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Abstract

Implicit learning (IL) occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited
by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the
role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by
Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time
task and a generation task based on the process dissociation procedure. The generation task demonstrated that
learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With
the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated
with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that
perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and
unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater
influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal
contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al.
demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and
2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two
tasks: 1) perceptual fluency may not be necessary to infer IL, or 2) conscious control over implicitly learned
information may vary as a function of perceptual fluency and motor fluency.
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Introduction

Implicit learning (IL) is learning that occurs unconsciously,
unintentionally, and without having declarative knowledge
about what has been learned [1,2]. IL remains controversial in
two ways. First, no agreement on the precise components of IL
has been reached [3]. Second, there is some debate over how
much control one can have over implicitly acquired knowledge
before learning should be considered explicit rather than
implicit (e.g., [4,5,6]). The present paper investigates the
contribution of conscious and unconscious processes in the IL
of temporal patterns using a recognition task based on the
process dissociation procedure [7] and a model-based analysis
adapted from a model by Buchner and colleagues [8,9,10].
Using previously unreported (post-test) recognition data from
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two experiments that demonstrated the IL of temporal patterns
[11], we investigated the extent of conscious control in
temporal pattern recognition and the role of fluency-based
processes. The primary aim of the present study is to examine
whether implicitly learned temporal patterns can be recognized
via conscious or unconscious processes, and to test whether
recognition via unconscious processes is associated with IL.

The Process Dissociation Procedure

It is methodologically difficult to disentangle implicit and
explicit processes while avoiding concerns of process purity
[7,12]. Process purity is the assumption that performance in a
task reflects a single process. However, this assumption is
problematic when it is likely that both conscious and
unconscious processes are engaged [13]. The process
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dissociation procedure [7] is a measure of IL that avoids
concerns of process purity by using the same task under two
types of instruction. For example, Karabanov and Ullén [14]
used a generation task where the inclusion instruction required
the reproduction of a learned temporal pattern and the
exclusion instruction required the creation of novel temporal
patterns. In the inclusion instruction, it is assumed that
responses are facilitated by both implicit and explicit
processes. In the exclusion instruction, it is assumed that
explicit processes aid the suppression of the learned pattern
but that implicit processes hinder the suppression of the
learned pattern, at least partially due to motor fluency. Motor
fluency is the speeded and/or relatively automatic response to
a learned stimulus or pattern [15]. By comparing performance
under inclusion and exclusion instructions, it is possible to
ascertain the degree to which learned information is available
to intentional control and, hence, whether learning was implicit
[14,16,17]. That is, if the learned pattern is not able to be
consciously reproduced, then the learned pattern would be
generated under the exclusion instruction with similar or
greater accuracy to that explicitly generated under the inclusion
instruction, indicating that learning is implicit [14].

The IL of patterns of visual spatial locations [16,17] and
auditory temporal patterns [11,14] has been demonstrated in
generation tasks based on the process dissociation procedure.
Furthermore, the generation task has been shown to be a
sensitive test of implicit and explicit pattern knowledge [18]. In
two experiments by Schultz et al. [11], IL was investigated
using a serial reaction-time task (SRT), a generation task, and
a recognition task based on the process dissociation
procedure. Recognition data were not reported in the previous
study as they were designed for the model-based analysis that
is described in more detail here. The present paper reports
data from the recognition task based on the process
dissociation procedure where IL of auditory temporal patterns
had been demonstrated in the SRT and the generation task
referred to above.

The Recognition Task

Recognition tasks based on the process dissociation
procedure have been used to investigate whether participants
can consciously recognize learned sequences [7,16,17]. In
recognition tasks, participants are presented with a number of
sequences or sequence fragments, some of which are the
original acquisition pattern (i.e., the learned sequence) and
some of which are novel sequences. Participants are asked to
indicate whether they recognize the sequences or sequence
fragments. If participants are able to identify the acquisition
pattern and reject the novel sequences above the levels
expected by chance, then they are said to have explicit
knowledge of the sequence. The process by which one
consciously recognizes a sequence is called recollection [19]. If
participants are unable to show conscious recollection but have
demonstrated learning in some other task (e.g., the SRT), then
they are said to have implicitly learned the sequence [16,17].
Familiarity is proposed to refer to “automatic influences of
memory” [19, pp. 665] and is assumed to be associated with
unconscious knowledge. Although familiarity itself is a
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conscious feeling [20], the knowledge of the sequence that
leads to the feeling of familiarity may still be conscious or
unconscious [21,22].

A criticism of recognition tasks using the process dissociation
procedure is that recollection and familiarity are positively
correlated [23,24,25] and that the process dissociation
procedure is not sensitive to this relationship. A stimulus may
be correctly judged as old based on recollection or familiarity
based on the following rationale: The behavior that
demonstrates recollection is the correct identification of a
stimulus that has previously been experienced [7]. However,
the correct identification of a previously experienced stimulus
can also be made based on familiarity. Familiarity occurs when
a stimulus is judged as previously experienced due to similarity
of stimulus features regardless of whether the stimulus has, in
fact, been experienced [7]. Thus, familiarity occurs when a
previously experienced stimulus is correctly judged as “old” due
to recollection, correctly judged as “old” due to the similarity of
stimulus features, or when a novel stimulus is incorrectly
judged as “old” due the similarity of stimulus features. For
example, the nursery rhymes “Twinkle twinkle, little star” and
the “Alphabet song” have the same melody but different lyrics.
If someone who had never heard either nursery rhyme were
taught “Twinkle twinkle, little star”, then presented with the
“Alphabet song” in a recognition task, they might recognize the
melody feature but not truly recollect the “Alphabet song” that
differs in regards to the lyrics. Thus, if asked if they were
originally presented with the “Alphabet song”, they might
incorrectly judge the stimulus as “old” based on familiarity with
features of the melody. Similarly, they could make a correct
recognition judgment of “Twinkle twinkle, little star’ solely
based on the melody, without any knowledge of the lyrics (i.e.,
without recollection). True recollection of the original nursery
rhyme would consist of recognition of both the lyrics and
melody and not mere familiarity with the nursery rhyme
features. The relationship between recollection and familiarity
is a concern when using recognition tasks based on the
process dissociation procedure because responses indicating
recollection may actually be attributable to familiarity of
sequence features as opposed to recollection of the learned
acquisition sequence.

A sense of familiarity with a stimulus in the absence of
recollection or conscious identification of sequence features
can also be elicited by perceptual fluency [7,19,26,27].
Perceptual fluency is the ease with which previously perceived
features are processed [7], even if the object that possesses
those features is novel. Perceptual fluency allows the correct
identification of a previously experienced stimulus without the
ability to make accurate judgments regarding why the object is
familiar [7], that is, without conscious recollection of the object
or the object features. Thus, perceptual fluency often (but not
always; see 28,29) results in a sense of familiarity without
conscious recollection [19,30]. In regards to sequence learning,
the accurate discrimination of sequences that do or do not
follow the rules of a grammar, often in the absence of the ability
to explicitly state the rules, has been used to infer IL in artificial
grammar learning paradigms (e.g., [21,22,31,32]). As
discrimination in artificial grammar learning paradigms occurs
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due to familiarity with the grammatical features without
recollection of the grammatical features, it is often assumed
that familiarity without true recollection (i.e., perceptual fluency)
can be used to infer IL (e.g., [8,9,10]). A similar concept is the
remember-know distinction, where the remember aspect refers
to conscious recollection, and the know aspect refers to
familiarity that, when disentangled from conscious recollection,
may also involve perceptual fluency [26]. The sequence
identification measurement model (SIMM) [8,9,10] has been
proposed as a computational method for separating the
familiarity of sequence features (e.g., statistical regularities)
from conscious recollection and unconscious recognition (via
perceptual fluency).

The Sequence ldentification Measurement Model
(SIMM)

Buchner and colleagues [8,9,10] used the recognition task
based on the process dissociation procedure for the purpose of
a model-based analysis referred to as the sequence
identification measurement model (SIMM). In the recognition
task based on the process dissociation procedure, participants
are asked to respond to sequences that are identical to those
learned, contain similar features to those learned, or contain
different features to those learned. The features that were
manipulated were the systematicities [8,9,10], that is, statistical
regularities within a sequence, sequence fragments, and
associative relationships between items within a sequence. A
sequence could be considered systematic if the patterning of
events within the sequence follows a set of rules. The inclusion
instruction asks participants to respond “Yes” if the sequence is
identical or contains similar features to the learned sequence
and “No” if the sequence does not contain similar features to
the learned sequence or appears unstructured. The exclusion
instruction asks participants to respond “Yes” if the sequence
contains similar features but is not identical to the learned
sequence and “No” if the sequence is identical to the learned
sequence or if it appears unstructured. The SIMM uses
probability-based multinomial processing trees [33,34] on
response frequencies to separate processes relating to the
conscious recollection of the learned sequence, detection of
systematicity, and detection of a lack of structure to extract
parameters for conscious recollection (explicit) and
unconscious recognition (implicit) that are not contaminated by
familiarity with the sequence features. Importantly, the measure
of unconscious processes in the SIMM is a more pure measure
of perceptual fluency: perceptual fluency is disentangled from
the familiarity of sequence features by estimating the influence
of perceptual fluency separately from the influence of familiarity
of the sequence features identified in the present sequences
(see Appendix A in Text S1). The primary parameters of
interest in the present study are those that refer to conscious
and unconscious processes. The original SIMM has been
successfully evaluated in a series of experiments [8,10] using
the recognition task based on the process dissociation
procedure.

In the SIMM, the parameter reflecting unconscious
processes only represents IL under the assumption that
perceptual fluency is related to, or can be used to infer, IL. The
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assumption that perceptual fluency is related to unconscious
processing and IL was proposed by Buchner et al. [8].
However, Shanks and Johnstone [35] argue that perceptual
fluency should not be viewed as related to IL because fluency
may be experienced consciously. Furthermore, perceptual
fluency may instead be an index of the level of conscious
control one has over implicitly learned information [5]. For
example, some experiments [36,37] have demonstrated that
participants can correctly choose which of two artificial
grammars to use in a given situation, despite reporting that
they are guessing. This indicates that, although an individual
may be able to recognize and use learned information (via
conscious recollection, familiarity with the grammar, or
perceptual fluency), they may not be able to identify how or
why they are able to do so. Thus, it is possible that recollection
or recognition via perceptual fluency can occur without
awareness that learning has occurred, that is, learning was
unintentional and, possibly, implicit.

Generation tasks are less affected by perceptual fluency
because responses cannot be based on familiarity, that is,
participants are not given a stimulus and, subsequently, cannot
use features of a stimulus to make recognition judgments.
Instead, the reproduction of the pattern can only be based on
pattern knowledge and motor fluency. Thus, the generation
task is not subject to the criticisms of the recognition task. A
generation task based on the process dissociation procedure
demonstrated that learning in Schultz et al. [11] was implicit.
The recognition task and SIMM reported here were used to
investigate IL under the assumption that perceptual fluency is
experienced unconsciously.

Hypotheses

The goal of the present study is to examine whether implicitly
learned temporal sequences can be recognized via perceptual
fluency and, in turn, to test whether perceptual fluency is
associated with IL. The generation task in Schultz et al. [11]
revealed IL of temporal patterns in Experiments 1 and 2. Thus,
it is expected that the SIMM will demonstrate a greater
contribution of unconscious (i.e., implicit) processes than
conscious (i.e., explicit) processes to recognition judgments for
Experiments 1 and 2. However, the SIMM is a measure of
familiarity-based recognition and, as such, it can only be used
to infer IL insofar as the premise that perceptual fluency
reflects unconscious processes is true [8,10]. If the SIMM
shows that unconscious processes play a greater role than
conscious processes in the recognition of sequences, then it is
likely that perceptual fluency is related to IL, as this result is
congruent with those of Schultz et al. [11] that were obtained in
a generation task. Alternatively, if the SIMM shows that
conscious processes contribute to recognition judgments more
than unconscious processes, then it is possible that perceptual
fluency is not related to IL, as this result conflicts with the result
of Schultz et al. [11]. In this way, a comparison of the results of
the SIMM (based on a recognition task) and the outcomes of
the generation task can be used to examine whether
perceptual fluency (in the SIMM) occurs concurrently with IL
(as demonstrated in the generation task).
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Figure 1. Beats (short vertical lines), strong beats (long vertical lines), and events (crosses) of the strongly metrical and

weakly metrical temporal patterns.
stimulus itself.
doi: 10.1371/journal.pone.0075163.g001

Perceptual fluency is computed in the SIMM (applied to
recognition data) by obtaining probability estimates for
unconscious processes that are above zero and above the
probability estimates for conscious processes [8,10]. If
probability estimates for conscious processes are above zero
and above the probability estimates of unconscious processes,
then this would show explicit recollection of the learned pattern
suggesting that learning was not implicit. If probability
estimates for conscious and unconscious processes do not
differ and are both significantly greater than zero, then the
SIMM is unable to confirm or negate IL (insofar as IL is related
to perceptual fluency), and learning may be viewed as partly
implicit and partly explicit. If both conscious and unconscious
parameter estimates are greater than zero, but one is greater
than the other, then it is likely that both conscious and
unconscious processes are involved, but one process is more
involved than the other.

Report of the Previous Study on the Implicit Learning
of Temporal Patterns

In Schultz et al. [11], an SRT was used to investigate the IL
of auditory temporal patterns. In the SRT, participants are
presented with sequential stimuli and are asked to respond to
each stimulus as quickly and accurately as possible [38].
Learning is characterized by: 1) a decrease in RT over blocks
containing the repeating pattern, 2) RT increases when novel
patterns are introduced, and 3) recovery of RT to previous
latencies when the original acquisition pattern is reintroduced.

The temporal patterns used in Schultz et al. [11] were
patterns of inter-onset intervals (I0l) that are characteristic of
musical rhythms (as in [39]). Rhythm is the “systematic
patterning of sound in terms of timing, accent, and grouping”
[40, pp. 96]. Meter is the sense of an isochronous pulse (or
beat) that can be abstracted from a musical rhythm.
Furthermore, the pulses are interpreted as alternating between
strong and weak beats to form a hierarchical framework based
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Beats and strong beats are a hypothetical cognitive framework and are not part of the

on periodic timings [41,42]. Examples of rhythms, the beat, and
first pulse of a group (strong beats) are given in Figure 1. Two
types of rhythms were used: strongly metrical and weakly
metrical [39,43]. A strongly metrical pattern contains events
that occur on the beat and each strong beat contains an event.
A weakly metrical pattern contains events that occur on the
beat but do not always occur on the strong beat. It is possible
that the metrical strength of a temporal pattern is a feature that
is used when assessing whether a pattern is recollected or
familiar.

Schultz et al. [11] examined IL of strongly metrical patterns in
two experiments. Although the two conditions reported here
were identical, the aim of the two experiments differed (see
11). In Experiment 1, IL of strongly metrical in a multiple
response task was compared to IL in a single response task
(i.e., both were adaptations of the classical SRT) with task type
as a between-subjects variable. In Experiment 2, the IL of
strongly metrical and nonmetrical patterns was investigated
using a single response task, with metricality as a between-
subjects variable. The present study examines recognition data
from the strongly metrical conditions using the single response
task in Experiments 1 and 2. In Experiments 1 and 2, results of
the SRT demonstrated that metrical patterns were learned.
There was also evidence that the metrical framework was
learned in both experiments, as the introduction of a novel
weakly metrical pattern resulted in a greater RT increase than
the introduction of a novel strongly metrical pattern.
Importantly, differences in RT increases to strongly and weakly
metrical patterns demonstrated that people are sensitive to the
feature of metrical strength [11]. Thus, it is imperative that
models of the recognition of temporal patterns are sensitive to
the detection of metrical frameworks and metrical strength. To
ascertain whether learning was implicit, a generation task
(based on [14]) was employed following the SRT. Results of
the generation task in Experiments 1 and 2 revealed IL in the
absence of familiarity and perceptual fluency-based cues and
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Figure 2. Metrical temporal patterns used in the recognition task. Events are represented by crosses, beats are represented
by short vertical lines, and strong beats are represented by long dashed vertical lines. Sequences were: strongly metrical acquisition
(SM Acq), strongly metrical systematic (SMS), strongly metrical distracter (SMD), weakly metrical systematic (WMS), and weakly

metrical distracter (WMD).
doi: 10.1371/journal.pone.0075163.g002

demonstrated that learning was implicit. After the generation
task, participants performed the recognition task described in
the present paper.

Method

Participants

Participants were first year Psychology students from the
University of Western, Sydney. In Experiment 1, participants (N
= 25; 21 female) had a mean age of 23.24 years (SD = 6.89,
range 17-45). In Experiment 2, participants (N = 25; 12 female)
had a mean age of 22.16 years (SD = 8.36, range 17-54).
Participants in Experiment 2 had not participated in Experiment
1. No participant reported a hearing impairment.

Stimuli

In the training blocks of the SRT, the stimuli could emanate
from the left headphone, the right headphone, or both
headphones in accordance with the cover story of a computer
game for the blind (see 11). The cover story was implemented
to reduce awareness of the temporal pattern in the SRT. In the
recognition task, all stimuli were presented through both
headphones (i.e., binaurally). The stimulus was a 394Hz
triangle waveform of 200ms duration with 10ms rise and fall
times. Stimuli were created using MAX-MSP and were
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presented using PsyScope software [44] through Sennheiser
(HD 650) headphones.

The strongly metrical acquisition pattern used in the training
blocks and the four sequences in the recognition task in the
two experiments are shown in Figure 2. For example, the
acquisition pattern in Figure 2 displays an 101 sequence (in ms)
of 500-1500-1000-1000-500-500-1000-2000. All  patterns
consisted of three 500ms [Ols, three 1000ms IQOls, one
1500ms I0OI, and one 2000ms IOI. In the recognition task, the
acquisition pattern had been previously encountered in the
SRT, and other four patterns were novel patterns (i.e., different
from those presented in SRT training and test blocks).

Parameter estimates in the SIMM are calculated by taking
into account which features of a sequence (e.g., statistical
regularities and, in our case, also metrical strength) might be
used to make recognition judgments and how these features
are weighted. For this reason, temporal patterns in the
recognition task must encompass and implement all possible
combinations of features. The acquisition pattern has two
features that may be learned: the statistical systematicities and
the metrical structure. The statistical systematicities that we
refer to here are the simple frequency information as outlined
by Reed and Johnson [45]. Simple frequency information refers
to statistical features of patterns that follow second order
conditional probabilities, that is, a statistical property where
each item can be predicted based on the two items that
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preceded it. For example, consider the pattern 1-3-2-2-1-1-2-4
where items 1, 2, 3, and 4 represent different temporal
intervals. The pair 1-3 is always followed by 2, 3-2 is always
followed by 2, 2-2 is always followed by 1, 2-1 is always
followed by 1, 1-1 is always by 2, 1-2 is always followed by 4,
and 2-4 is always followed by 1. After exposure to such a
sequence, one would be able to predict the length of a
temporal interval in the sequence based on the two intervals
that preceded it.

Temporal patterns in Schultz et al. [11] were governed by
second order conditional probabilities. For this reason, it is
possible that participants were able to learn not only the
second order conditional probabilities, but also the statistical
structure called simple frequency information [45]. Simple
frequency information refers to: the item frequency (the number
of times an IOl occurs in a sequence), transition frequency (the
number of times bigrams of items occur), the rate of full
coverage (the average number of items that must occur to view
each unique IOl in the sequence at least once), and the rate of
full transition usage (the average number of items necessary to
view each bigram at least once).

To use the SIMM to measure the influence of statistical
features (i.e., simple frequency information) on recognition
judgments, patterns with the same and different simple
frequency information were presented. Novel systematic
sequences in the recognition task had the same simple
frequency information as the acquisition pattern. By contrast,
novel distracter sequences in the recognition task had different
simple frequency information than the acquisition pattern.
Furthermore, to ensure that differences in responses in the
recognition task cannot be attributed to recognition of (or
familiarity with) temporal grouping differences, the size of
rhythmic groupings (i.e., groups of two or three proximal
events) was kept constant between patterns in the acquisition
phase and the recognition phase.

To measure the influence of metrical features on recognition
judgments (via the SIMM), metrical strength (i.e., strongly
metrical, weakly metrical) was manipulated for novel
sequences in the recognition task. Novel strongly metrical
patterns had the same metrical strength as the acquisition
pattern, and novel weakly metrical patterns had a weaker
metrical strength than the acquisition pattern. The original
SIMM of Buchner and colleagues [8,9,10] was used for
nonmetrical temporal patterns [9] and, consequently, was not
concerned with metrical features that specifically pertain to
metrical temporal patterns. Hence, we adapted the SIMM to
include a parameter that represents the conscious detection of
metrical strength. The recognition task consisted of five
sequences (see Figure 2): the strongly metrical acquisition (SM
Acq) pattern, a strongly metrical systematic (SMS) sequence, a
strongly metrical distracter (SMD) sequence, a weakly metrical
systematic (WMS) sequence, and a weakly metrical distracter
(WMD) sequence.

Ethics Statement

Written informed consent was obtained from all participants
and the study was approved by the University of Western
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Sydney Human Ethics Research committee (approval number
H7764).

Procedure

For a full description of the SRT and generation task, see
Schultz et al. [11]. The recognition task was performed after the
SRT and the generation task had been completed. In the
recognition task, patterns were presented in a random order
within each instruction (inclusion and exclusion). The order of
inclusion and exclusion instruction was counterbalanced across
participants. Participants were presented with each sequence
and were asked to provide one “Yes” or “No” response per
sequence in a binary decision task. The inclusion instruction
was “Respond ‘Yes’ if the sequence was identical or had a
similar structure to the sequence in the [SRT]” (

“SRT” here was replaced with “computer game for the blind”
in line with the cover story used to promote IL, see [11] for
details). The inclusion instruction required participants to
respond “Yes” if the rhythmic pattern was identical to the one
presented in the SRT or if it had familiar sequence features to
the one presented in the SRT. Participants were asked to
respond “No” if the pattern had unfamiliar sequence features.
In this way, a “Yes” response in the inclusion instruction could
reflect conscious recollection or perceptual fluency, or the
familiarity with sequence features such as statistical
systematicity or metrical strength. The exclusion instruction
was “Respond ‘Yes’ if the sequence had a similar, but NOT
identical, structure to the sequence in the [SRT].” The
exclusion instruction required participants to only respond
“Yes” if the sequence had familiar sequence features to the
one presented in the SRT but was NOT identical to the one
presented in the SRT. If participants recognized the pattern
from the SRT, or if the pattern appeared to have unfamiliar
sequence features, they were to respond “No”. In this way, a
“Yes” response in the exclusion instruction reflects familiarity
with the sequence features or perceptual fluency, but not
conscious recollection of the acquisition pattern. A “No”
response in the exclusion condition reflects conscious recollect

ion of the learned sequence.

Under each instruction, responses to the five sequences can
be either “Yes” or “No”. In total, 20 different sets of responses
can be made: 2 (instruction) x 5 (sequences) x 2 (answer,
“Yes”/” No”), and each response corresponds to a different
outcome in the processing tree (see Appendix A in Text S1,
and Figure S1). Participants were presented with each
sequence three times and the order of sequence presentations
was random. In total, 60 responses were made per participant
in the recognition task. The combined frequencies of responses
from all participants were used to calculate the probabilities of
the latent variables using the multinomial processing tree. The
SIMM calculates the parameter estimates based on the pooled
data of participants and, as such, parameter estimates reflect
the contribution of processes at the group level, rather than the
individual level. The proportion of “Yes” and “No” responses in
Experiments 1 and 2 are shown in Figure 3 (see Appendix B in
Text S2 for statistical analyses on the average proportions for
each condition). These proportions are used in the SIMM to
obtain parameter estimates. As can be seen in Figure 3, the
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Figure 3. Behavioral data in the recognition task. Proportions of “Yes” (white bars) and “No” (grey bars) responses in the
recognition task in the metrical conditions for Experiment 1 (top panel) and Experiment 2 (bottom panel). The temporal patterns
presented under the inclusion and exclusion instruction were: the acquisition (Acq) sequence, the strongly metrical systematic
(SMS) sequence, the weakly metrical systematic (WMS) sequence, the strongly metrical distracter (SMD) sequence, and the weakly

metrical distracter (WMD) sequence.
doi: 10.1371/journal.pone.0075163.g003

relative proportions for the inclusion instruction were similar for
Experiments 1 and 2. In the exclusion condition, however, the
relative proportions differed; there were more “Yes” responses
for the non-acquisition sequences compared to the acquisition
sequence in Experiment 2. Thus, it was likely that the model
outcome would differ between the two experiments.

The Sequence ldentification Measurement Model

Both the SIMM and the process dissociation procedure [7]
share the assumption that participants respond differently
under inclusion and exclusion instructions when a sequence is
identified implicitly or explicitly. As mentioned, the original
SIMM [8,9,10] did not consider temporal patterns comprised of
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IOIs and how rhythmic features, such as meter, might be
learned and used to make recognition judgments. Due to the
additional information given by meter and metrical strength, the
original SIMM and parameter calculations needed to be
modified accordingly. Here, we included the parameter m that
represented the conscious detection of meter and/or metrical
strength. A description of the SIMM and the calculations is
presented in Appendix A (see Text S1).

The SIMM [8,9,10] as adapted here was used to analyze
responses in inclusion and exclusion instructions and
determine the value of the parameters reflecting conscious
processes (c), unconscious processes (uc-

), detection of systematicity (s), detection of metrical strength
(m), detection of a lack of structure (d), and guessing under the
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Table 1. Summary of the sequence identification measure
model parameters.

ParameterDescription

The probability of consciously recollecting the learned acquisition
i sequence
The probability of recognizing the learned acquisition sequence via
ue perceptual fluency
The probability of detecting statistical systematicity of the acquisition
sequence based on transitional probabilities

The probability of detecting the metrical strength of the acquisition

m sequence (strongly metrical or weakly metrical)

. The probability of detecting the absence of statistical systematicity and
metrical strength of the acquisition sequence

I°d The probability of guessing in the inclusion instruction

g° The probability of guessing in the exclusion instruction

doi: 10.1371/journal.pone.0075163.t001

inclusion (g) and exclusion (g,) instructions. Table 1
summarizes the parameters used in the present study.
Although all parameters were included in the current study,
based on previous implementations of the SIMM [8,9,10] it was
expected that parameter s would not be greater than zero and
would not significantly contribute to the model. Furthermore,
due to the probability of guessing in binary decision tasks being
0.5, and previous results indicating that the guessing
parameters in the SIMM are generally not significantly different
from 0.5 [8,9,10], it was expected that the probability of
guessing in the inclusion and exclusion instructions would not
be significantly different from 0.5.

Results

Recognition data from Schultz et al. [11] (data is available
upon request to the corresponding author) were analyzed using
multiTree software [46], designed specifically for the analysis of
joint multinomial processing tree models such as the SIMM and
the adapted SIMM. MultiTree can be used to estimate model
parameters, calculate variability (e.g., confidence intervals and
standard error), and goodness-of-fit statistics. The A Akaike
Information Criterion (AAIC) was used to assess the model fit
to the data. The AAIC is a measure of a model relative to the
“best” model given the current parameters [47]. AAIC does not
give a significance level but, instead, provides a measure of the
strength of evidence supporting the model where: 0 < AAIC < 2
suggests substantial evidence for the model; 3 < AAIC < 7
suggests considerably less support, and AAIC > 10 indicates
that the model is unlikely. Negative AAIC values reflect
overdispersion in the data, that is, greater variability in the data
set than would be expected given the statistical model. The
lowest positive value of AAIC was used to assess whether
there was substantial evidence for the model [48,49]. Model fits
were considered significant if the p value of the PD* goodness-
of-fit statistic is less than .05. Reference to a parameter
estimate as “different” from a value (or another parameter
estimate) refers to whether the upper and lower confidence
interval (Cl) of the parameter estimate overlap with the upper
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and lower CIl of the other parameter estimate. Bootstrapped
Cls (20,000 samples) were obtained following the advice of Hu
[50] who stated that the Fisher information matrix (the default in
multiTree) is not the best approximation of the true variance-
covariance matrix in the case of small sample sizes.

First, following Buchner et al. [8,9,10] the processing trees
were doubled so that separate parameter estimates could be
obtained for Experiments 1 and 2. This was done simply to
ensure that both experiments were comparable and because,
from the outset, there were no reasons to suspect that the
results would differ between the two experiments. To ensure
that doubling the processing trees did not affect the outcome,
the model was also run separately for each experiment. The
resulting parameter estimates did not differ from those reported
in the following sections and model fits for each condition were
generally significant (or not significant) under the same model
restrictions as those reported here.

When the model was fitted to the data without any
restrictions (i.e., all parameters were free) the model fit fell
short of significance (PD* = 10.16, p = .26), but there was
decent evidence for the model (AAIC = 2.16). The results of the
unrestricted model are shown in Table 2. To refine the model,
several parameter restrictions were applied (following Buchner
et al. [8,10]). Based on the expectation that guessing under
inclusion and exclusion instruction occurs with a probability of
0.5 (chance level for guessing), and the results of the
unrestricted model that suggested these values were not
different from 0.5 for all conditions (see Table 2), the
parameters representing guessing under inclusion (g;) and
exclusion (g.) instruction were set to 0.5. This resulted in a
significant model fit (PD* = 22.00, p = .02), but there was less
evidence for the model (AAIC = 6.00) than for the unrestricted
model. Based on previous results of the SIMM [8,9,10] and the
results (in both the unrestricted model, and when parameters
reflecting guessing are set to 0.5) indicating that the parameter
reflecting the detection of statistical systematicity is not
different from zero, the parameter s was also set to zero.
Setting a parameter to zero is equivalent to removing the
parameter from the model. This resulted in a significant model
fit (PD* = 22.67, p = .01) and demonstrated decent evidence for
the model (AAIC = 2.67). As the parameters reflecting
detection of metrical strength (m) and detection of a lack of
structure (d) were not significantly different from zero in the
unrestricted model (see Table 2), we systematically fit the
model to the data with the restriction that each of these
parameters were equal to zero for Experiments 1 and 2 (as
performed by [8,9,10] for parameter s). The primary
parameters of interest (reflecting conscious and unconscious
processes) were not restricted.

Of the three models tested, the model with the most
substantial evidence (AAIC = 0.16, PD* = 24.16, p = .049)
resulted when the parameters reflecting the probability of
guessing under inclusion (g;) and exclusion (g.) instruction
were set to chance levels (0.5), and parameters reflecting the
detection of systematicity (s) and the detection of a lack of
structure (d) were set to zero. In effect, this reflects that the
parameters of the detection of systematicity and the detection
of a lack of structure were not notably contributing to the
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Figure 4. Parameter estimates for in Experiments 1 and 2. Probabilities range from 0 to 1. Parameters represent conscious
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Experiment 2 parameters ¢ and uc- are not considered different.

doi: 10.1371/journal.pone.0075163.g004

Table 2. Parameter estimates for the unrestricted model in
Experiments 1 and 2.

ParameterExperiment 1 Experiment 2

Parameter Parameter
Estimate Cl (lower-upper)Estimate CI (lower-upper)
c 0.30 0.21-0.39 0.28 0.12-0.45
uc- 0.55 0.37-0.73 0.16 -0.21-0.53
s 0.00 -0.25-0.25 0.11 -0.17-0.40
m 0.08 -0.16-0.32 0.17 -0.10-0.43
d 0.05 -0.31-0.40 0.00 -0.48-0.48
g 0.46 0.32-0.59 0.37 0.14-0.61
g° 0.53 0.34-0.71 0.55 0.36-0.74

doi: 10.1371/journal.pone.0075163.t002

model. The resulting probability estimates for conscious
processes (c), unconscious processes (uc-), and the detection
of metrical strength (m) are shown in Figure 4.

The parameter representing conscious (c) processes was
greater than zero for Experiment 1 and Experiment 2. Similarly,
the parameter representing unconscious processes (uc-) was
greater than zero for Experiments 1 and 2. As can be seen in
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Figure 4, for Experiment 1, unconscious processes (uc- = .53,
Cl = .30 to .76; indicative of perceptual fluency) contributed
more to recognition judgments than conscious processes (c = .
28, Cl = .27 to .29). For Experiment 2, conscious (c = .20, ClI
= .02 to .38) and unconscious processes (uc- = .18, Cl = -.01
to .48) contributed similarly to recognition judgments, indicating
that responses were not primarily governed by perceptual
fluency. Thus, there is a disagreement between the model-
based evidence for perceptual fluency in Experiments 1 and 2.
The parameter estimate for the detection of metrical strength
was not significantly greater than zero in Experiment 1 (m = .
06, Cl = -.07 to .19) but was significantly greater than zero in
Experiment 2 (m = .14, Cl = .03 to .28). However, there was
greater evidence for the model (as shown by AAIC) when this
parameter was included for Experiments 1 and 2, indicating
that the detection of metrical strength may still have contributed
somewhat to recognition judgments. The model was also run
on the pooled data from Experiments 1 and 2 (see Appendix C
in Text S3), but the evidence for the model using the pooled
data was not as strong (AAIC = 9.45, PD* = 21.45, p = .002) as
the evidence found for the data with the two datasets
separated (AAIC = 0.16, PD* = 24.16, p = .049) when the same
restrictions were applied.
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Discussion

The present study used a model-based analysis to examine
the contribution of conscious and unconscious processes to
recognition judgments of temporal patterns that were learned in
an SRT [11]. Results of the SIMM do not consistently support
or refute the hypothesis that unconscious processes play a
greater role in the recognition of temporal patterns than
conscious processes. In Experiment 1, the SIMM indicated that
both conscious and unconscious processes were involved, but
that unconscious processes played a greater role than
conscious processes. This finding is in line with the results of
the generation task ( [11]: Experiment 1, single response
condition) that demonstrated that learning was implicit.
However, in Experiment 2, the SIMM indicated that both
conscious and unconscious processes contributed equally to
recognition judgments. Results of Experiment 2 are in contrast
with the results of the generation task ( [11]: Experiment 2,
metrical condition) that demonstrated that learning was implicit.

The discrepancy between the results of the recognition task
(and SIMM) and the generation task might suggest a difference
between perceptual fluency as shown in the recognition task
and motor fluency as shown in the generation task. In other
words, the discrepancy between the results of the recognition
and generation tasks might be evidence that the assumption
that perceptual fluency relates to IL does not always hold true,
and that IL is better captured by the generation task that is not
affected by familiarity-based processes. If we reject the
assumption that perceptual fluency reflects IL, and instead treat
perceptual fluency as a process that cannot be used to infer IL
(as suggested by [35]), then we can conclude that learning of
metrical patterns was implicit (as demonstrated in the
generation task). However, it must be acknowledged that
perceptual fluency may not have contributed to familiarity-
based responses more strongly than conscious processes in
Experiment 2 (as revealed by the recognition task and SIMM).
In other words, unconscious processes contributed less to the
recognition of patterns in Experiment 2 than in Experiment 1.

These results are not interpreted as evidence that the SIMM
is invalid or unreliable: the SIMM has already been shown to be
a reliable measure of perceptual fluency in a series of
experiments [8,9,10]. Instead, we suggest that the SIMM
parameter representing unconscious processes may not be
associated with IL, but still measures perceptual fluency as per
the assumptions of the model. One hypothesis is that, contrary
to the assumptions of the SIMM [7,8,10], perceptual fluency is
related to implicit knowledge and, as such, is a sufficient, but
not a necessary, marker of IL. In other words, perceptual
fluency might arise as a result of IL because the resulting
knowledge is implicit, but a lack of perceptual fluency does not
negate that the process of learning the sequences was implicit.
Experimental conditions in Experiments 1 and 2 only differed
with respect to the participants, and the results of the
generation task demonstrated IL for both conditions. In
contrast, the SIMM showed a greater influence of unconscious
processes (via perceptual fluency) than conscious processes in
Experiment 1, but not in Experiment 2. If perceptual fluency
could be used to infer IL, then the results of the generation task
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and the SIMM should be congruent. The disagreement
between the results of the generation task and the SIMM in
Experiment 2 supports the hypothesis that perceptual fluency
may not be a necessary requirement to conclude that learning
is implicit.

It is also possible that the disagreement between the results
of the generation task and the SIMM exposes differences in the
amount of conscious control participants have over implicitly
learned information. Some studies (e.g., [4,36,37]) have
suggested that implicitly acquired information may still be
available to conscious control (i.e., the information can be used
strategically) even if the participant has no explicit knowledge
of what has been learned and no intentional control over the
use of knowledge that was implicitly learned. For example,
Franco et al. [4] used an adaptation of a recognition task based
on the process dissociation procedure to examine the degree
of conscious control that could be exerted over knowledge that
was acquired implicitly. Franco et al. demonstrated learning of
two different artificial languages in the same participants.
Results of Franco et al. showed that words from the languages
could not be differentiated from one another, suggesting that
learning was implicit. However, the words from the languages
could be differentiated from new words, suggesting that
participants could still exert conscious control over the implicitly
learned information. In our present study, results of Experiment
2 are in line with the results of Franco et al. [4]: participants
were able to differentiate the learned pattern from novel
sequences in the recognition task, but could not create novel
sequences that differed from the learned pattern in the
generation task. These results suggest that, even though the
patterns may have been implicitly learned, the learned
information was still available to conscious control in a
recognition task (in Experiment 2). Furthermore, Norman,
Price, and Jones [51] hypothesize that there may be
differences in the strategies and criteria used by individuals in
recognition tasks. The use of different strategies or criteria
might explain why conscious control differed between
Experiments 1 and 2 presented here, that were similar in all
respects other than participant sample.

Another possibility that is suggested by the disagreement
between the generation task and the SIMM for Experiment 2
[11] is that there might be a difference between perceptual
fluency and motor fluency. Perceptual fluency and motor
fluency are sometimes discussed as interrelated processes
(e.g., perceptual-motor fluency) in the SRT and implicit learning
literature (e.g., [15,35]). It is possible that perceptual fluency
and motor fluency represent different types of control that one
has over the identification of sequences (i.e., perceptual
fluency) and the recall or reproduction of sequences (i.e., motor
fluency). As the recognition task primarily relies on perceptual
influences, and the generation task primarily relies on motor
influences, it is possible that the results from recognition and
generation tasks in the present study have revealed that
perceptual fluency and motor fluency may be dissociable.

Some evidence that perceptual and motor fluency are
dissociable has already surfaced. A study by Gaillard,
Destrebecqz, and Cleeremans [52] investigated the effects of
increased attentional load during a generation post-test using
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visual spatial sequences. During the generation task,
participants performed either an articulatory suppression task,
a foot-tapping task, or no secondary task. Gaillard et al. found
greater evidence for motor fluency in the exclusion task (i.e., an
inability to suppress learned sequences) under conditions with
a secondary task. Furthermore, participants could recognize
sequence fragments above chance levels in a recognition task
for all groups. This was viewed as evidence for a dissociation
between conscious control in a generation task and recognition
memory. Another interpretation that was not suggested by
Gaillard et al. is that, in the generation task, the secondary task
interfered with perceptual processes, resulting in more
automatic motor responses. This interpretation would mean
that, while perceptual fluency and motor fluency may be
related, they may also play separate roles.

There is also evidence that motor fluency may affect
perception. A study by Yang, Gallo, and Beilock [15] found that
expert typists make more false recognition errors to perceived
(not performed) letter dyads (i.e., non-words) that are
considered more fluent to type, than those that are less fluent
to type. This effect was reduced when a secondary finger-press
motor task is performed during the recognition phase.
Furthermore, novice typists did not exhibit fluency effects in the
recognition task. This indicates that motor fluency may interfere
with recognition judgments. Taken together, the results of
Gaillard et al. [52] and Yang et al. [15] indicate that perceptual
fluency and motor fluency have a complex association that
begs investigation. If perceptual and motor fluency are
dissociable, then this might explain the discrepancy between
the generation task and the recognition task (and SIMM) in
Experiments 1 and 2 in the present study. However, the role of
perceptual fluency in implicit learning is still uncertain.

Conclusion

The present study presented a model-based analysis for
examining the IL of temporal patterns. The adapted SIMM
developed here included a parameter for the detection of
metrical strength, and results of the model demonstrated that
the inclusion of this parameter improved the model. In tandem
with the results of Schultz et al. [11], the model suggests that
perceptual fluency may not necessarily be associated with IL.
These results are in line with the conclusions of Shanks and
Johnstone [35] that fluency can be experienced consciously.
Alternatively, the model suggests differences in the amount of
control that individuals have over implicitly learned information
(as suggested by [4]), a speculation that cannot be confirmed
in the present study, and requires further testing. A limitation is
that the SIMM uses frequency data and was not designed to
account for individual differences; the development of another
model that can be used on individuals’ data would be a
valuable avenue for future research that could test the
hypothesis that there are individual differences regarding
strategic control over implicitly learned information. Another
interpretation of the present results is that perceptual and
motor fluency could be dissociable processes. Future
experiments examining perceptual and motor fluency under
conditions of attentional load or with a secondary motor task
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are necessary to uncover how perceptual and motor fluency
are related. As the results of Buchner and colleagues [8,9,10]
have suggested that the SIMM is a measure of perceptual
fluency, the SIMM might be useful for exploring the role of
perceptual fluency in the recognition of sequences when
perceptual or motor processes are engaged in a secondary
task. However, the present results suggest that there may be
an uncertain relationship between perceptual fluency and IL
that requires further investigation.

Supporting Information

Figure S1. The adapted sequence identification
measurement model for the inclusion and exclusion test
conditions. The sequence types are shown on the left,
participants’ responses (“Yes” and “No”) are shown on the
right, and the parameters denoting the probabilities with which
the underlying cognitive states are arrived at constitute the
middle. The parameters represent the probability of
consciously recollecting the Acquisition pattern systematicity
(parameter c), the probability of detecting the systematicity in a
sequence that cannot be recollected (parameter s), the
probability of detecting the metrical strength in a sequence that
cannot be recollected (parameter m), the probability of
recognizing the acquisition pattern via perceptual fluency
(parameter uc-), the guessing that a sequence requires a “Yes”
response in the absence of any other information about the
sequence (parameters g, and g, in the inclusion and exclusion
test conditions, respectively), and the detection of a lack of
structure (parameter d).

(TIF)

Text S1. Appendix A: Description of the Sequence
Identification Measurement Model.
(DOCX)

Text S2. Appendix B: Statistical analyses on proportion
data.
(DOCX)

Text S3. Appendix C: Analysis of pooled data from
Experiments 1 and 2.
(DOCX)
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