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Abstract

Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or
rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare.
Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or
sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no
obvious order. ‘‘Crazy quilts’’ represent a historically important style of quilt making that became popular in the 1870s, and
lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to
appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical
techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to
evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit
fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution,
while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern
motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In
contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of
patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a
random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed
achieved their goal of generating random structures.
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Introduction

Human ornaments and decorative art represent a class of

biologically generated patterns typified by a high degree of

structure and order. Conventional decorative patterns can

typically be described by their underlying symmetry [1]. Human

visual artefacts very rarely intentionally violate ordering principles

such as symmetry and repetition. Although randomness serves as

the typical null hypothesis in the physical sciences, it has long been

known that humans have great difficulty in producing random

output. Seemingly random behaviours are not uncommon in the

biological world (e.g. prey escape behaviours), yet analyses of such

behaviours remain for the most part qualitative [2]. It has been

shown experimentally that, given the task of creating random

numerical arrays, humans generate output that deviates strongly

from a truly random array, especially when a participant’s

response time is limited [3,4]. Somewhat surprisingly, when

participants are presented with both random numerical sequences

and pseudo-random sequences produced by humans that deviate

from true randomness, the latter are more likely to be classed as

‘‘random’’ than the truly random sequences [5]. Apparently,

humans are well equipped to detect and create ordered structures,

but not random structures. At least in humans, this inability seems

to stem from a strong ‘‘sense of order’’, a term coined by E. H.

Gombrich to express how our drive to ‘‘regularise’’ artefacts is a

fundamental aspect of human cognition, almost as basic as our

sense of smell or touch [6].

Given our species’ apparent obsession with order, we might

wonder if any human artefacts produced with a maker’s controlled

actions (rather than by an uncontrollable physical process such as

cracks or decay, or by minimal, uncontrolled variation) can be

adequately described with a random process.

One candidate class are crazy quilts: a once popular class of

textile craftwork often intended for display. A crazy quilt is a

blanket consisting of two fabric layers. The top layer is made of

‘‘irregular bits and pieces [of fabric] strewn in a seemingly

disorganized fashion’’ [7]. This quilt type is unusual because it is

made, unlike most other quilts, specifically to create an irregular

aesthetic impression. It is often claimed that the arrangement of

the patches is random, e.g.: ‘‘The patchwork was constructed by

stitching random patches to a fabric base’’ [8]. In this paper, we

aim to evaluate this claim by describing the properties of spatial

patterns in quilts and to quantify the differences in orderedness

between regular and crazy quilts (see Fig. 1 for typical examples of

both quilt categories).
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Our analysis of real-life visual patterns follows an approach in

empirical aesthetics first outlined by Gustav Fechner in the late

19th century [9,10]. Fechner advocated the use of three methods

to investigate aesthetic proclivities in humans: studying how people

produce artefacts, how artefacts are perceived and the description

of properties of artefacts encountered in real life. Research on the

human production and perception processes of visual patterns in

the lab [11,12] has shown that abstract geometrical patterns have

a near universal aesthetic appeal and that the ordering principles

underlying them are readily understood by a wide range of

humans. Formal descriptions of real-life patterns, in particular

Islamic tilings, exist that are based on classification systems derived

from crystallography [1,13–15], but very little work has been done

to formally describe disorderly artefacts and patterns that do not

adhere strictly to conventional symmetry classes.

Previous research applying spatial analysis tools to human

artwork has focussed mainly on paintings [16–21], photography

[22,23] or on traditional patterns used in pottery and other

ornamental objects [1,24]. Much less quantitative research has

been devoted to patchwork, though see [25,26].

A Brief history of Crazy Quilts
Patchwork is the stitching together of small pieces of cloth

(patches), into a larger unit, typically used for blankets, pillowcases

or clothing. Though patchwork is best known from English-

speaking cultures, in particular North America and England, it is

has traditionally been produced in many countries (e.g. China,

Pakistan, India, Thailand, Iran, Sudan, and Korea) [8].

Crazy quilts are a form of patchwork that enjoyed a brief period

of popularity in the late 19th and early 20th century. The oldest

examples are from the 1870s. These quilts were widely produced

until the 1920s, after which their popularity waned, although they

are still occasionally produced today by patchworkers around the

world.

Crazy quilts typically contain many different fabric types and

fabric patterns. Additionally, the edges of patches are decorated

with a wide variety of embroidery stitches and centres are often

embroidered with vignettes of animals and plants, although the

embroidery seems to have become less elaborate as the fad

progressed [25]. In combination, crazy quilts evoke an impression

of lavishness and wild abundance that stands in stark contrast to

the strict rules of traditional quilts and Victorian society more

generally.

The roots of Western crazy quilts may lie in Japanese

patchwork. In Japan, the technique of yosegire (reusing precious

fabrics in coats and kimonos) was popular in the 19th century.

Examples of yosegire patchwork appear quite unstructured, lacking

the rigid repetitions of Western patterns. Japan began trading with

the West in 1854 with the convention of Kanagawa, ending 200

years of isolation policy. In 1876, a range of textiles were displayed

at the Japanese stand of the Centennial Exposition in Philadelphia,

which had close to ten million visitors (the population of the

United States at the time was about 38 million) [27]. Several

historians claim this exhibition and ensuing popularity of Japanese

craft was the inspiration behind American crazy patchwork [8,28].

Brick [7] also argues for a Japanese influence, but credits the

Gilbert and Sullivan opera ‘‘The Mikado’’ which debuted in 1885,

after which Japanese designs and textiles, including yosegire style

patchwork, became wildly popular.

The oldest attested usage of the adjective ‘‘crazy’’, meaning ‘‘full

of cracks’’, dates from the 1580s, and it is still in use today, e.g.

‘‘crazed glazing’’. The contemporary meaning of ‘‘mad, insane’’ is

attested since 1617, however evidence for describing objects or

actions as mad only goes back to 1855. The oldest usage of ‘‘crazy

patchwork’’ is found in 1885, and the appellation ‘‘crazy quilt’’

goes back to 1886. We therefore assume that the term ‘‘crazy

quilt’’ at the time would primarily have meant ‘‘haphazardly

cracked’’, though the connotation of madness may have been

present as well [29].

Crazy quilts seem to have been a rare outlet for women to

escape the confines of household routines and explore individual

creative expression, in some cases to the annoyance of their

husbands, as the anonymous poem ‘‘The Crazy-Quilt’’ from 1890

suggests [30]:

[…] And where is the wife who so vauntingly swore.

That nothing on earth her affections could smother?

She crept from your side at the chiming of four

Figure 1. Examples of the quilts analysed in this study. Left: a crazy quilt (C2, International Quilt Study Center, University of Nebraska-Lincoln,
1997.007.0552). Right: a regular quilt (R8, International Quilt Study Center, University of Nebraska-Lincoln, 2003.003.0212). In all images, the margins
that did not contain patchwork were cropped out prior to analysis.
doi:10.1371/journal.pone.0074055.g001
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And is down in the parlor at work on another.

Your breakfasts are spoiled,

And your dinners half-boiled,

And your efforts to get a square supper are foiled

By the crazy-quilt mania that fiendishly raves,

And to which all the women are absolute slaves […].

Spatial Analysis of Patterns
In the current study we analyse crazy quilts using spatial

statistics, comparing them to `normal’ regular quilts. Quilts in

general are subject to a number of constraints that would be

difficult to capture in standard random models (e.g. in a Poisson

process). Two key constraints are that patches must exceed some

minimum size (minimal area constraint) and that, although rare

exceptions exist, the overall quilt shape must be approximately

rectangular (edge constraint).

In general, patch edges are straight (for the practical reason that

straight seams are easier to sew than curves if the patches are to lie

flat). Unfortunately, the direct analysis of patch edges as line

segments (number, angle, etc) is difficult, because the seams are

not necessarily perfectly straight and thus vertices and corners

cannot always be unambiguously classified. In this study, we

focussed instead on the properties of the patch areas and centroids,

which can both be precisely calculated and serve as adequate

measures of spatial organisation for our purposes.

With these constraints in mind, we adopted a Strauss process

over patch centroids as our random comparison model. A Strauss

process, introduced by David Strauss in 1975 [31], is a superset of

a Poisson process which models interactions between points in the

plane (i.e. it is a pairwise interaction process). Strauss processes

were further developed by Kelly and Ripley [32] and have been

applied to a wide variety of biological spatial patterns, for example

to model herd animal dispersion [33], spatial distribution of tree

species [34] or neuron locations in the brain [35].

Because of imprecision in manual motor control, imperfection is

inherent in any handmade object. To estimate the magnitude of

this intrinsic motor error, and to provide a rigorous basis for

comparison, we also analysed standard or`regular’ quilts. In this

type of quilt, multiple copies of the same pattern unit (̀blocks’) are

arranged in a translational fashion on a square grid. While each

block is a nearly exact copy of the pattern, blocks will nonetheless

show some unintentional random variation. Minimally, we predict

that crazy quilts will be significantly more random than such

regular quilts. A finding that qualitatively different spatial models

fit these two classes would be germane to our overall question of

the hypothesised randomness of crazy quilts.

Hypotheses
Our overall goal in this study is to evaluate the degree to which

crazy quilts are compatible with a random generative process, and

the degree to which this differentiates them from regular quilts.

This broad question leads directly to testable hypotheses

concerning patch area and patch centroid location (labelled HR

and HC for hypotheses about regular and crazy quilts, respec-

tively):

HC1: Crazy quilts are intended to create a haphazard and

irregular impression. If this intention is realized, the location of

patch centroids should be adequately modelled by a random

spatial process.

HC2: Because crazy quilts lack repeating motifs or patch types,

the patch areas should come from a single overall distribution.

Furthermore, as patch ensembles are constrained to fit within

rectangles, we expect small patches to be more numerous than

large ones. We thus predict a positive-skewed but otherwise

continuous distribution of patch sizes.

HR1: Because patterns in regular quilts are intended to be

periodic and symmetrical, the locations of patch centroids should

not be adequately modelled by a random spatial process.

HR2: Regular quilts are made up of repeating motifs consisting

of a small number of patch types. Because each element of a given

type is intended to be identical in size and shape, but will include

some small degree of error, we expect the overall patch size

distribution of a regular quilt to be a composite of the individual

distributions for each patch type as a mixture of Gaussian

distributions (rather than the single overall distribution predicted

for crazy quilts, in HC2).

Materials and Methods

We performed a detailed spatial analysis of hand-tracings of 8

crazy quilts and 8 regular quilts from North America. Their

overall properties are summarised in table 1. To ensure that the

quilts had a comparable level of structural complexity and similar

internal constraints, all quilts had at least one level of regular

subdivision, i.e. were organised either in regular blocks or strips.

Because many quilts were made anonymously, it was not possible

to date the quilts exactly, but based on the published sources, we

ensured that the quilts stemmed from roughly the same geographic

area (USA) and time (ca. 1870–1930). Additionally, we only

selected images that showed the entire quilt in sufficient detail to

allow an exact delineation of patches within the quilts. The

analysed quilts were selected from commercially available quilt

books [7,36,37]. In general, these quilts were blanket size, but one

of the crazy quilts (C5), was considerably smaller than the others,

roughly pillowcase size.

Table 1. Overview of the quilts analysed.

Quilt Year

Number
of
Patches

Height
(in cm)

Width
(in cm)

Overall
area
(in cm2)

Patched
area
(in cm2)

R1 &1930 784 208.28 208.28 43,381 15,661

R2 &1930 440 203.2 175.26 35,612 17,934

R3 1898 421 218.44 165,1 36,064 18,520

R4 &1930 327 215.9 209.55 45,241 31,877

R5 1891 972 187.96 173.99 32,703 32,020

R6 1890–1910 692 191.77 187.96 36,045 19,980

R7 1890–1910 736 201.93 200.66 40,519 25,460

R8 1900–1920 192 182.88 173.99 31,819 25,948

C1 &1930 239 198.12 160.02 31,703 21,895

C2 1871 512 193.04 160.02 30,890 21,327

C3 1884 317 207.01 180.34 37,332 35,757

C4 1885 834 195.58 162.56 31,793 31,793

C5 &1875 108 35.56 35.56 1,265 1,203

C6 &1890 322 139.7 200.02 27,943 26,636

C7 1880–1900 106 134.6 132.08 17,778 17,505

C8 &1889 133 210.82 170.18 35,877 34,550

Size and numbers of patches of the quilts analysed and the exact or
approximate year of production. We excluded border stripes from the size
measurements in our analysis, including only the region that contained
patchwork (‘‘patched area’’).
doi:10.1371/journal.pone.0074055.t001
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Digital images of the quilts were scanned from printed

photographs at 300 dots per inch (CanoScan LiDe 200, Canon).

Despite intensive efforts, we were unable to use segmentation

algorithms to derive accurate patch borders automatically, due to

considerable internal complexity and heterogeneity of the quilt

patches. Thus, the outlines of individual patches were traced

manually on a Wacom LCD tablet (DTZ-1200W/G) and saved as

regions of interest (ROIs) using FIJI [38]. The tracings are shown

in Fig. 2. We converted the ROIs from pixels to cm2 by scaling the

scanned image based on the measurements of the photographs of

the quilts and the dimension given in the source books. This scale

was estimated twice, based on length and width measurements,

and then averaged. Unless indicated otherwise, ‘‘area’’ refers to

true area, in cm2, hereafter. We excluded non-patched borders

(long continuous strips of fabric) from the analysis, isolating the

area containing patches by using the smallest possible bounding

box around the patched area. For each individual patch, we

computed the centroid (by averaging the x and y values of the

pixels within the patch) and the area in FIJI. Measurement

accuracy was evaluated by remeasuring one randomly selected

patch from each quilt ten times and analysing the absolute range

of measurements for each quilt category.

We analysed the patch area distributions in two ways: first, by

fitting multimodal distributions (Gaussian mixture models) and

second, by fitting various standard random unimodal distributions.

For unimodal distributions, we chose three plausible candidates

that take only positive values: the gamma, Weibull and lognormal

distribution, with no a priori reason to favour any one of these

particular distributions.

The gamma distribution can take a wide variety of forms, which

has led it to be widely used for modelling spatial and temporal

characteristics of rainfall [39], mutation rates in human mito-

chondrial DNA [40] and rate of material deterioration [41].

The Weibull distribution [42] is often used to model product

failure, but also human aging and mortality (for a review of recent

applications see [43]). Furthermore, the distribution of two- and

three-dimensional particle sizes, e.g. airborne dust particles, can

also be well-modelled with the Weibull distribution [44,45].

The lognormal distribution applies to variables whose loga-

rithms have a normal distribution [46]. While widely used in

biological modelling [47,48], it has been suggested by Brown and

Wohletz [49] that although the Weibull and lognormal cover data

similarly, the Weibull is more empirically grounded in the case of

fragmentation of particles into smaller particles and that ‘‘the

empirical use of the lognormal distribution for particle size studies

over the last century may have been simply fortuitous’’ ([49], p.15).

Finally, we also included the standard normal distribution, since

we predicted this would fit regular quilts best (in the form of

Gaussian mixture models).

We used maximum likelihood estimation to fit the distributions

with the R (version 2.12.2, http://cran.r-project.org/) package

‘‘fitdistrplus’’ (version 0.3–4). We scaled the area values down

(area60.01) as required to bring values into the supported

distribution range [50] for all quilts except C5, where we used

area60.1 because the quilt was smaller than the others and

required less reduction. We used the Akaike Information Criterion

(AIC) [51], a measure derived from the log likelihood function, to

assess which of these distributions fit the data best. We considered

all top-ranking candidates (with a difference in AIC values (DAIC)
less than 2) to be likely candidate distributions [52]. To

additionally evaluate the likelihood of one model over the other,

we follow Burnham and Anderson [52] in converting AIC values

into normalised Akaike weights which indicate the likelihood of a

model given the data. This adjustment is particularly useful when

comparing two models with similar AIC values. Unlike conven-

tional statistical tests, AIC does not allow absolute inferences about

how well a model fits the data; instead it provides a relative

assessment of which of the available models fits the data best,

compared to the other candidates.

We constructed Gaussian mixture models for both quilt

categories. For regular quilts, we classified the patches into

categories (i.e. the different squares, triangles etc that occurred in

the pattern block) manually. We used the area means, standard

deviations and relative frequencies of each patch category to seed

the mixture models which we then used to randomly generate the

same number of elements as in the quilts. Initially, we constructed

mixture models with patch categories estimated by the Bayesian

Information Critierion and no external seeding of category

information, which led to higher rates of misclassified patches,

since pattern elements may have different shapes, but similar

areas. We thus opted for seeded models that offered comparably

good fits and reflected the number of motifs in regular quilts

accurately.

Using seeded models, we plotted the actual patch area

distribution and the distribution of the estimates of simulated

patch category areas using the R package ‘‘mixtools’’ [53]. For

crazy quilts, we used the identical procedure, but we used the

overall mean and standard deviation of the whole dataset of each

quilt as seeds, since there were no obvious patch categories. We

used bandwidth values (which are equal to the standard deviation

of the kernel estimates) as a proxy to test for the difference in the

amount of smoothing required to fit the distributions in the two

quilt categories.

To test the goodness of fit of these Gaussian models explicitly,

we generated 39 simulations with the model parameters derived

from the data using the R package ‘‘mixtools’’ and custom Python

software (version 2.65, http://www.python.org). The area values

of the simulations and the actual data were sorted by size, and the

minimum, maximum and actual areas were then plotted. If the

actual areas were above the maxima or below the minima

generated by the simulations, we interpreted this as a significant

deviation (a=2/40= .05) from the model.

We analysed the skewness of the area distributions with the R

package ‘‘moments’’ [54]. Again, for crazy quilts, we used the

overall distribution, but for the regular quilts, we analysed

skewness for each of the patch categories separately.

Moving from patch area analysis to the spatial distribution of

patch centroids, we fitted Strauss models to the patch centroids of

both crazy and regular quilts in R using the package ‘‘spatstat’’

[55]. Strauss processes model the random spatial distribution of

points that do not overlap or coincide. The parameter r of the

Strauss process denotes an interaction distance between points.

This parameter must be larger than zero, to satisfy the ‘‘no overlap

‘‘ constraint. The parameter c controls the strength of the

interaction between points. If c=1, then the process is a Poisson

process with intensity b (average number of points within a certain

area), whereas if c=0, then the process is ‘‘hard core’’, that is, the

points can never lie closer together than distance r [56]. Thus, c
describes the interaction between the points, and r describes the

distance in which this interaction can occur. The goodness of fit of

the Strauss process can be assessed by the L-function, which is

based on Ripley’s K-function [57]. The K-function counts the

number of occurrence of points within varying distances (r) around

each point [58]. For complete spatial randomness, K(r)=pr2. The

L value is a transformation of the K value: L= (K/p)1=2.
L is preferable to K for our analysis because it is constant in a

Poisson pattern (L= r), unlike K. That is, transforming K to L

removes the contribution of the random Poisson process from the

Spatial Analysis of Crazy Quilts
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distribution, showing only the effects of r. Because we had no a

priori reason to believe that a Strauss process was specific to either

quilt category, we applied this process to both regular and crazy

quilts. To estimate the value of r, we applied the method of

maximising pseudolikelihood [56]. This approach was originally

proposed by Besag to estimate the unknown parameters of a

sample that do not follow a multivariate normal distribution

[59,60]. We tested all values between the minimum and maximum

interpoint distances (r) in 0.01 steps. The value with the maximum

pseudolikelihood was chosen as the optimal interaction radius r for

the model of the Strauss process fitted to our patterns. The highest

and lowest of the simulated values form simulation envelopes that

determine the critical points (i.e. a= .05) of the Monte Carlo test

for upper and lower K values [57,61].

To estimate the effect of the border on the patterns (for

example, the centroids might be more sparse near the quilt edges),

we ran the process twice, with and without an isotropic border

correction, and compared the resulting r values. For each quilt, the

goodness of fit of the parameter was then tested by 39 simulations

of N random points (with N=number of centroids present in the

original quilt), placed randomly in a space of the same dimensions

as the quilt, constrained only by the parameter r. For those cases

where there was no effect of the isotropic correction, we also ran

the simulations of the model fit without any corrections, using the

estimated r value. With two exceptions (C2 and C4), the values for

r estimated with and without isotropic border correction were

identical. This implies that the effect of the border on centroid

distribution is weak. For the two exceptions, we ran the

simulations both with and without the isotopic correction and

compared the fit. For C2, the fit of the simulation was the same

with either r value, while it improved for C4 with the correction.

Figure 2. Patch outlines of the sixteen quilts that were analysed (borders were not analysed and are not shown). R1–R8: ‘‘Regular’’
quilts with traditional repeating geometric patterns. C1–C8: ‘‘Crazy’’ quilts with no obvious repeating pattern.
doi:10.1371/journal.pone.0074055.g002
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In addition to the R packages already mentioned, basic

statistical analyses were performed in SPSS version 17 (http://

www-01.ibm.com/software/analytics/spss) and using custom Py-

thon scripts.

Results

Basic Quilt Statistics
In total, the quilts contained 7,135 patches (regular: 4,564,

crazy: 2,571). Crazy quilts had on average 321 patches (range:

106–834), while regular quilts had on average 571 patches

(range: 192–972) but this apparent trend for more patches in

regular quilts did not attain statistical significance (Mann-

Whitney U test: p = 0.06, U= 14,000). There was no obvious

relationship between number of patches and quilt size for either

quilt type (Linear, logarithmic, inverse, quadratic and cubic

regressions were attempted, all p..396). The total patched area

in cm2 for crazy quilts averaged 23,102 (SD: 10,871) versus

23,425 (SD: 6,349) for regular quilts, which was not statistically

significant (Mann-Whitney U test: p = 0.64, U= 27.5). Thus, the

quilt categories were comparable with regard to size, number of

patches, and no relationship was found between number of

patches and overall quilt size for either category. The difference

in manual measuring error for the two quilt types (Crazy quilts:

3.25% measuring error, SD: 2.38. Regular quilts: 3.35%

measuring error, SD: 1.86) was not statistically significant

(Mann-Whitney U test, p = .8, U=29).

The Distribution of Patch Areas
Hypotheses HC2 and HR2 predict significant differences

between the two quilt types in their distributions of patch sizes.

We found that the patch areas for regular quilts were indeed

characterized by multimodal distributions, while the distributions

for patch areas of crazy quilts were unimodal. As predicted, the

overall area distributions of the crazy quilts had a strong positive

skew (mean skewness: 2.3, SD: 1.4). In the case of regular quilts,

the patch area distributions of each patch category were only

weakly skewed and were split between positive and negative skew:

20 categories had a negative skew (mean skewness: 20.74, SD:

0.83) and 24 had a positive skew (mean skewness: 1.46, SD: 2.11),

suggesting that variation in patch areas due to variation in motor

control is not a priori skewed either way. In summary, we found

that the patch area distributions of crazy quilts were unimodal,

while the patch area distributions for regular quilts were

multimodal, confirming HC2 and HR2.

Crazy Quilts: Unimodal Distribution Types
The unimodal distributions underlying different crazy quilt

patches did not consistently fit with a single distribution type. As

expected, due to the constraints of quilt-making, the normal

distribution was a very unlikely candidate for all cases. In three

cases, lognormal clearly was the best candidate, with no other

distributions being very likely (all DAIC .9.42). The AIC values

for gamma and Weibull distributions in general were much closer:

in three cases, DAIC was ,2, so either of these two distributions

provide a possible best candidate (see table 2). The gamma

distribution was the strongest candidate in two further cases (C2

and C3), where no other candidate distribution was likely.

However, in all those cases where the Weibull distribution was a

likely candidate, the gamma distribution was also likely, and the

Akaike weights for the Weibull distribution were not very strong,

not exceeding a probability of 70%. Overall, we observed a split

between the crazy quilts where lognormal was the best candidate

(N= 3) and those cases in which gamma and Weibull fit best

(N= 5). Figure 3 shows an overlay of histograms and the best

fitting distributions as well as QQ plots of the theoretical

distributions and the actual data. Deviations of the data from

the theoretical distributions are most visible in the high quantiles,

which is unsurprising, because there are fewer large patches than

small patches in the quilts, and thus the data is sparser in the high

quantiles. In summary, crazy quilt patch area distributions were

well-modelled by various distribution classes but no single type fit

all exemplars.

Regular Quilts: Gaussian Mixture Models
In contrast, kernel density estimates of Gaussian mixture models

proved very good fits to the multimodal patch area distributions in

the regular quilts (see Fig. 4), while the estimates of Gaussian

models for the crazy quilts (see Fig. 5) show little overlap with the

estimates of the real distributions. In particular, the Gaussian

models for crazy quilts extend into negative values, violating our

minimal size constraint. Standard Gaussian distributions thus

provide poor models for crazy quilts.

The difference in bandwidths (standard deviation of the kernel

density) for the two quilt types was statistically significant (Mann-

Whitney U test: p = .03, U= 12, Cohen’s d=1.075) and much

higher for crazy quilts (mean bandwidth for regular quilts: 5.14,

for crazy quilts: 19.49), indicating that a significantly higher degree

of smoothing was required for a Gaussian distribution to be even

approximately fitted to crazy quilts.

We calculated the number of occurrences when the actual patch

area values were above the maximal value or below the minimal

value of the simulations (see Table 3). The differences in the

percentage of deviations between the two quilt types was

statistically significant (Mann-Whitney U test: p,.001, U= 64,

Cohen’s d=3.36). Thus overall, Gaussian mixture models proved

a significantly better fit for the regular quilts (Fig. 4) than the crazy

quilts (Fig. 5), based both on bandwidth differences and the fit of

the simulation envelopes.

Spatial Distribution of Patches: Fitted Strauss Processes
The previous results show that there are fundamental differ-

ences between crazy and regular quilts in terms of the distributions

that best describe patch areas. We also evaluated the degree to

which a well-defined random process – a Strauss process – can be

used to model patch centroid locations for the two quilt types.

We first estimated the point interaction parameter r from the

data from both quilt classes using maximum pseudolikelihood. We

then simulated a Strauss process with points randomly placed in

space, under the constraint of this r estimate, and compared them

with the actual distributions. The results of the simulations are

shown in figure 6: density values are plotted on the X axis, and the

L values for various distances (r) are plotted on the Y axis (roughly,

L gives number of other points lying within the distances of a focal

point, see Methods). The simulation envelopes based on the

highest and lowest ranking values from 39 simulations are shown

as grey bands, while the dashed red line shows the predicted L

values of a fully random Strauss process. For quilts accurately

modelled by such a process, the data (black line) should be within

the grey envelope. A deviation of the`observed’ line above the

envelope means that there are more points within the Strauss

interaction radius r than predicted by the model, and a deviation

below the envelope that there are fewer points than predicted, i.e.

that there is repellence between the points.

When fitting the Strauss process with the estimated r values, the

model fitting function returned c values 1 for three of the eight

regular quilts (R1, R3 and R4). As the Strauss process is only

defined for c values # 1, this is strong evidence that it is not an
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appropriate model for these centroid sets. Therefore, we did not fit

Strauss processes to these quilts, but do show the density of

centroids for various r values for these quilts in figure 6. In the

graphs, a fully random pattern with no interpoint interaction (i.e.

Poisson) would be a straight line. Clearly, the distributions of patch

centroids deviate strongly from a Poisson process. However, for

crazy quilts, in contrast to regular quilts, the Strauss process

typically provides an excellent fit. While C6 and C7 show some

clustering at medium radius values, this is within the simulation

envelopes. Only C4 was consistently and significantly under-

dispersed across the whole range of r values. One possible reason

for this is that C4 had a very large number of patches for its size, so

that centroids were consistently closer together than predicted by a

random model. Furthermore, C4 is unusual in that it contains two

isolated regular`fan’ shapes.

Figure 6 clearly illustrates that the regular quilts cannot be

accurately modelled with a Strauss process. Unlike crazy quilts,

regular quilts show large oscillations in the L value as r increases.

reflecting the regular clustering of patches. In sum, the distribu-

tions of centroids in crazy quilts, but not regular quilts, are

generally consistent with a simple Strauss random process. These

data are clearly consistent with our hypotheses HC1 and HR1.

Discussion

Using statistical spatial analysis tools, we found clear differences

between regular and crazy quilts. We showed that the distributions

of patch areas differ for the two quilt categories: the patch areas of

regular quilts follow a multimodal distribution, the peaks of which

correspond to the patch categories of the pattern, consistent with

hypothesis HR2. In contrast, patches of crazy quilts have

unimodal distributions (consistent with HC2), but no single

random function consistently fits the distributions best. In all

crazy quilts, the area distributions had a positive skew, i.e. small

patches are more frequent than large patches. These findings were

consistent with hypothesis HC1 concerning the areas of patches in

crazy quilts.

For the crazy quilt patch sizes, we found that the Weibull

distribution and the gamma distribution were an equally likely fit

in three cases and the lognormal was the best fit for three others,

but there was no overlap between gamma and Weibull on the one

Table 2. Unimodal distributions fitted to crazy quilts.

Quilt C1 C2 C3 C4 C5 C6 C7 C8

Gamma 1.72 (30) 0 (.99) 0 (.90) 81.89 (,.01) 1.86 (.25) 0 (.51) 29.44 (,.01) 9.56 (,.01)

Weibull 0 (.70) 8.53 (,.01) 15.97 (,.01) 140.86 (,.01) 0 (.64) 0.18 (.49) 28.89 (,.01) 9.42 (,.01)

Lognormal 53.41 (,.01) 48.49 (,.01) 4.39 (.10) 0 (1) 17.95 (,.01) 25.58 (,.01) 0 (1) 0 (.98)

Normal 125.34 (,.01) 165.61 (,.01) 107.18 (,.01) 872.04 (,.01) 3.45 (.11) 324.41 (,.01) 204.52 (,.01) 172.08 (,.01)

AIC values for the different distributions fitted to the quilts. The best fitting distributions are marked in bold, with the Akaike weights given in brackets. If DAIC,2 for
two models, we considered both models to be a possible fit (this was the case for quilts C1, C5 and C6).
doi:10.1371/journal.pone.0074055.t002

Figure 3. Random distributions fitted to the crazy quilt patch areas. In those cases where DAIC,2, both distributions are shown. For each
quilt, the best fit distributions and the histograms of the area distributions are superimposed in the top graph. Below, the QQ plots of the quilt
sample quantiles (X-axis) and the theoretical quantiles as predicted by the fitted distributions (Y-axis) are shown.
doi:10.1371/journal.pone.0074055.g003
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hand and lognormal on the other. Thus different random

distributions approximate the patch size distributions of regular

quilts.

Concerning centroid locations, we found that patch centroids of

crazy quilts could be accurately modelled by a random Strauss

process with one parameter (r) derived from the data, consistent

with our hypothesis HC1 about the essentially random placement

of patch centroids in crazy quilts. Furthermore, this analysis

indirectly supports our hypothesis concerning the non-random

placement of centroids in regular quilts (HR1).

The results of this investigation show clearly that, despite

humans’ well-documented difficulty with recognizing or generat-

ing random sequences, Victorian quiltmakers were able to

intentionally produce spatial patterns compatible with random

processes. The clear distinction we found between regular quilts

and crazy quilts shows that the randomness observed in crazy

quilts does not result from low-level motor inaccuracy, which is

equally present in both quilt types. We demonstrated a close fit

between quilt centroids and random Strauss processes in which the

only fitted parameter was a minimal distance between patch

centroids. This shows that within the constraints of the patchwork

method itself (which demands a certain minimal amount of cloth

simply to stitch the patches together), crazy quilt properties match

those expected from a random spatial process. We thus conclude

that Victorian-era quilt makers achieved a level of intentional

spatial randomness that, to our knowledge, has never been

documented in any other human artefact. Our results however do

not allow inferences to be drawn concerning the actual production

process, which obviously would not have been entirely random,

and would have required some planning (e.g. adjusting size of the

quilt to the available amount of fabric or planning even colour

distributions). However, a description of the end product, as we

Figure 4. Top panel: The kernel density estimates of Gaussian mixtures of patch areas of regular quilts. The black line shows the actual
data and the red line shows the the Gaussian mixtures simulated based on patch categories. Bottom panel: Fit of the data (black) and 39 simulations
(highest and lowest values of the simulations indicated with red dots (log scale).
doi:10.1371/journal.pone.0074055.g004
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have undertaken here, has the advantage that it could be applied

to other artefact types. For example, we think it would be

fascinating to compare these findings with other random seeming

human made patterns such as crackle glazing, patchwork made in

Japanese and Korean traditions, stained glass, mosaics, pavings

etc, using the techniques developed here.

The results presented here do not, of course, suggest that all

aspects of crazy quilts are random. Obviously, the weave of the

fabric patches, or the stitches used to combine patches, are highly

regular. Furthermore, individual patches were traditionally often

decorated with detailed, and often representational, needlework

which is anything but random. Finally, the colour selection of

patches appears, at least in most cases, to be non-random

(although we did not analyse colour in the current study, and

accurate determination of a single ‘‘colour’’ for the complex fabric

patches typical of our quilts is far from trivial, see [26]).

The multimodal distributions underlying the regular quilts

derive from the repeated production of the same pattern motifs.

The repeated production of multiple units to create symmetrical

patterns may thus be the visible manifestation of humans’ unusual

cognitive proclivity for order and symmetry [62–66].

Naturally, it would be intriguing to record and model the actual

production process of crazy and regular quilts to gain insight into

the levels of planning involved in producing crazy versus regular

quilts. In particular, it is interesting that many crazy quilts have an

intermediate level of organisation in to blocks or stripes. The

organisation of a production process into discrete chunks offers

advantages in terms of efficiency [67]. Examining how hierarchical

Table 3. Deviations from Gaussian mixture models for crazy
and regular quilts.

Regular
Quilts

# of deviations
(%)

Crazy
Quilts

# of deviations
(%)

R1 0 (0) C1 119 (49.79)

R2 156 (33.19) C2 329 (64.26)

R3 21 (4.99) C3 179 (56.47)

R4 7 (2.00) C4 719 (86.21)

R5 173 (17.84) C5 5 (4.63)

R6 9 (1.29) C6 249 (77.33)

R7 0 (0) C7 77 (72.64)

R8 0 (0) C8 84 (63.16)

Deviations above or below 95% limits of Monte Carlo simulations based on
Gaussian mixture models for regular and crazy quilts. Both the number of
deviant patches, and their corresponding percentage of the total number of
patches in that quilt, are given.
doi:10.1371/journal.pone.0074055.t003

Figure 5. Kernel density estimates of single Gaussian distributions of the patch areas of crazy quilts. The black line shows the actual
data and the red line shows the Gaussian mixtures simulated based on patch categories. Bottom panel: Fit of the data (black) and 39 simulations
(highest and lowest values of the simulations indicated with red dots).
doi:10.1371/journal.pone.0074055.g005
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organisation benefits the quiltmaking process, which is guided not

only by efficiency, but also by aesthetic considerations, may offer

further insights into the organisation underlying human self-

guided productive processes more generally.

The details of the process by which historical crazy quilts were

produced are unavailable today, although it would be possible to

document the generation process in present-day quilt makers.

More practically, it should be possible to mimic key features of

quilt making (e.g. patch selection, trimming and combination

processes) with computer interfaces to investigate aspects of the

quilt-making process in the laboratory. We see no reason to doubt

that any human provided with such an interface could produce

random patterns like those documented in our quilts, given that, in

their heyday, crazy quilts were produced by a substantial

proportion of quilters. Such a research project based on Fechner’s

‘‘method of production would be a logical, and we think valuable,

extension of the analyses reported here.

Quilting remains an extremely popular tradition. Crazy quilts

are well known, but rarely made today. The highly ordered and

hierarchically-structured regular quilts represent a much older,

and much more persistent, patchwork tradition. It is unlikely that

this dominance results from a practical or economic constraint,

since it would be much easier to turn a bag of cloth scraps into a

crazy quilt than a regular quilt, and the measurements and straight

lines required to make a regular quilt are both more difficult, and

more wasteful of cloth, than those needed to create a crazy quilt.

Instead, we suggest that the rarity of crazy quilts and their short-

lived popularity provides a clear historical indicator of the deep,

and as yet unexplained, drive in our species to surround and adorn

ourselves with structured and symmetrical, rather than random

patterns: an evocative reflection of what Gombrich [6] termed the

human ‘‘sense of order’’.
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Figure 6. Simulation envelopes of fitted Strauss models for regular quilts (top panel) and crazy quilts (bottom panel) based on
centroid locations. For three regular quilts the simulation algorithm did not converge and thus no simulation envelope is shown. The solid black
line depicts the actual data, and the data predicted by the model is shown with a dashed red line. The grey envelopes show the highest and lowest
values of 39 simulations. The Y-axis shows the L-function, derived from Ripley’s K-function, and the X-axis shows the varying r values. A deviation of
the black line beyond the grey envelope can be interpreted as a significant deviation of the data from the fitted Strauss model.
doi:10.1371/journal.pone.0074055.g006
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