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Abstract

The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have
no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress,
neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate
enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This
mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in
CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal
microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we
identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells,
plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe
enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress
granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest
that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which
the stress response plays an active role.
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Introduction

The MICA/B genes encode proteins that are distantly related to

the HLA class I gene products. They do not associate with b2-

microglobulin and are conformationally stable without conven-

tional MHC class I peptides bound. Thus, MICA/B molecules

have no role in antigen presentation. In addition, MICA is rapidly

up-regulated under different stress conditions such as heat-shock,

oxidative stress, transformation and viral infection [1–5].

MICA/B interact with the activating NKG2D receptor which is

constitutively expressed on NK cells, CD8+ a/b T cells, peripheral

blood and intestinal intraepithelial c/d T cells, and NKT cells.

NKG2D functions as co-stimulatory signal on T cells and as a

primary recognition receptor on NK cells [6]. Upon engagement,

NKG2D triggers a cytotoxic response and IFN-c secretion.

Consequently, MICA/B have been considered markers of cellular

distress that facilitate the elimination of damaged, infected, or

transformed cells and serving as an immune surveillance

mechanism [7–9].

MICA has been also suggested to play a role as target molecule

of the innate response in the intestinal mucosa in active Celiac

Disease (CD) [10,11]. CD is a chronic immune-mediated

enteropathy developed in genetically predisposed individuals

exposed to a group of proteins present in wheat, rye, barley and

oats. The lesion is limited to the small intestine and characterized

by a remodeling of the mucosal architecture with villous atrophy,

crypt hyperplasia and lymphocyte infiltration both in lamina

propria and intraepithelial compartments. The current treatment

is a life-long gluten-free diet (GFD), which results in a complete

remission of symptoms and recovery of normal histology. Gluten

derived peptides, many of them selectively deamidated by

transglutaminase 2, are presented by certain dendritic cell subsets

in a HLA-DQ2/DQ8 restricted manner, while gluten specific

intestinal CD4+ T cells characteristically produce large amounts of

IFN-c determining the well-known Th1 pattern associated to CD

[12].

Mechanisms from both innate and adaptive immunity are

involved in CD pathogenesis and cross-talk between them

contributes to disease progression. Innate immunity contributes

to the occurrence of structural changes at the intestinal mucosa.

Many biological and proinflammatory effects have been described

for p31–43, one of the most studied gliadin peptides, such as

induction of enterocytes apoptosis and IL-15 production [13,14].

MICA/B have a restricted expression in normal tissues and

were originally described in gut epithelial cells [2]. In contrast to
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MHC class I genes, MICA/B promoters contain heat shock

response elements that are involved in their upregulated expres-

sion observed under stress conditions [2–4].

IL-15, a key cytokine upregulated in intestinal mucosa in active

CD [15–17], was shown to be involved in the induction of cell

surface expression of MICA on intestinal epithelial cells and also

regulates the cytotoxic activity of intraepithelial lymphocytes (IEL).

Consequently, surface expression of MICA has been postulated as

signal for enterocytes killing upon engagement of NKG2D on

IELs in an IL-15-rich environment. Notably, increased MICA

expression in active CD returned to normal under gluten-free diet,

highlighting the importance of the signals derived from gliadin-

derived peptides in its up-regulation [10,11,18,19].

Although it has been postulated that MICA/B play a relevant

role in the elimination of damaged/stressed epithelial cells and

therefore in gut homeostasis, its expression in the context of the

ongoing stress response in the intestine of CD patients has not

been analyzed. Thus, the aim of this study was to perform an

extensive analysis of the pattern of MICA/B expression in

intestinal mucosa of CD patients, and study its possible link to

the ongoing stress response in the mucosa. We found intracellular

expression of MICA/B in enterocytes as well as in distinct

populations of immune cells in both the intraepithelial and lamina

propria compartments of the intestinal mucosa. Remarkably,

MICA/B+ T cells were found among intraepithelial lymphocytes

(IELs) and in lamina propria, and the number of these cells was

increased in severe enteropathy. We also found that the pattern of

MICA/B expression in CD enteropathy was similar to that

observed in in vitro stress models.

Patients and Methods

Biopsy Specimens
Intestinal biopsies were taken from patients younger than 5

years old suffering from gastrointestinal symptoms following the

routine procedure to diagnose celiac disease.

Patients were classified into five groups according to histology.

49 patients comprised the ‘‘severe enteropathy group’’ (all of them

had celiac disease with atrophic mucosal architecture and positive

anti-endomysial antibodies -EMA-), 29 patients constituted the

‘‘moderate enteropathy group’’ in which the villous height/crypt

depth ratio was between 1 and 2, and 24 patients constituted the

‘‘mild enteropathy’’ group, with a villous height/crypt depth ratio

of 2 to 2.5. In these last two groups, serological tests and clinical

symptoms were compatible with CD. Four patients constituted the

‘‘gluten free diet group’’, presenting moderate or severe enterop-

athy in their first biopsy diagnosis and total recovery of normal gut

architecture after at least two years on a strict gluten free diet. The

‘‘control group’’ included 44 EMA negative patients suffering from

dyspepsia (n = 22) or upper abdominal pain (n = 22); all these

patients had intestinal biopsies with normal histology. For flow

cytometric analysis on epithelial cells of duodenal samples and

confocal analysis some adult biopsy specimens were also used. For

this purpose control samples were classified as EMA negative

patients suffering from dyspepsia and celiac patients belonged to

the ‘‘severe enteropathy group’’ (with atrophic mucosal architec-

ture and EMA positive).

The present study was performed with a written informed

consent from the patient or her/his parent or legal guardian, and

the approval by the Ethical Committee of the Instituto de

Investigaciones Pediátricas. Hospital de Niños Sor Marı́a Ludo-

vica from La Plata (Buenos Aires, Argentina).

Duodenal Biopsy Specimens’ Conservation and Culture
During the upper-gastrointestinal endoscopy, five distal duode-

num biopsy specimens were collected. One specimen was fixed in

Bowin’s medium for histological analysis to confirm CD. The

others were used for culture and/or RNA isolation. For biopsy

culture, samples were incubated for 3 or 24 h at 37uC in medium

alone or in medium supplemented with 50 ng/ml of human

recombinant IL-15 (BD Pharmingen), 100 mg/ml p31–43 gliadin

peptide (Biomedal, Spain) or IL-15 and p31–43 together in RPMI

medium supplemented with penicillin 62,4 mg/ml (Bagó Labora-

tories), streptomycin 100 mg/ml (Bagó Laboratories), gentamicin

0,5 g/l and fetal calf serum (Gibco) 10%. After culture, samples

were washed in HBSS/gentamicin 0,5 g/l and total RNA was

extracted.

Histological Classifications
Small-bowel mucosal morphology was determined under light

microscopy from 8 well-oriented biopsy sections stained with

hematoxylin and eosin; poorly orientated samples were not taken

into consideration and were discarded from the study. Histological

classification was performed for clinical purposes following

reported criteria by measuring villous height/crypt depth ratio

(Vh/CrD) in at least 5 well-oriented villous-crypt pair and

expressed as mean 6 SD.

Antibodies
The anti-MICA/B monoclonal antibody (mAb) D7 [20] was

used to assess MICA/B expression. Monoclonal mouse IgG2b

(BPC4, Ancell) was used as isotype-matched negative control

antibody (IC). Antibodies to CD138 (MI15, syndecan1), CD68

(P6-M1), HAM 56 (MO632), CD3 (M7254 and Polyclonal Rabbit

Anti-Human, (A0452)) and CD20 (L26) were obtained from

DAKO; as well as the Target Retrieval Solution (S1699) and

DakoCytomation fluorescent mounting medium (S3023). Anti-

CD7 (CD7.272) was from Novocastra; anti-CD1a (MOB363) was

from Diagnostic Biosystems, anti-CD11c (EP1347Y) was from

Abcam; anti-CD3-PECy5 (UCHT1) was from BD Biosciences;

rabbit monoclonal anti-BIP/grp78 (C50B12) was from Cell

Signaling; Cy3-labeled streptavidin and Cy5-labeled donkey

anti-goat IgG (705-175-147) were from Jackson ImmunoResearch;

Goat polyclonal anti-TIA-1 IgG (sc-1751) and FITC-labeled goat

anti-mouse IgG (sc-2010) were from Santa Cruz Biotechnology.

FITC-labeled anti-rabbit IgG (RG-96) and propidium iodide

(P4170) were from Sigma; Alexa 488 goat anti-rabbit IgG

(A11008) and Alexa 594 F(ab)2 fragment goat anti-mouse IgG

(A11020) were from Invitrogen, (USA). Counterstaining was

performed using DAPI Nucleic Acid Stain and SYTOH 13 Green

Fluorescent Nucleic Acid Stain (S-7575), both from Invitrogen

(USA).

Immunohistochemical Staining
Bowin’s-fixed, paraffin-embedded 5-mm–thick small bowel

biopsy sections were rehydrated, blocked with normal horse

serum, and stained with 15 mg/ml of the D7 mAb or the IC mAb.

Bound antibodies were detected with the Vector Vectastain ABC

kit and Peroxidase substrate kit (DAB, Vector Vectastain)

following the instructions provided by the manufacturer. Samples

were counterstained with Haematoxylin, dehydrated with alcohol,

and mounted. An arbitrary score of intensities was used to

compare samples. This score was defined in numbers from one to

four, according to the intensity of immunoperoxidase staining;

isotype control was defined as score = 0 (zero). Samples were

analyzed in a Nikon Eclipse E400 microscope. Three well oriented

MICA/B Expression in the Small Bowel Mucosa

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e73658



slides per patient were used for the staining. For this and all the

analysis made on tissue sections, slides were divided into units of

muscularis mucosae (m.m.). One unit of m.m. represents an area of 6

crypts. Two to four units of m.m. were analyzed per sample.

Analysis was performed blindly by two investigators. The whole

study was performed twice.

Confocal Microscopy
Intestinal biopsy samples were frozen in OCT embedding

compound on dry ice and stored at 270uC. Tissue sections

(6 mm) were fixed in acetone or in Bowin’s solution and

included in paraffin. Bowin’s-fixed, paraffin-embedded rehi-

drated biopsy sections or acetone-fixed sections were blocked

with inactivated normal horse serum or normal goat serum.

Sections were incubated sequentially with lineage specific mAbs,

followed by FITC-labeled goat anti-mouse IgG or anti-rabbit

IgG. Blocking was performed with 5% inactivated normal

mouse serum and sections were incubated with 150 mg/ml

biotinylated mAb D7 followed by Cy3-labeled streptavidin.

DAPI was used for nuclei staining. Isotype control (IC) was used

in all cases. For single MICA/B staining, counterstaining was

performed using SYTOH 13 Green Fluorescent Nucleic Acid

Stain. For BIP staining, samples were rehidrated, blocked with

inactivated normal goat serum, and incubated sequentially with

anti-BIP mAb 1/50 and FITC-labeled anti-rabbit IgG. For

single staining samples were then incubated with propidium

iodide (1 mg/ml). For double staining, samples were further

incubated with anti-CD138 mAb followed by Alexa 594 F(ab)2
fragment goat anti-mouse IgG. Samples were then dehydrated

through alcohol and mounted.

For stress co-localization studies, frozen or rehydrated paraffin

embedded sections were blocked and incubated with Goat

polyclonal IgG anti-TIA-1 Ab followed by Cy5-labeled donkey

anti-goat IgG, and then with 150 mg/ml biotinylated mAb D7,

followed by Cy3-labeled streptavidin. DAPI was used for nuclei

staining. IC was used in all cases.

Double staining of slides with samples from patients from all

groups were counted for total number of CD7+ cells and double

positive (MICA/B+CD7+) cells, in the lamina propria and

intraepithelial compartments. The same was performed for the

CD138+ population in lamina propria. Number of double positive

cells and total number of cells per population were determined

blindly in each unit of m.m. analyzed of each patient. At least, two

to four units were counted in each sample and the median

percentage of all the units counted of one sample were plotted.

Images were acquired using either a PASCAL-LSM Confocal

Laser Scanning Microscope (Carl Zeiss, Oberkochen, Germany),

or a TCS SP5 Leica confocal Microscope. Images processing was

preformed using the LSM 5 v 3.2 software and the Leica LAS AF

software, respectively.

Cell Culture and Stress Induction
The human colon adenocarcinoma cell line Caco-2, American

Type Culture collection (ATCC), was propagated in Dulbecco’s

modified Eagle’s medium (DMEM, Sigma), supplemented with

15% fetal bovine serum (FBS, (Gibco), 1% HEPES buffer solution

1 M (Gibco), 1% penicillin/streptomycin (Sigma) and 1% MEM

non-essential Amino Acids (Gibco).

Three different stress models were used to study MICA/B

expression in Caco-2 cells; endoplasmic reticulum stress due in

response to calcium starvation was induced with 1 mM Thapsi-

gargin (Sigma), oxidative stress was induced using 250 or 500 mM

Sodium Arsenite (Sigma) and fever-range thermal stress was

induced exposing the cells to 42uC for one hour. Induction of

stress response was confirmed by confocal microscopy as presence

of positive cytoplasmic TIA-1 stress granules. MICA/B expression

under stress conditions was studied using confocal microscopy.

Immunofluorescence Studies on Caco-2 Cells
Cells exposed to stress stimuli were washed with PBS and fixed

in 4% p-formaldehyde and 4% sucrose, followed by two washes

with NH4Cl 50 mM. Cells were then permeabilized in 0.1%

Triton X-100 and blocked using 2% BSA (Sigma) for 60 min at

room temperature. Cells were incubated sequentially with anti-

MICA/B mAb D7 or IC antibodies, FITC-labeled goat anti-

mouse IgG, and counterstained with DAPI. Double staining was

assessed using goat polyclonal anti-TIA-1 IgG followed by Cy5-

labeled donkey anti-goat IgG after which cells were stained with

150 mg/ml of biotinylated mAb D7, followed by Cy3-labeled

streptavidin and counterstained with DAPI. IC were used in all

cases.

Isolation of Epithelial Cells and Flow Cytometric Studies
Four biopsy samples were taken from each patient, washed with

calcium and magnesium free HBSS (Gibco) containing 1 mM

EDTA (Sigma, USA) and incubated at 37uC for 20 minutes. Then

samples were shaked vigorously to dislodge cells until a cloudy

suspension was obtained. Samples were filtered through an 80-mM

filter mesh (BD Biosciences, San Jose, CA, USA) in 50 ml Falcon

tubes, and centrifuged at 400 g for 10 minutes 4uC. Supernatant

was discarded and the cell pellet was washed. For flow cytometric

analysis 0.56106 cells/tube were incubated with inactivated

human serum to block Fc receptors. Surface and intra-cytoplasmic

staining were analyzed. For intracellular staining cells were treated

with Fixation&Permeabilization kit (eBiosciences, San Diego,

USA). Cells were incubated with anti-CD3-PECy5 and/or anti

MICA/B D7 mAb, followed by anti-mouse IgG-FITC. IC were

used in all conditions tested. Cells were analyzed in a BD

FACSCaliburTM flow cytometer (BD Bioscience) and data were

processed using CELLQestTM (BD Bioscience) and FlowJo (Tree

Star Inc., Ashland, OR, USA) software.

Statistical Analysis
GraphPad Prism 4 software (GraphPad, San Diego, CA) was

used for statistical analysis and plotting. Non parametric Kruskal

Wallis test followed by Dunns multiple-comparison posttest or the

nonparametric Mann-Whitney U test were used to analyze data. A

p value ,0.05 was considered statistically significant.

Results

MICA/B Expression in the Small Intestine Epithelium
Immunohistochemical analysis to detect MICA/B expression

revealed that the epithelium of duodenal samples from CD

patients had increased MICA/B expression compared to that of

healthy controls (Figure 1A). When samples were grouped

according to the histological evaluation into non celiacs with

normal architecture, and celiacs with mild, moderate or severe

enteropathy (villous atrophy and crypt hyperplasia), we observed

that intestinal mucosa from untreated CD patients exhibited a

higher intensity of MICA/B staining compared to samples from

healthy controls. There was also a positive trend between the

degree of lesion and the intensity of the staining (Figure 1B).
Most of the samples with enteropathy showed a discontinuous

pattern of MICA/B expression along the epithelium. In all cases

analysed, enterocytes from the top of the villi were the most

intensively stained cells in the epithelia (Figure 1C). Remarkably,

in addition to enterocytes, other cells, such as intraepithelial

MICA/B Expression in the Small Bowel Mucosa
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lymphocytes and mononuclear cells in lamina propria, also

exhibited MICA/B expression.

To further investigate the expression of MICA/B in enterocytes,

we performed immunofluorescent confocal microscopic analysis.

Expression of MICA/B was observed mainly as intracellular

staining in enterocytes. In moderate enteropathy, enterocytes

showed large MICA/B+ aggregates oriented to the apical pole and

also associated to the perinuclear region (Figure 2A). The same

pattern was observed in mucosal samples with mild and severe

enteropathy (not shown). These aggregates were found reduced but

did not disappear after at least two years on a gluten-free diet

(Figure 2B). Though samples from non-celiac individuals also

showed MICA/B expression in the cytoplasm of enterocytes, the

intensity of staining was very low with a diffuse pattern and

absence of large aggregates (Figure 2C). Flow cytometric studies

on CD32 cells from paediatric duodenal epithelia showed a

substantial intracellular expression of MICA/B (Figure 2E).
Similarly, majority of CD32 epithelial cells from duodenal samples

of adults CD patients were positive for the intracellular staining,

while only half of them were positive for surface MICA/B staining

(Figure 2F).

Intraepithelial Lymphocytes Express MICA/B
As MICA/B expression was also observed in cells in the

intraepithelial and lamina propria compartments of small intes-

tine, we performed immunofluorescent confocal microscopy

analysis using lineage markers to characterise MICA/B expression

in these cells (Figure 3). In the intraepithelial compartment, the

majority of MICA/B+ cells were CD7+ cells, confirming that they

are intraepithelial lymphocytes (IELs). Particularly, these

CD7+MICA/B+ IELs were abundant in biopsies from patients

with mild enteropathy. We also observed that MICA/B staining

was intracellular and mainly concentrated in a perinuclear region

of the cytoplasm (Figure 3A).

Unlike the pattern of staining observed in mild enteropathy, non

celiac samples showed very low MICA/B expression in IELs.

Scattered CD7+ cells mostly presented no MICA/B staining

(Figure 3Aiv). The highest percentage (15.6%) of MICA+CD7+

cells per unit of m.m. was observed in biopsies from patients with

mild enteropathy and the total number of MICA+CD7+ cells was

2.3 times higher than in control samples (Figure 3B). Surpris-

ingly, in biopsies from patients with severe enteropathy we found

the lowest percentages of CD7+MICA/B+ (2%). In addition, the

total number of MICA/B+CD7+ cells in mild enteropathy was 4.2

times higher than in severe enteropathy, and among IELs, the

number of CD7+ cells was twice higher in atrophy than that

observed in mild enteropathy or control samples. These findings

could be associated to the increase in the IEL number

characteristically observed in untreated CD.

Characterisation of MICA/B+ Cells in the Small Intestine
Lamina Propria

Lymphocytic infiltration in the intestinal mucosa is one of the

hallmarks of untreated CD patients. Particularly, the number of

lamina propria CD3+ cells was found dramatically increased in

tissues with mild and severe enteropathy, and some of these cells

Figure 1. MICA expression in intestinal mucosa of CD patients. A.- Representative immunoperoxidase staining of MICA/B in intestinal biopsy
sections from pediatric CD patients with different degrees of lesion (mild, moderate and severe enteropathy; magnification 206). B.-
Immunohistochemical analysis for MICA/B expression in sections of intestinal biopsies from 27 pediatric patients. An arbitrary score of intensity of
staining was used (from 0 to 4). The IC control antibody was defined as score zero. Each dot corresponds to the score obtained for each sample. *
p#0,05; ** p#0,01 (Non parametric Kruskal wallis test followed by the Dunns multiple-comparison posttest).C.- Pattern of MICA/B expression along
the epithelium on a mild enteropathy sample. Isotype Control (IC) is shown (magnification 406).
doi:10.1371/journal.pone.0073658.g001

MICA/B Expression in the Small Bowel Mucosa
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were also MICA/B+ (Figure 4Ai). CD7+ cells were found isolated

or in small groups along the intestinal lamina propria of celiacs and

non-celiac individuals. Some of these CD7+ cells expressed

MICA/B (Figure 4Aii and iii). Among CD7+ lamina propria

cells, MICA/B+ cells represented the 2.6% in controls, the 1.9% in

severe enteropathy and the 7.6% in mild enteropathy (Figure 4B).

Although there were not statistical differences between control and

pathological samples, the mean percentage of MICA/B+CD7+

was higher in mild enteropathy samples. In severe enteropathy,

total number of CD7+ cells was significantly increased compared

to samples from healthy controls, and a twofold increment in the

number of MICA/B+ lamina propria lymphocytes in untreated CD

patients compared to healthy controls was found. This finding

could be a consequence of the increase in mucosal cellularity in

severe enteropathy.

MICA/B expression was also observed in lamina propria B

cells. CD20+ cells were found scattered in the tissue in

untreated CD and control samples. Particularly, some of these

CD20+ cells expressed MICA/B+ as shown in severe enterop-

athy (Figure 4Aiv). In most of the cases, MICA/B staining

collocated with the surface lineage B cell marker CD20. To

further characterise the expression of MICA/B in the B cell

population, we also used the plasma cell marker CD138

(Figure 4Av). In severe and mild enteropathy, several

aggregates of CD138+ cells were found infiltrating the lamina

propria around the crypts and in the villi. Unlike the pattern

observed in CD20+ lymphocytes, MICA/B was highly expressed

in the cytoplasm of CD138+ cells as a perinuclear homogeneous

and diffuse ring, and surface CD138 did not collocate with

MICA/B. There were no differences in the percentages of

CD138+ cells among severe or mild enteropathy and control

samples. However, total number of CD138+ cells was five times

higher in severe enteropathy compared to controls. Conse-

quently, the total number of CD138+MICA/B+ cells in this

group was higher compared to controls. This higher number of

lamina propria plasma cells expressing MICA/B is likely due to

the massive increment in cellularity, characteristic of severe

enteropathy observed in untreated CD patients (Figure 4C).

We also assessed the expression of MICA/B in intestinal

macrophage/dendritic cell compartment using the following

markers: HAM56, CD68, CD1a and CD11c. In only a few cases

of severe enteropathy, macrophages HAM56+ cells (Figure 4Avi)
or CD68+ cells (not shown) exhibited MICA/B expression.

Moreover, we did not observe expression of MICA/B in

CD11c+ cells (Figure 4Avii) or CD1a+ cells (not shown).

Altogether, these studies demonstrate a broad pattern of

expression of MICA/B in cells from the duodenal mucosa.

Particularly, we characterised the MICA expression in enterocytes

as well as in T lymphocytes (CD7+ cells), B lymphocytes (CD20+

cells) and plasma cells (CD138+) and macrophages (HAM56+,

CD68+ cells).

Figure 2. Confocal immunofluorescent analysis showing MICA/B staining. A.- sample from an untreated CD pediatric patient with mild
enteropathy showing the MICA/B expression (red) in enterocytes. SYTOH 13 (Green Fluorescent Nucleic Acid Stain) was used to stain nuclei. B.- MICA/
B staining in an intestinal section from the same patient after two years on a gluten-free diet. C.- healthy non-celiac control patient. D. IC incubated
in a section corresponding to sample A. (Magnification 636). E.- Flow cytometric analysis for surface and intracellular expression of MICA/B in
epithelial CD32 cells of a representative paediatric patient. F.- Flow cytometric analysis for surface and intracellular expression of MICA/B in epithelial
CD32 cells of duodenal samples from adult CD patients.
doi:10.1371/journal.pone.0073658.g002

MICA/B Expression in the Small Bowel Mucosa
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Stress Inducers and MICA Expression
MICA/B was up-regulated by different stress stimuli such as

heat shock and oxidants [1–6]. The damaged intestinal mucosa is

an environment where different stressors may induce such

expression. To evaluate whether intestinal tissue shows signs of

biological stress, expression of the molecular chaperone BiP or

Grp78 (Glucose Regulate Protein 78), a heat shock protein 70 kDa

family member known as the master negative regulator of the

unfolded protein response (UPR) in mammals [21], was assessed in

duodenal biopsies from controls and CD patients. BiP was

expressed in lamina propria cells in control as well as in CD

samples. Remarkably, BiP was strongly upregulated in enterocytes

from mucosal tissue of untreated CD patients but not in healthy

control samples (Figure 5A and B). Some of the lamina propria

BiP+ cells were plasma cells as they stained with anti-CD138

antibodies (Figure 5C and D).

As these findings suggest that stress response is operating at the

damaged intestinal mucosa, we next evaluated the expression of

TIA-1 (T-cell intracellular antigen), which under stress conditions

translocates from the nucleus to the cytoplasm where it appears as

part of small cytoplasmic aggregates, known as stress granules

[22]. Using immunofluorescent confocal microscopic analysis, we

observed co-localization of MICA/B with TIA-1 in the cytoplasm

of mononuclear cells in duodenal mucosa in active CD (Figure 6),

suggesting the existence of an ongoing stress response in CD

enteropathy.

We then hypothesized that MICA/B expression is associated

to the ongoing stress response in the damaged intestine. To

assess whether stress stimuli modulate MICA/B expression, an

in vitro model consisting of Caco-2 cells was used. Cells were

treated with distinct stressors such as thapsigargin (irreversible

inhibitor of the sarco-endoplasmic reticulum calcium ATPase –

SERCA-, that induces ER stress due to calcium deprivation),

sodium arsenite (an oxidative agent) [22] and heat shock (42uC
for 1 h) [23,24]. Thereafter, cellular localization of TIA-1 was

analyzed by immunofluorescent confocal microscopy. Incubation

of Caco-2 cells under heat shock conditions induced the

formation of TIA-1 aggregates compatible with cytoplasmic

stress granules (Figure 7A). Under oxidative stress conditions

we observed that different sodium arsenite concentrations

generated different kinds of cytoplasmic TIA-1 aggregates.

While one hour incubation with 500 mM sodium arsenite

produced the characteristic stress granules TIA-1+ in the

cytoplasm, fine cytoplasmic TIA-1+ aggregates were observed

Figure 3. MICA/B+ cells in the intraepithelial compartment. A.- Immunofluorescent confocal microscopic analysis on small intestinal sections
showing CD7+ cells (green), MICA/B+ cells (red) and nuclei (blue). (i) Mild enteropathy sample (ii) Enlarged section of (i). (iii) Severe enteropathy
sample. (iv) Duodenal section from a healthy control. Intraepithelial and lamina propria compartments were delimited in the picture with a thin line
(scan zoom 0.7, magnification 1006). B.- Numbers of CD7+MICA/B+ were determined per unit of muscularis mucosae m.m. using immunofluorescent
microscopy on duodenal sections of 11 healthy controls, 9 patients with mild enteropathy and 4 patients with severe enteropathy. Percentage of
CD7+MICA+ cells (left plot) and total number of CD7+ cells (right plot) were depicted. ** p#0.01, (Non parametric Kruskal wallis test followed by the
Dunns multiple-comparison posttest).
doi:10.1371/journal.pone.0073658.g003
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when cells were treated with 250 mM sodium arsenite. We also

observed translocation of TIA-1 to the cytoplasm, and the

formation of stress TIA-1+ granules in cells treated with

thapsigargine for one or three hours. In this case, TIA-1+

distribution was found as fine cytoplasmic protein aggregates

similar to those observed upon exposure of cells to sodium

arsenite. These results indicate that all stressors generated a

stress response accompanied by TIA-1 translocation to the

cytoplasm and stress granules formation in Caco-2 cells.

A kinetic study exposing cells to heat shock during different

periods of time showed redistribution of MICA/B into cytoplasmic

granules. Analysis by confocal microscopy showed that this

redistribution required a treatment longer than 10 min. After

30 min at 42uC, cytoplasmic MICA/B+ coarse granules were

evident in Caco-2 cells. After one hour of heat shock exposure,

most of the cells showed MICA/B+ granules. Similarly, these

granules were also observed in cells treated for one hour under

oxidative or ER stress conditions. Untreated cells showed a diffuse

cytoplasmic pattern of MICA/B staining (Figure 7B).

Cytoplasmic MICA/B+ granules formed under oxidative stress

did not co-localize with TIA-1+ granules; similar results were

observed after stress induction with Thapsigargin (Figure 7C) and

heat shock exposure (not shown).

Altogether, and using a model of human enterocytes (Caco-2

cells), our results suggest that as part of the stress response, MICA/

B relocates into cytoplasmic aggregates, and is not de novo

synthesized. This cytoplasmic location was probed not to be

TIA-1+ stress granules. In addition, the three in vitro models used

revealed that under stress conditions MICA/B is redistributed in

peri- and/or supra-nuclear coarse granule structures similar to

those observed in duodenal mucosa of untreated CD patients and,

to a lesser extent, in patients on a gluten free diet.

Discussion

Celiac disease is characterized by damage to the small intestinal

mucosa including villus shortening, crypt hyperplasia, and

increased lymphocyte infiltration of the epithelium and lamina

propria due to an exacerbated proinflammatory immune response

to gluten proteins [12]. Several changes are observed in the

epithelium, including altered enterocyte shape and height, loss of

brush border, vacuolation, denudation and loss of epithelia, some

of which are the consequence of increased enterocyte apoptosis

[25].

High production of IL-15 in intestinal mucosa in active CD has

been shown to trigger enterocyte apoptosis via the induction of cell

surface MICA, which in turn interacts with the activating NKG2D

receptor present in IELs. Cytotoxic activity of IELs is also

potentiated by IL-15 through activation of JNK and ERK

pathways [10,11,16]. Though MICA/B confers susceptibility to

NKG2D-mediated killing of enterocytes by intraepithelial NK and

CD8+ T cells in untreated CD, our results suggest that MICA/B

expression may also regulate cell survival of other cells in the

intestinal mucosa.

In our study, we observed a more ubiquitous distribution of

MICA/B expression. In enterocytes, the expression was mainly

found in the cytoplasm as peri- and/or supra-nuclear aggregates.

The analysis of the intraepithelial compartment, which contains

different lymphocytes, most of them CD7+ cells, revealed the

expression of MICA/B in lymphocytes in celiacs and control

samples. We found coarse MICA/B aggregates in the cytoplasma

of CD7+ cells; which were more frequently observed in mild

enteropathy samples.

Distinct MICA/B+ cell populations such as CD3+ and CD7+ T

lymphocytes, CD20+ B lymphocytes and plasma cells were found

in the lamina propria of non inflammed and enteropathy tissue, and

the pattern of the MICA/B staining found in CD7+ lamina propria

cells was coincident with that observed in cells of the intraepithelial

Figure 4. MICA/B+ cells in the lamina propria. A.- Immunofluorescent confocal microscopic analysis was performed in paraffin embedded
sections from tissues with severe enteropathy (i, iii, iv, v, vi, vii, viii) and mild enteropathy (ii). Sections were stained as follows: MICA/B (red), Nuclei
(blue). i. CD3+ cells (green). ii and iii. CD7+ cells (green).. iv. CD20+ (green). v. CD138+ cells (green). vi. HAM-56+ cells (green). vii. CD11c+ cells (green).
viii. IC antibody (all cell lineage markers in green). (scan zoom 0.7, magnification 1006). B.- Expression of MICA/B in CD7+ cells in sections of small
intestine samples of 6 healthy controls, 8 mild enteropathy samples and 4 severe enteropathy samples. Percentage of MICA/B+ cells in the CD7+

population (left panel) and total number of lamina propria CD7+ cells per unit of m.m. (right panel) were plotted. * p#0,05; (Non parametric Kruskal
wallis test followed by the Dunns multiple-comparison posttest). C.- Expression of MICA/B in CD138+ cells in sections of small intestine samples of 13
healthy controls, 7 mild enteropathy and 5 severe enteropathy. Percentage of MICA/B+ cells on the CD138+ population (left panel) and total number
of lamina propria CD138+ cells per unit of m.m (right panel). ** p#0.01, (Non parametric Kruskal wallis test followed by the Dunns multiple-
comparison posttest).
doi:10.1371/journal.pone.0073658.g004

Figure 5. BiP expression in duodenal mucosa. Immunofluorescent confocal analysis on duodenal biopsy samples of a healthy control (A) and a
severe enteropathy of a CD patient (B) showing BiP expression (green) and nuclei (red, propidium iodide) (scan zoom 1,7, magnification 636). Healthy
control (C) and severe enteropathy of a CD patient (D) showing BiP (green) and CD138 (red) expression. (scan zoom 4.2 and 3.5, respectively,
magnification 636).
doi:10.1371/journal.pone.0073658.g005
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compartment. On the other hand, B cells showed clear membrane

staining while plasma cells showed an intense but diffuse

intracellular pattern. A few HAM 56+ macrophages also harbour

MICA/B in coarse cytoplasmic aggregates.

MICA/B expression was reduced in duodenal samples from

patients under a gluten-free diet, reflecting a possible link between

the ongoing inflammatory process induced by gluten ingestion and

MICA/B expression. Therefore, considering the pattern of

MICA/B expression in different cell lineages observed, signals

for induction of MICA/B may be part of a more general

mechanism associated to the ongoing inflammatory process in the

small intestine in untreated CD patients. Several studies on

intestinal tissue, isolated cells from intestinal mucosa or epithelial

cell lines support a link between cellular (heat, oxidative and ER)

stress and mucosal damage [14,26–29]. Particularly, the occur-

rence of oxidative stress was observed in intestinal biopsies from

untreated CD patients, which was evidenced as increased level of

prostaglandins E2 while the levels of the antioxidants enzyme

glutathione peroxidase and reductase, and consequently reduced

glutathione (GSH), were decreased [30]. In addition, inducible-

nitric oxide synthase (iNOS), which is constitutively expressed in

duodenal enterocytes, showed increased activity in untreated CD

[31]. Direct participation of gliadin peptides, particularly p31–43,

in the production of reactive oxygen and nitrogen species (ROS

and RNS) has been documented in the induction of oxidative

stress in the mucosa of these patients [14]. Therefore, the existence

of an altered epithelium as consequence of the oxidative and ER

stress might be part of the mechanisms that contribute to the

intestinal damage in untreated CD.

To evaluate whether different forms of cellular stress may occur

in duodenal mucosa, we analyzed the expression of BiP, a well-

established marker of ER stress [21]. BiP was detected in distinct

lamina propria cells, both in non inflammed tissue and enteropathy.

Remarkably, we observed a higher expression of BiP in the

epithelia of untreated CD duodenal samples but not in healthy

tissue. Therefore, and in accordance with previous studies, our

results suggest that an oxidative and an ER stress are present in

CD enteropathy [14,27,30,32]. Furthermore, the observation of

TIA-1+ granules in lamina propria mononuclear cells from untreated

CD patients further supports this idea.

Immunofluorescent analyses revealed that different cells exhibit

a particular pattern of MICA/B staining. These distinct patterns

of cytoplasmic MICA/B+ structures might be linked to structures

formed during the stress response. The RNA binding protein TIA-

1, found in small cytoplasmic aggregates, named stress granules

[33], was observed in lamina propria mononuclear cells, which

additionally indicates the existence of an ongoing stress response in

duodenal mucosa of untreated CD patients.

In vitro studies with Caco-2 cells and different models for

oxidative, thermal and ER stress, indicated an accumulation of

MICA/B but not in association with TIA-1+ stress granules.

Although we cannot rule out other intracellular localizations of

MICA/B such as associated to aggresomes, this pattern resembles

the localization of MICA/B observed in intestinal mucosa in

active CD.

Gluten peptides, the causative agent of CD in genetically

susceptible individuals, particularly p31–43, may also mediate

inflammatory processes [14,34], alter the traffic of the vesicular

compartment resulting in increased epidermal growth factor

receptor (EFGR) and the IL-15/IL-15Ra complex expression

and activation [35], that altogether contribute to disregulation of

tissue remodelling and mucosal damage. Remarkably, gliadin

peptides may induce cellular stress in the epithelium by different

mechanisms as was observed for oxidative [36] and ER-stress [32]

in Caco-2 cells. Enhanced expression of the stress protein HSP65

in epithelial cells in intestine of untreated CD patients appears as

result of the chronic inflammation [37]. Altogether, there is

substantial evidence indicating that stressed mucosa is a conse-

quence of the inflammatory cascade in CD pathogenesis.

In our study, we also observed expression of MICA/B in B and

T lymphocytes. Expression of MICA in activated T lymphocytes

has already been observed [38,39] and it has been reported that

such expression confers susceptibility to NK cell-mediated

cytotoxicity [40]. More recently, a pathophysiological role of

Figure 6. TIA-1+ granules indicate stress in the intestinal mucosa in active CD. MICA/B cytoplasmic expression colocalized with TIA-1+

granules. (A) MICA/B (red) and TIA-1 (green) in different cell populations in a severe enteropathy of a CD patient. Epithelium was delimited in the
picture with a thin line (scan zoom 0.7, magnification 1006). (B) Enlarged picture of (A).
doi:10.1371/journal.pone.0073658.g006
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Figure 7. In vitro stress treatments change the pattern of MICA/B expression. A. Induction of TIA-1+ granules in Caco-2 cells. Confocal
microscopic analysis of Caco-2 cells treated during different periods of time with thapsigargin, sodium arsenite or fever-range temperature showing
redistribution of TIA-1 (white) into stress granules. Nuclei (blue). (scan zoom 0,7, magnification 1006). B.- Redistribution of MICA/B in treated
Caco-2 cells. Confocal microscopic analysis of Caco-2 cells treated during different periods of time with thapsigargin, sodium arsenite or fever-range
temperature showing redistribution of MICA/B (red) in cytoplasmic aggregates. Nuclei (blue). (scan zoom 0,7, magnification 1006). C.- Distribution
of MICA/B and TIA-1 in Caco-2 treated cells. Confocal microscopy of Caco-2 cells treated with thapsigargin (ER stress) or sodium arsenite
(oxidative stress) for 1 hour, showing MICA/B (red) and TIA-1 (white) (magnification 1006). In both cases, MICA/B+ structures were not associated to
stress TIA-1+ granules. (scan zoom 0,7, magnification 1006).
doi:10.1371/journal.pone.0073658.g007
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MICA expression and release on T cells during HIV infection was

described [41]. Remarkably, we found MICA/B in the cytoplasm

of intraepithelial and lamina propria T lymphocytes. Therefore, to

the best of our knowledge our findings constitute the first

description of in vivo expression of MICA in T cells in a

pathological situation of non infectious origin such as CD.

Expression of MICA/B by T cells makes them susceptible to

NKG2D-mediated cytotoxicity by NK cells [40,42]. Cell surface

MICA/B expression may act to negatively regulate T cell function

by decreasing of IFN-c production and cytotoxicity and reduce

tissue damage by regulatory mechanisms via NK/T cell interac-

tion. However, intracellular (cytoplasmic) expression, as observed

in our study, may preclude that such putative homeostatic

mechanism may operate normally and consequently contribute

to the tissue damage observed in the mucosa of CD patients

[10,11,43].

Altogether, our results indicate that the MICA/B expression in

intestinal mucosa of celiac patients is indeed broader than

originally reported and might be associated to the extensive stress

conditions present in the intestinal lesion in active CD. Also, the

intracellular location of MICA in intraepithelial and lamina propria

T cells may hinder their recognition by NKG2D-expressing cells

avoiding the control of overactivated T cells, hypothesis to be

further investigated in future studies. Therefore, our results suggest

that MICA/B may play a more general role than previously

thought in gut immunobiology.
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