ANOVA,

p,0.001), but not in AbPP-PS1 mice (ANOVA, p = 0.314), as

indicated by a significant genotype6diet interaction (p = 0.009).

Post hoc analysis revealed that in wild-type mice the DEU diet

decreased serum cholesterol levels compared to the CO diet (post

hoc, p = 0.014), and the FC diet decreased serum cholesterol levels

further (post hoc, p,0.001 compared to CO diet and p = 0.026

compared to DEU diet). No genotype effects on serum cholesterol

levels were observed between the wild-type and AbPP-PS1 mice

on CO (ANOVA, p = 0.101) and DEU diets (ANOVA, p = 0.353),

but AbPP-PS1 mice on FC diet had significantly higher serum

cholesterol levels than wild-type mice on FC diet (ANOVA,

p = 0.007).

In addition, brain levels of lathosterol (Figure 7C), a main

cholesterol precursor in the ‘‘de novo’’ synthesis pathway, were

similar between wild-type and AbPP-PS1 mice (ANOVA,

p = 0.800). Dietary intake did affect the brain levels of lathosterol

(ANOVA, p = 0.003), such that animals fed the DEU (post hoc,

p = 0.003) and FC diets (post hoc, p = 0.010) displayed significantly

decreased levels of brain lathosterol compared to animals fed the

CO diet, independent of genotype (genotype6diet interaction,

p = 0.888). Serum lathosterol levels (Figure 7D) were similar

Figure 5. Hippocampal neurochemical profile of 12-month-old AbPP-PS1 and wild-type mice on control and specific multi-nutrient
diets. The neurochemical profile of the hippocampus was determined with single voxel 1H MRS at 11.7 Tesla. A: AbPP-PS1 mice showed a significant
decrease in tNAA/tCre compared to wild-type mice (*p = 0.030), independent of dietary intake. AbPP-PS1 and wild-type mice displayed similar levels
of tCho/tCre, tCre, Glx/tCre, mI+Gly/tCre and Tau/tCre. B: Both wild-type and AbPP-PS1 mice fed the FortasynH Connect (FC) diet showed a significant
decrease in tCho/tCre levels compared to animals fed the control (CO) diet (*p = 0.039), but no difference compared to mice fed the DHA, EPA and
UMP (DEU) diet. Dietary intake did not affect the levels of tCre, Glx/tCre, mI+Gly/tCre, tNAA/tCre and Tau/tCre. Values represent the mean and SEM.
tCho = choline-containing compounds; tCre = creatine and phosphocreatine; Glx = glutamine and glutamate; mI+Gly = myo-Inositol and glycine;
tNAA = N-acetylaspartate and N-acetylaspartylglutamate; Tau = taurine.
doi:10.1371/journal.pone.0075393.g005

Figure 6. Neurogenesis in 12-month-old AbPP-PS1 and wild-
type mice on control and specific multi-nutrient diets. From 2
months of age, mice were fed either a control (CO), a DHA, EPA and
UMP (DEU) or a FortasynH Connect (FC) diet. The amount of immature
neurons in the subgranular zone of the hippocampus were visualized
immunohistochemically with a polyclonal goat anti-doublecortin
antibody (1:3000) as a measure for neurogenesis. Values represent
the mean and SEM and are relative (%) compared to wild-type mice on
CO diet. In wild-type animals, the relative amount of doublecortin-
positive (Dcx+) immature neurons was similar for all diet groups.
However, in AbPP-PS1 mice the relative amount of Dcx+ immature
neurons was affected by dietary intake (p = 0.017). Post hoc analysis
revealed that AbPP-PS1 mice fed the CO diet displayed a significantly
decreased relative amount of Dcx+ immature neurons compared to
wild-type mice on the CO diet (*p = 0.004). The FC diet significantly
increased the relative amount of Dcx+ immature neurons in AbPP-PS1
mice as compared to AbPP-PS1 mice on CO diet (*p = 0.015).
Furthermore, AbPP-PS1 mice on the FC diet had slightly higher relative
amount of Dcx+ immature neurons than wild-type animals on the FC
diet (#p = 0.053), although this did not reach statistical significance.
doi:10.1371/journal.pone.0075393.g006
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between wild-type and AbPP-PS1 mice (ANOVA, p = 0.609), and

between the diet groups (ANOVA, p = 0.709).

Furthermore, the levels of cholesterol’s brain specific oxidative

metabolite 24S-hydroxycholesterol did not differ significantly in

the brains (ANOVA, p = 0.072) and sera (ANOVA, p = 0.510) of

Figure 7. Sterol levels in 12-month-old AbPP-PS1 and wild-type mice on control and specific multi-nutrient diets. Sterol levels were
determined in brain homogenates and blood serum by gas-chromatography-mass-spectrometry-selected ionmonitoring. A–B: Cholesterol levels
were similar in the brains of AbPP-PS1 and wild-type mice and were unaffected by dietary intake. In blood sera of wild-type mice, the FortasynH
Connect (FC) diet decreased cholesterol levels as compared to the control (CO) and the DHA, EPA and UMP (DEU) diets (**), whereas the DEU diet led
to intermediate cholesterol levels as compared to the CO and FC diets. Only wild-type mice on FC diet displayed decreased levels of serum
cholesterol compared to AbPP-PS1 mice, *p,0.05. C-D: Lathosterol levels were similar in the brains and blood sera of AbPP-PS1 and wild-type mice.
Serum lathosterol levels were unaffected by dietary intake, but brain lathosterol levels were decreased in AbPP-PS1 and wild-type mice on the DEU
and FC diets as compared to the CO diet (a* p,0.05). E–F: 24-hydroxycholesterol levels were similar in the brains and blood sera of AbPP-PS1 and
wild-type mice. Brain 24-hydroxycholesterol levels were increased in AbPP-PS1 and wild-type mice on the DEU and FC diets as compared to the CO
diet (a*), whereas serum 24-hydroxycholesterol levels were decreased in AbPP-PS1 and wild-type mice on the DEU and FC diets as compared to the
CO diet (a*), a*p,0.05. G–H: Brain 27-hydroxycholesterol levels were decreased in AbPP-PS1 mice compared to wild-type mice (*p = 0.040), but were
unaffected by dietary intake. Serum 27-hydroxycholesterol levels were similar between AbPP-PS1 and wild-type mice, independent of dietary intake.
Overall analysis revealed a tendency for an effect of dietary intake (p = 0.054), but no post hoc analyses were performed since it did not reach
statistical significance.
doi:10.1371/journal.pone.0075393.g007
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wild-type and AbPP-PS1 mice. Dietary intake did affect both

brain (ANOVA, p,0.001) and serum (ANOVA, p = 0.001) 24S-

hydroxycholesterol levels, such that animals fed the DEU (post

hoc, p = 0.004) and FC diets (post hoc, p,0.001) had significantly

higher levels of 24S-hydroxycholesterol in the brain compared to

animals fed the CO diet (Figure 7E), independent of genotype

(genotype6diet interaction, p = 0.054), indicating increased con-

version of cholesterol in the brain due to dietary intervention. In

contrast, serum 24S-hydroxycholesterol levels (Figure 7F) were

decreased in animals fed the DEU (post hoc, p = 0.028) and FC

diets (post hoc, p,0.001) compared to animals fed the CO diet,

independent of genotype (genotype6diet interaction, p = 0.477).

Another oxidative metabolite of cholesterol, 27-hydroxycholes-

terol (Figure 7G), was significantly decreased in the brains of

AbPP-PS1 mice compared to wild-type animals (ANOVA,

p = 0.040), independent of diet (genotype6diet interaction,

p = 0.817), suggesting a decreased flux of cholesterol from the

periphery into the brain [73–75]. No significant differences could

be observed in the levels of brain 27-hydroxycholesterol between

the diet groups (ANOVA, p = 0.073). Serum 27-hydroxycholes-

terol levels (Figure 7H) were similar between wild-type and AbPP-

PS1 mice (ANOVA, p = 0.256). Overall analysis revealed a

tendency for an effect of diet intervention (ANOVA, p = 0.054)

on serum 27-hydroxycholesterol levels, but this did not reach

statistical significance.

Brain fatty acid analysis
Dietary intake affected the relative concentrations of oleic acid

(ANOVA, p = 0.011), arachidonic acid (ANOVA, p,0.001),

docosahexaenoic acid (ANOVA, p,0.001), omega-3 fatty acids

(n3 FAs; ANOVA p,0.001), and omega-6 FAs (ANOVA;

p,0.001) in both wild-type and AbPP-PS1 mice (Figure 8).

Animals fed the DEU and FC diets (post hoc p,0.001) showed a

shift in the balance between n3 and n6 fatty acids as compared to

animals fed the CO diet (main ANOVA diet effect, p,0.001). The

relative amount of n3 FA in DEU and FC fed mice increased

compared to the CO diet (post hoc, p,0.001), whereas the relative

amount of n6 decreased (post hoc, p,0.001), resulting in a

pronounced shift in the n3/n6 ratio in DEU and FC fed mice in

favor of the n3 FA. The reduction of the relative n6 content was

mainly caused by a relative decrease in arachidonic acid (AA;

C20:4n6; post hoc p,0.001), while the higher n3 content

originated from a relative increase in DHA (C22:6n3; post hoc

p,0.001) in both the DEU and FC fed animals as compared to the

CO fed animals. Furthermore, the relative concentration of oleic

acid (OA; C18:1n9) was significantly increased in the DEU fed

mice (post hoc, p = 0.005), and also slightly increased in the FC fed

animals (post hoc, p = 0.066) as compared to the CO diet, although

it did not reach statistical significance.

No significant differences were observed between the DEU and

FC diets in any fatty acid analyzed (post hoc, p.0.05). The relative

amounts of palmitic acid (C16:0; ANOVA p = 0.714), stearic acid

(C18:0; ANOVA p = 0.841), total saturated fatty acids (SFA;

ANOVA p = 0.793), total mono-unsaturated fatty acids (MUFA;

ANOVA p = 0.316) and total poly-unsaturated fatty acids (PUFA;

ANOVA p = 0.459) were unaffected by the diets (data not shown).

No significant genotype effects or genotype6diet interactions were

found for any of the fatty acids analyzed (ANOVA, p.0.05).

Quantitative real-time PCR (qRT-PCR). Wild-type and

AbPP-PS1 mice displayed similar levels of MCP-1 (ANOVA,

p = 0.927), IL-6 (ANOVA, p = 0.081), TNF-a (ANOVA, p = 0.701)

and CD36 (ANOVA, p = 0.180). However, IL-1b levels were

significantly increased in AbPP-PS1 mice compared to wild-type

animals (Figure 9A; ANOVA, p,0.001), independent of dietary

intake (genotype6diet interaction, p = 0.272). Furthermore, overall

statistical analysis indicated a significant effect of dietary intake on

the levels of IL-1b (ANOVA, p = 0.005). Post hoc analysis revealed

that both wild-type and AbPP-PS1 animals fed the DEU (post hoc,

p = 0.034) and FC diets (post hoc, p = 0.013) had significantly

higher levels of IL-1b than animals fed the CO diet (Figure 9B).

No differences were observed between the different diets in the

levels of MCP-1 (ANOVA, p = 0.349), IL-6 (ANOVA, p = 0.232),

TNF-a (ANOVA, p = 0.707) and CD36 (ANOVA, p = 0.157).

Discussion

In the present study, we investigated the extent to which long-

term consumption of two specific multi-nutrient enriched diets,

developed to support membrane synthesis and maintenance, can

modulate behavior, cognition, hippocampal metabolite levels,

neurogenesis and inflammation in 11-12-month-old AbPP-PS1

mice. An overview of the main results found in the current study is

shown in Table 3.

In agreement with previous results from our lab [58,76], 11-

month-old AbPP-PS1 mice displayed increased activity and

anxiety-related behavior, and decreased explorative behavior in

Figure 8. Brain fatty acids in 12-month-old AbPP-PS1 and wild-type mice on control and specific multi-nutrient diets. The relative
concentrations of different fatty acids were determined in the lipid fraction of brain homogenates, and were similar between AbPP-PS1 and wild-type
mice. Dietary intake affected the relative concentrations of different fatty acids similarly in AbPP-PS1 and wild-type mice. Both the DHA, EPA and UMP
(DEU) diet and the FortasynH Connect (FC) diet increased the relative concentrations of omega-3 fatty acids (n3) and decreased the relative
concentrations of omega-6 fatty acids (n6), resulting in a pronounced shift in n3/n6 ratio in favor of the n3 fatty acids as compared to the control(CO)
diet, *p,0.001. The reduction of the relative n6 content was mainly caused by a decrease in arachidonic acid (AA; C20:4n6), while the higher n3
content was mainly caused by an increase in docosahexaenoic acid (DHA; C22:6n3), *p,0.001. The relative concentration of oleic acid (OA; C18:1n9)
was increased due to intake of the DEU diet *p = 0.005), while it was only slightly, but not significantly, increased due to intake of the FC diet
(#p = 0.066). The relative amount of palmitic acid (C16:0); stearic acid (C18:0), saturated fatty acids, mono-unsaturated fatty acids and poly-
unsaturated fatty acids were unaffected by dietary intake (data not shown).
doi:10.1371/journal.pone.0075393.g008
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the open field as compared to age-matched wild-type mice.

Hyperactivity and decreased explorative behavior are specific

characteristics of many AbPP transgenic mice [77–79] and may be

explained as a result of elevated anxiety levels [80,81]. Curiosity

motivates mice to explore a novel environment, but this

exploratory drive is in conflict with fear of the unknown.

Hyperactivity and anxiety-related behavior in AbPP transgenic

mice resemble anxiety symptoms and restlessness, which occur in

up to 70% of AD patients during the course of their illness and are

significantly correlated with impairments in activities of daily living

[82–84]. Dietary intervention with the DEU and FC diets

differentially affected open field behavior in both AbPP-PS1 and

wild-type mice. While the DEU diet increased general locomotor

activity (restlessness) and anxiety-related exploration (e.g. wall

leaning), our results suggest that the FC diet could have an

anxiolytic effect, since it decreased the time spent in the corners of

the open field as compared to the animals on CO and DEU diets.

Previous studies have shown that rats fed an n3 lc-PUFA deficient

diet display increased anxiety-related behavior in the open field

and elevated plus maze tasks as compared to animals fed an n3 lc-

PUFA adequate diet [85,86]. Supplementation with n3 lc-PUFAs

led to substantial reduction in the anxiety levels of n3 lc-PUFA

deficient rats [86,87] and mice [88]. Moreover, n3 fatty acid

deficiency has been linked to increased vulnerability to stress,

elevated aggression, and increased depressive-like symptoms in

rodents [89]. Supplementation with n3 lc-PUFAs has also shown

beneficial effects on depressive symptoms and agitation in patients

with mild to moderate AD [90]. However, it should be noted that

both the DEU diet and the FC diet contained equal amounts of n3

lc-PUFAs, suggesting that the combination of additional nutrients

in the FC diet was important for the efficacy on anxiety-related

behavior. Interestingly, Schipper et al. showed that a combination

of n3 lc-PUFAs, phospholipids and B-vitamins (which are also part

of the current FC diet) completely abolished anxiety-related

behavioral responses, increased social behavior and facilitated fear

extinction recall in serotonin transporter knockout (SERT-ko) rats

[91]. Furthermore, the FC diet also reduced anxiety-related

behavior in the open field in 12-month-old apolipoprotein E

(apoE)-e4/e4 and apoE knockout mice [92]. Combined, these

results suggest that supplementation with the FC diet could

potentially be beneficial for several neurodegenerative and

neurological disorders in which patients exhibit symptoms of

agitation, anxiety and depression.

In line with our previous results [58,76], 11-month-old AbPP-

PS1 mice also showed impaired performance in the MWM and

rMWM as compared to age-matched wild-type animals. Although

both AbPP-PS1 and wild-type mice showed a similar decrease in

escape latency during training in the MWM, overall escape

latencies were significantly higher in AbPP-PS1 mice, independent

of dietary intake. Longer escape latencies during spatial navigation

can be caused by slower swim speed, although this is not a

confounding factor in the current study, since AbPP-PS1 mice

displayed higher swim speeds during the task acquisition trials.

Longer escape latencies during spatial navigation may also be

caused by the use of certain, less efficient, search strategies, such as

a constant random search of the entire surface area of the pool,

which would indicate a complete lack of spatial learning abilities,

or by persistent performance of a less efficient than spatial (direct)

Figure 9. Inflammatory markers in 12-month-old AbPP-PS1 and wild-type mice on control and specific multi-nutrient diets.
Inflammatory markers were determined by quantitative real-time PCR in a part of the snap-frozen brain tissue, which included both hippocampi,
using primers for monocyte chemoattractant protein 1 (MCP-1), interleukin-1b (IL-1b), interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), cluster of
differentiation 36 (CD36), and glyceralehyde-3-phospate dehydrogenase (GADPH). Relative gene expression ratios were calculated according to the
comparative CT method (22DCT method), by subtracting the CT value of the housekeeping gene GADPH from the CT values of the inflammatory
markers(DCT). A: AbPP-PS1 and wild-type mice displayed similar levels of MCP-1, IL-6, TNF-a and CD36. However, IL-1b levels were increased in AbPP-
PS1 mice compared to wild-type animals, independent of dietary intake (*p,0.001). B: Levels of MCP-1, IL-6, TNF-a and CD36 were unaffected by
dietary intake. However, the levels of IL-1b were affected by dietary intake, independent of genotype (p = 0.005). Both the DHA, EPA and UMP (DEU)
diet (p = 0.034) and the FortasynHConnect (FC) diet (p = 0.013) increased the levels of IL-1b as compared to the control (CO) diet in AbPP-PS1 and
wild-type mice.
doi:10.1371/journal.pone.0075393.g009
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search strategy, such as circling the pool at a certain distance from

the wall to find the platform [93,94]. In this strategy, mice have

not used the spatial cues to learn the location of the platform,

although such a strategy would result in a successful location of the

escape platform during training. Since AbPP-PS1 mice searched

the target NE quadrant during the probe trial at chance level (25%

or less), our results might imply that the AbPP-PS1 mice made use

of a random or a persistent non-spatial search strategy to locate the

platform during acquisition training. This is in line with a study by

O9Leary and Brown, in which the search strategies used by 16-

month-old AbPP-PS1and wild-type mice during visuo-spatial

navigation in the Barnes Maze were analyzed [95]. 16-month-

old AbPP-PS1 mice predominantly made use of a random search

strategy to locate the escape hole in the Barnes Maze, whereas

wild-type mice predominantly made use of a spatial (direct and

accurate) search strategy. Similar results have been found for the

search strategies used by the TgCRND8 transgenic AbPP mouse

model in the MWM test [96,97]. Moreover, it was shown that

C57BL6 mice, treated with Temozolomide (TMZ) to suppress

adult hippocampal neurogenesis, displayed a delayed (or even

absent) use of directed and place specific search patterns in the

(reversal) MWM test compared to untreated mice, suggesting that

hippocampal neurogenesis is necessary for adding flexibility to

some hippocampus-dependent qualitative parameters of learning

[93]. Consistent with our current findings, reduced hippocampal

neurogenesis has been found previously in AbPP-PS1 mice [98–

100] and in AD patients [101,102], and might underlie some

aspects of the cognitive deficits in AD.

In line with our previous findings [76], AbPP-PS1 and wild-type

mice showed a similar decrease in escape latency during training

in the reversal MWM. The reversal task requires selective memory

retrieval of the newly learned location of the platform, and

Table 3. Overview of the main genotype and diet effects found in the current study.

Effects of genotype: Compared to wild-type mice

AbPP-PS1 mice

Open field Behavior & activity Increased activity & anxiety-related behavior

Decreased exploration

Morris water maze Learning & memory Decreased learning & memory

reverse MWM Learning & memory Decreased memory

Hippocampal 1H MRS Metabolite levels Decreased tNAA/tCre

Immature neurons Hippocampus Decreased neurogenesis

Sterol analyses Serum n.s.

Brain Decreased 27-hydroxycholesterol

Fatty acid analysis Brain n.s.

Inflammatory markers Brain Increased IL-1b

Effects of specific multi-nutrient diets: Compared to littermates on control (CO) diet

DEU diet FC diet

Open field Behavior & activity Increased activity n.s.

Increased anxiety Decreased anxiety

Morris water maze Learning & memory n.s. n.s.

reverse MWM Learning & memory n.s. n.s.

Hippocampal 1H MRS Metabolite levels n.s. Decreased tCho/tCre

Immature neurons Hippocampus n.s. Increased

*effect in AbPP-PS1 only neurogenesis*

Sterol analyses Serum Decreased cholesterol* Decreased cholesterol*

*effect in wild-type only Decreased 24S- Decreased 24S-

hydroxycholesterol hydroxycholesterol

Brain Decreased lathosterol Decreased lathosterol

Increased 24S- Increased 24S-

hydroxycholesterol hydroxycholesterol

Fatty acid analysis Brain Increased n3 content Increased n3 content

Decreased n6 content Decreased n6 content

Increased OA content Increased OA content #

Inflammatory markers Brain Increased IL-1b Increased IL-1b

1H MRS = proton magnetic resonance spectroscopy; tNAA = N-acetylaspartate and N-acetylaspartylglutamate; tCre = creatine and phosphocreatine; IL-1b= interleukin-
1b; DEU diet = DHA, EPA, UMP diet; FC diet = FortasynH Connect diet; tCho = choline-containing compounds; n3 = omega-3 fatty acids; n6 = omega-6 fatty acids;
OA = oleic acid (18:1n9); n.s. = not significant; # = tendency (0.5.p,0.7).
doi:10.1371/journal.pone.0075393.t003

Diet Effect on AD Mice Brain Structure & Function

PLOS ONE | www.plosone.org 15 September 2013 | Volume 8 | Issue 9 | e75393



contains therefore an extra episodic component [60,103]. Since

episodic memory impairment is a major characteristic in early AD

[104–106], our results in AbPP-PS1 mice resemble the problems

that are present in early AD patients. Noteworthy are the relatively

low escape latencies of both AbPP-PS1 and wild-type mice during

the initial trials of the rMWM acquisition training. Although wild-

type mice displayed good short-term spatial memory for the NE

platform location during the probe trial of the MWM, it appears

that this information might not have been sufficiently consolidated

in the long-term memory since they displayed more ‘‘random’’

search behavior during the initial rMWM trials (resulting in lower

escape latencies) than expected if animals had good long-term

memory for the former platform location. One possible explana-

tion could be that the MWM task as used in the current study was

slightly too difficult to optimally master within 4 days of training.

For mice, a MWM pool with a diameter of 120 cm and a platform

of 10–12 cm in diameter (or even larger) is commonly used,

resulting in a search area to target size of 144:1 to 100:1 (or even

lower). In the current study, we used a pool with a diameter of

104 cm and a platform of 8 cm in diameter, resulting in a search

area to target size of 169:1, thereby increasing the MWM task

difficulty [107,108].

Previous studies have shown that n3 lc-PUFA intake may

improve cognition in both mice and rats [58,109,110]. Besides n3

lc-PUFAs, other nutrients can also affect spatial memory

performance. Supplementing CDP-choline or UMP and choline

to rats improved spatial memory in the water maze [111,112]. In

addition, transgenic mice fed vitamin E [113] or vitamin B3 [114]

showed normalized escape latency in the water maze. Further-

more, a combination of vitamin E and folic acid prevented human

Ab1-40-induced impairment of water maze learning in 3-month-

old male Swiss mice [115]. However, in agreement with our

current results, there are also some reports showing no effect of n3

lc-PUFA intake on learning and memory performance

[89,116,117]. Moreover, most intervention studies based on single

nutrient supplementation with n3 lc-PUFAs, B-vitamins or vitamin

E have failed to show any protective effect on AD [39–41,118] or

cognitive decline [119–121], except in some patients with mild AD

[122,123]. Interestingly, clinical studies with the multi-nutrient FC

supplementation have shown beneficial effects on memory

performance in patients with mild AD [51–53], although we

could not replicate these findings in our AbPP-PS1 mouse model

when using the standard conventional measures of performance in

the MWM. However, the FC diet did recently improve the search

strategy of AbPP-PS1 mice in the acquisition of the MWM, by

switching from predominantly random search strategies towards a

more efficient search strategy, suggesting some beneficial effects of

the FC diet on the ability to cope with cognitive impairment in the

AbPP-PS1 mouse model [124].
1H MR spectroscopy revealed decreased tNAA/tCre levels in

the hippocampus of 12-month-old AbPP-PS1 mice as compared to

wild-type mice, in accordance with our previous results [76]. The

reduction of tNAA levels is one of the most consistent findings

using 1H MRS in AD patients [125–128] and in several transgenic

AbPP animals models for AD [129–133], and is commonly

interpreted as a result of neuronal dysfunction or neuronal loss

[134,135]. Furthermore, many previous 1H MRS studies have

found elevated levels of myo-Inositol (mI) in the temporal, parietal

and occipital lobes of AD patients [126,128], which has been

associated with enhanced inflammatory processes. Reports on mI

levels in transgenic animals models are highly inconsistent, since

disturbances in mI levels were found to occur at different ages in

different transgenic species apparently depending on the interplay

of mouse strain, transgene and disease progression [136]. For

example, the AbPPswe (Tg2576) model and the AbPP-PS2N1411

(PS2APP) model do not show any change in mI levels throughout

life compared to age-matched wild-type mice, even though these

animal models display decreased NAA levels in the frontal cortex

at 19–24 months of age, when Ab deposits are widespread

[129,137]. In the case of the AbPPswe-PS1M146L model, one

study reported the most profound increase in mI levels after 20

months of age [130], whereas another study reported a decrease in

mI levels at 2.5 months of age as compared to age-matched wild-

type mice [131]. In the current and in our previous study [76], we

did not observe any differences in the levels of mI+Gly between

AbPP-PS1 and wild-type mice. In contrast, Chen and colleagues

observed significantly increased levels of mI in 3-, 5- and 8-month-

old AbPPswe-PS1dE9 mice, when pathology showed activation

and proliferation of astrocytes in the frontal cortex and hippo-

campus [138,139]. The discrepancy between the results found by

Chen et al. and our own findings are most likely due to differences

in methodology, e.g. the field strength of the MR system, the

acquisition parameters used, the exact position of the spectroscopic

volume of interest, the age of the animals, and the amount of

animals used.

Disturbances of several other metabolites have been found in

AD patients as well, although the reports are inconsistent. Some

studies identified elevated choline-containing compounds (tCho)

and creatine (Cre) in AD patients [140–142], whereas others did

not [125,143]. One possible explanation for the elevation of tCho

in AD is increased membrane turnover due to neurodegenerative

processes [144,145]. It has also been postulated that the elevation

of the tCho peak is the consequence of membrane phosphatidyl-

choline catabolism in order to provide free choline for the

chronically deficient acetylcholine production in AD [146,147]. In

agreement with our current findings, no differences were observed

between AbPP-PS1 and wild-type mice at any age tested in the

levels of tCho [76,133,138]. Dietary intake with the FC diet

significantly decreased the levels of tCho in AbPP-PS1 and wild-

type mice, suggesting diminished membrane turnover. Since the

FC diet provides precursors and cofactors in membrane synthesis

and maintenance that are not supplemented in the CO and DEU

diets, such as choline chloride and soy lecithin, these additional

nutrients might underlie the decreased levels of tCho. 1H MRS

studies to investigate the effect of the multi-nutrient FC diet on

brain metabolites in mild AD patients are currently ongoing.

Dietary intervention with the FC diet, but not with the DEU

diet, restored neurogenesis in AbPP-PS1 mice. Reduced hippo-

campal neurogenesis has been found previously in AbPP-PS1 mice

beyond 8 months of age [99,100,148] and in AD patients

[102,149,150]. In line with our results, previous studies have

shown that n3 lc-PUFAs [151,152], folic acid [153,154], and

vitamins and antioxidants [155,156] may promote neurogenesis.

Since the FC diet did not affect neurogenesis in wild-type mice,

our results could imply that this dietary intervention may

especially be beneficial when neurogenesis is severely compro-

mised. Dietary intervention with the FC diet might therefore be of

interest for several other neurodegenerative and neurological

disorders in which neurogenesis is impaired, such as Parkinson’s

disease and major depression.

Quantitative real-time PCR revealed increased IL-1b mRNA

levels in 12-month-old AbPP-PS1 mice as compared to age-

matched wild-type mice. In response to brain injury or infection,

IL-1b is both expressed by and targeted to many different cell

types within the brain, such as microglia, astrocytes, endothelial

cells, infiltrating leukocytes, neurons and oligodendrocytes [157–

159]. IL-1b has been implicated to be at or near the top of the

cytokine signaling cascade that initiates the neuroinflammatory
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changes seen in AD (reviewed in [160,161]). It has been suggested

that the initial burst of IL-1b production might actually have a

beneficial role in AD, by enhancing the microglial clearance of

amyloid plaques [161–163]. However, chronic elevation of IL-1b
is detrimental, since IL-1b is capable of propagating inflammatory

responses by increasing its own expression [161,162,164] and

inducing the expression of several other pro-inflammatory

cytokines, such as TNF-a and IL-6 [165], and chemokines, such

as MCP-1 [166,167]. Our results of increased IL-1b mRNA levels

in 12-month-old AbPP-PS1 mice, but no changes (yet) in the

mRNA levels of MCP-1, IL-6, TNF-a and CD36, might reflect

the initial burst of IL-1b production in response to brain injury or

toxic agents such as Ab.

Surprisingly, IL-1b mRNA levels were also elevated in both

AbPP-PS1 and wild-type mice in response to dietary intervention

with the DEU and FC diets. This seems contradictory to the anti-

inflammatory and immunosuppressive properties ascribed to n3 lc-

PUFAs, B vitamins and antioxidants [28,34,168]. However, IL-1b
signaling has also been associated with neuroprotective mecha-

nisms, including mediating the production of survival signals such

as nerve growth factor [169,170] and mediating re-myelination of

the central nervous system by stimulating oligodendrocytes

proliferation [159,171]. Interestingly, results from our own lab

indicate that both the DEU and FC diets prevent axonal

disconnection and myelin degradation, determined by diffusion

tensor MR imaging, in the 12-month-old AbPP-PS1 and wild-type

mice used in the current study (Zerbi et al., submitted data).

However, since prolonged elevation of IL-1b can initiate chronic

neuroinflammatory processes, the question remains whether the

effects of these multi-nutrient diets on IL-1b production are

ultimately beneficial or detrimental in the AbPP-PS1 mouse

model.

In conclusion, we showed that specific multi-nutrient diets can

ameliorate some AD-related pathologies in 11-12-month-old

AbPPswe-PS1dE9 mice. Although both diets were equally

effective in changing brain fatty acid profiles and cholesterol

metabolism, the diets differentially affected open field behavior,

hippocampal metabolite levels and neurogenesis, suggesting that

the effectiveness of specific nutrients may depend on the dietary

context in which they are provided. The multi-nutrient enriched

FC diet with DHA, EPA, UMP, phospholipids, choline, folic acid,

vitamins B6, B12, C, E and selenium (FortasynH Connect; FC diet)

was more effective than the DEU diet enriched with DHA, EPA

and UMP in counteracting neurodegenerative aspects of AD and

enhancing processes involved in neuronal maintenance and repair.

Intervention with the FC diet might therefore be of interest for

several other neurodegenerative and neurological disorders.
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