Meta-Analyses of 8 Polymorphisms Associated with the Risk of the Alzheimer's Disease

Xuting Xu¹[®], Yunliang Wang²*[®], Lingyan Wang³[®], Qi Liao¹, Lan Chang¹, Leiting Xu¹, Yi Huang¹, Huadan Ye¹, Limin Xu¹, Cheng Chen¹, Xiaowei Shen¹, Fuqiang Zhang⁴, Meng Ye⁵*, Qinwen Wang¹*, Shiwei Duan¹*

1 Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China, 2 The Neurology Department of the 148th Hospital of PLA, Zibo, Shandong, China, 3 Bank of Blood Products, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China, 4 Ningbo Institute of Microcirculation and Henbane, Ningbo, Zhejiang, China, 5 The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China

Abstract

Aims: The aim of this study was to evaluate the combined contribution of 8 polymorphisms to the risk of Alzheimer's disease (AD).

Methods: Through a comprehensive literature search for genetic variants involved in the AD association study, we harvested a total of 6 genes (8 polymorphisms) for the current meta-analyses. These genes consisted of *A2M* (5bp I/D and V1000I), *ABCA2* (rs908832), *CHAT* (1882G >A, 2384G >A), *COMT* (Val158Met), *HTR6* (267C >T) and *LPL* (Ser447Ter).

Results: A total of 33 studies among 9,453 cases and 10,833 controls were retrieved for the meta-analyses of 8 genetic variants. It was showed that *A2M* V1000I (odd ratio (OR) = 1.26, 95% confidence interval (CI) = 1.07-1.49, P = 0.007), rs908832 allele of *ABCA2* (OR = 1.55, 95% CI = 1.12-2.16, P = 0.009), 2384G >A of *CHAT* (OR = 1.22, 95% CI = 1.00-1.49, P = 0.05) and Ser447Ter of *LPL* in the Northern-American population (OR = 0.56, 95% CI = 0.35-0.91, P = 0.02) were significantly associated with the risk of AD. No association was found between the rest of the 5 polymorphisms and the risk of AD.

Conclusion: Our results showed that A2M V1000I polymorphism in German, Korean, Chinese, Spanish, Italian and Polish populations, rs90883 of ABCA2 gene in French, American, Swiss, Greek and Japanese populations, 2384G >A of CHAT gene in British and Korean populations and LPL Ser447Ter in the Northern-American population were associated with the risk of AD.

Citation: Xu X, Wang Y, Wang L, Liao Q, Chang L, et al. (2013) Meta-Analyses of 8 Polymorphisms Associated with the Risk of the Alzheimer's Disease. PLoS ONE 8(9): e73129. doi:10.1371/journal.pone.0073129

Editor: Gianluigi Forloni, "Mario Negri" Institute for Pharmacological Research, Italy

Received February 12, 2013; Accepted July 17, 2013; Published September 10, 2013

Copyright: © 2013 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was supported by the grants from the National Natural Science Foundation of China (31100919, 81070873, and 81271209), Natural Science Foundation of Zhejiang Province (LR13H020003), K. C. Wong Magna Fund in Ningbo University, Ningbo social development research projects (2012C50032), Science and Technology Innovation team of Ningbo (2011B82014), the neurobiological mechanisms of drug-reward: role of the habenula National Natural Science Foundation of China (81171257), and Research Fund in Ningbo University (XKL11D2117). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wangqinwen@nbu.edu.cn (QW); wangyunliang81@163.com (YW); duanshiwei@nbu.edu.cn (SD); dryemeng@yahoo.com.cn (MY)

9 These authors contributed equally to this work.

Introduction

Alzheimer's disease (AD) is the most common form of dementia among people over 65 years of age [1]. AD is predicted to affect 1 in 85 people globally by 2050 [1]. As an incurable degenerative disease, AD gets worse gradually and eventually leads to death. The features of AD development consist of loss of cognitive functions such as thinking, remembering, and reasoning, and ultimately leading to death. The averaged life expectancy after AD diagnosis is seven years [2]. Although hundreds of clinical trials have been conducted to find ways to treat the disease, none has claimed its effect of stopping or reversing the progressive symptoms. Because AD patients rely on others for assistance, it has imposed great economic costs on society [3,4].

The cause for most AD cases is still largely unknown, although attempts have been made to explain AD by using the hypotheses based on acetylcholine [5], amyloid [6,7], tau [7] and etc. In the present study, we performed meta-analyses for the variants on 6 protein encoding genes, including choline O-acetyltransferase (CHAT), catechol-O-methyltransferase (COMT), alpha-2-macro-globulin (A2M), 5-hydroxytryptamine receptor 6 (HTR6), ATP-binding cassette, sub-family A, member 2 (ABCA2), lipoprotein lipase (LPL). CHAT is an important enzyme catalyzing the biosynthesis of the neurotransmitter acetylcholine [8]. Altered protein levels of CHAT in neurons are shown to affect the symptoms of AD containing mild cognitive impairment [9,10]. As one of the serotonin receptors, HTR6 plays a pivotal role in cognitive and memory processes [11] that are gradually damaged along with the AD progression. Involved in dopamine system, COMT is an important enzyme catalyzing the transfer of a methyl group from S-adenosylmethionine to catecholamines in the

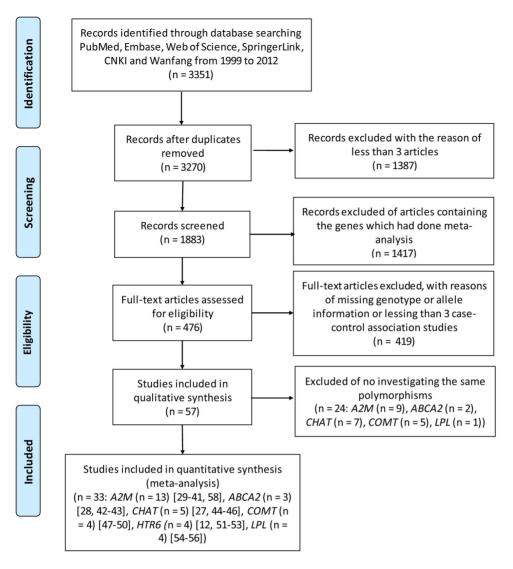


Figure 1. Flow diagram of the 8 meta-analyses. doi:10.1371/journal.pone.0073129.g001

synapse [12]. COMT gene variant is associated with the volumes of ventral tegmental area where the gray matter correlates with cognitive and behavioral deficits in AD patients [13]. A2M encodes a protease inhibitor and cytokine transporter [14,15]. A2M is important for the clearance and degradation of betaamyloid [16,17] which may lead to the pathogenesis of AD through the induction of tau phosphorylation [18-20]. ABCA2 was cholesterol-responsive gene encoded a member of the superfamily of ATP-binding cassette (ABC) transporters [21]. Over-expression of ABCA2 causes increased protein levels of amyloid beta precursor protein (APP) and beta-amyloid, both of which are important determinants of AD [22]. As a key enzyme to transfer fatty acids from triacylglyceride-rich lipoproteins, LPL is especially important in the process of cholesterol transport in neurons [23]. AD might be related to LPL protein that is one of component of amyloid plaques [24].

Associations between 8 single-nucleotide polymorphisms (SNPs) of the above 6 genes and AD have been reported in different ethnic groups [11,25–57]. The results of these casecontrol studies for the above 8 genetic variants with AD differ across different groups. In the present study, we aimed to evaluate the combined contribution of the SNPs in these genes to AD susceptibility in different populations using a meta-analysis approach.

Materials and Methods

Literature search and study selection

Literatures were searched through the online databases from 1999 to 2012 using the following key words: "alzheimer's disease, association, SNP or polymorphism or variant or variation or mutation". The involved databases include PubMed, Chinese National Knowledge infrastructure (CNKI), Embase, SpringerLink, and ScienceDirect. Reference lists in the harvested literatures were explored for additional case-control studies. The criteria for the selection of literatures in the meta-analyses were as followed: (1) the study was case-control association study; (2) allele or genotype information is available; (3) the involved genetic variants have not been studied in previous meta-analysis. The retrieved information consisted of the first author, the year of publication, the number of participants with the different allele (patients and healthy controls), and the odds ratios (ORs) values

			Ethnic	Experimental		Control			Odds Ratio	Odds Ratio			
Gene	SNP	Study or Subgroup	Group	Events	Total	Events	Total	Weight	M-H, Fixed, 95% (M-H, Fixed, 95% Cl			
A2M	5bp I/D	Beghi, M.	German	14	102	29	191	13.2%	0.89 [0.45, 1.77	7]			
		Camelo, D	Colombia	7	51	1	13	1.0%	1.91 [0.21, 17.08	i]			
		Chen. D	Chinese	12	166	30	215	18.4%	0.48 [0.24, 0.97	'] 			
		Clarmon, J.	Spanish	19	112	14	91	9.8%	1.12 [0.53, 2.39	aj —			
		Jhoo, J	Korean	6	100	6	203	2.8%	2.10 [0.66, 6.67	7]			
		Ki, C, S	Korean	4	88	3	50	2.8%	0.75 [0.16, 3.48	3]			
		Prince, J.	Swedish	33	200	26	183	17.2%	1.19 [0.68, 2.09	9]			
		Zappia, M.	Italian	21	132	43	184	23.0%	0.62 [0.35, 1.11]			
		Zill, P.	German	13	89	21	118	11.7%	0.79 (0.37, 1.68	3]			
		Total (95% CI)			1040		1248	100.0%	0.86 [0.67, 1.10	g 🔶			
		Total events		129		173							
		Heterogeneity: Chi2:	= 8.54, df = 8	(P = 0.38)	; I ² = 6%	,							
		Test for overall effect: $Z = 1.20$ (P = 0.23)											
	V1000I	Bruno, E	Italian	39	125	81	310	13.2%	1.28 (0.81, 2.02				
		Chen, D	Chinese	17	158	14	195	4.6%	1.56 [0.74, 3.27]				
		Clarmon, J.	Spanish	39	112	29	89	8.7%	1.11 [0.61, 1.99]				
		Depbylu, C	German	184	271	160	280	20.8%	1.59 [1.12, 2.25]	li 🖉 👘			
		Mariani, E.	Italian	31	100	42	136	10.1%	1.01 [0.58, 1.76				
		Styczynska, M	Polish	33	100	40	100	11.1%	0.74 [0.41, 1.32]				
		Zappia, M.	Italian	47	132	48	184	10.7%	1.57 [0.96, 2.54]	li t e i			
		Zeppia, M.	Italian	54	148	41	158	10.4%	1.64 [1.01, 2.67]				
		Zill, P.	German	27	89	38	98	10.4%	0.69 (0.37, 1.26				
		Total (95% CI)			1235		1550	100.0%	1.26 [1.07, 1.49]	•			
		Total events		471		493							
		Heterogeneity: Chi ² :	= 11.81, df = 1	8 (P = 0.1)	6); I ² = 3	2%							
		Test for overall effec	t: Z = 2.70 (P	= 0.007)									
ABCA2	re908832	Mace, S	French	33	440	18	519	27.1%	2.26 [1.25, 4.07				
		Minster, R	American	35	1228	47	2012	61.4%	1.23 [0.79, 1.91]				
		Wollmer, M(1)	Swiss	5	122	1	179	1.4%	7.61 [0.88, 65.94				
		Wollmer, M(2)	Greek	9	269	4	97	10.1%	0.80 [0.24, 2.68				
		Wollmer, M(3)	Japanese	0	175	0	121		Not estimable				
		Total (95% CI)			2234		2928	100.0%	1.55 [1.12, 2.16]	•			
		Total events		82		70							
		Heterogeneity: Chi ² :	= 5.86, df = 3	(P = 0.12)	; I ² = 49					0.01 0.1 1 10 100			
		Test for overall effec	t: Z = 2.61 (P	= 0.009)	00					Favours experimental Favours control			

Figure 2. Forest plots for the relationship between SNPs (5bp I/D, V1001I, rs908832), and AD in the meta-analyses. doi:10.1371/journal.pone.0073129.g002

with 95% confidence intervals (CIs). In total, 33 publications addressing 8 polymorphisms were included in the current meta-analyses.

Statistical Analysis

The meta-analyses were done using the Review Manager 5.0 software [58]. Total ORs with 95% CIs were estimated to evaluate the strength of the association between polymorphisms and AD risk. Heterogeneity was tested by the Cochran's Q statistic and I² test [59]. A I²<50% denoted a non-significant heterogeneity among the involved studies in the meta-analysis and fixed-effect model was used in the meta-analyses. The funnel plot was used to evaluate the publication bias in the meta-analysis. A two-sided P value <0.05 in the Z-test was treated as significant.

Results

As shown in Figure 1, our search for the case-control studies of AD retrieved 3,351 articles from PubMed, Embase, Web of Science, CNKI and Wanfang from 2000 to 2012. After removing the duplicated publications, we harvested 3270 articles. Among them, 1417 studies were discarded for their involvement in the previous meta-analyses. For the rest 476 studies, we filtered out a

total of 428 articles because they failed to accumulate at least three independent genotypic datasets for the same genetic variants. At last, there were 33 case-control studies with 8 polymorphisms for the current meta-analyses (Figure 1).

There was no evidence of statistical heterogeneity for all the SNPs in our meta-analysis. Minimal heterogeneity was observed for A2M 5bp-del (I² = 4%, Figure 2), CHAT 1882G >A (I² = 12%, Figure 3), CHAT 2384G >A (I² = 0%, Figure 3), COMT Val158Met (I² = 0%, Figure 3), HTR6 267C >T (I² = 0%, Figure 3) and LPL Ser447Ter polymorphism (I² = 11%, Figure 3). There was moderate heterogeneity for A2M V1000I (I² = 32%, Figure 2) and ABCA2 rs908832 polymorphism (I² = 49%, Figure 2). As shown in the funnel plot, no obvious publication bias was observed for the 8 meta-analyses (Figure 4). The details were presented in the Tables 1 and 2.

Meta-analysis of A2M V1000I polymorphism involved 9 studies among 1235 cases and 1550 controls. As shown in Figure 2, V1000I was risk factors to AD onsets (OR = 1.26, 95% CI = 1.07– 1.49, P = 0.007, Figure 2). A strong association between rs908832 of ABCA2 gene and AD was observed in the meta-analysis of 5 studies among 2234 cases and 2928 controls (OR = 1.55, 95% CI = 1.12–2.16, P = 0.009, Figure 2). Moderate association was found between the CHAT 2384G >A polymorphism and AD in the meta-analysis of 3 studies among 1183 cases and 1705 controls

Gene SNP	Study or Subaroup	Ethnic Group	Experime		Contro		Moight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% Cl
	Grunblatt, E	Italian	10	37	16	79	3.8%	1.46 [0.59, 3.62	
10020-70	Harold, D	British	22	68	37	85		0.62 [0.32, 1.21	
	Ozturk, A	American	250	1001	190	705	84.9%	0.90 [0.72, 1.12	
	Total (05% CI)			1106		000	100.0%	0 00 10 73 4 00	
	Total (95% CI)		000	1100		009	100.0%	0.89 [0.73, 1.09	1 1
	Total events	2 0 00 46 0 00	282	4.000	243				50 S
	Heterogeneity: Chi Test for overall effe			= 12%					
2384G>A	Abu lo S	Korean	56	316	37	201	21.9%	0.95 (0.60, 1.51	1
2004057	Harold, D	British	37	131	30	118		1.15 [0.66, 2.03	
	Lee, J. J	Korean	129	736		1386	64.7%	1.32 [1.04, 1.69	
	No. of Concession, Name			1183		1705	100.0%	10, 10	
	Total (95% CI)		222	1105	259	1705	100.070	1.22 [1.00, 1.43	·1
	Total events Heterogeneity: Chi	² = 1.55, df = 2 (P		= 0%	209				
	Test for overall effe								
OMT Val158Met	Forero, D. A	Colombian	37	99	63	161	12.4%	0.93 [0.55, 1.55	j —
	Lanni, C	Italian	147	276	124	248	25.1%	1.14 [0.81, 1.61	1 🕂
	Martmez, M. F	Spanish	183	345	124	253	27.7%	1.18 [0.85, 1.63	aj
	Thornton, V	British	167	349	160	340	34.8%	1.03 [0.77, 1.39	n –
	Total (95% CI)			1069		1002	100.0%	1.09 [0.91, 1.29	1
	Total events		534		471				
	Heterogeneity: Chi Test for overall effe			= 0%					
<i>HTR6</i> 267C>T	Alvarez, M	Basque	13	173	12	102	25.7%	0.61 (0.27, 1.39	n
	Kan, R	Chinese	18	105		130		1.38 [0.67, 2.82	
	Orlacchio, A	Italian	19	127		100	26.3%	1.00 [0.48, 2.08	
	Thome, J	German	11	69		156		0.95 [0.44, 2.05	
	Total (95% CI)			474		199	100.0%	0.97 [0.67, 1.42	1
	Total events		61	414	70	400	100.070	0.01 [0.01, 1.42	1 1
		² = 2.13, df = 3 (P		- 0%	10				4 . The second sec
	Test for overall effe			- 0 %					5 IV
LPL Ser447Ter		American	29	290		25	7.3%	0.58 [0.19, 1.82	
	Baum, L(2)	Canadian	. 11	136		70	13.3%	0.53 [0.21, 1.31	
		uropean-Amei		119		315	17.8%	0.40 [0.15, 1.06	
	Fidani, L	Caucasian	49	459	58	554	51.4%	1.02 [0.68, 1.53	
	Matthew D.	American	11	108	9	79	10.2%	0.88 (0.35, 2.24	
	Total (95% CI)		105	1112			100.0%	0.80 [0.59, 1.09	1 🔶
	Total events		105		112				
	Heterogeneity: Chi ² : Test for overall effect			11%					

(OR = 1.22, 95% CI = 1.00–1.49, P = 0.05, Figure 3). As shown in Figure 3, no association of LPL Ser447Ter polymorphism with AD was found in the meta-analysis of 5 studies among 1112 cases and 1043 controls (OR = 0.8, 95% CI = 0.59–1.09, P = 0.16). However, the subgroup analysis by ethnicity found that LPL Ser447Ter polymorphism in the Northern-American population was associated with the risk of AD (OR = 0.56, 95% CI = 0.35–0.91, P = 0.02, Figure S1).

In order to test the robustness of the results in the metaanalyses, we perform a series of subgroup meta-analyses by excluding each study in turn, and the results showed that there was a significant association between the 2 SNPs (A2M V1001I, ABCA2 rs908832) with AD (P<0.05), except for the exclusion of Depbylu's study (A2M V1001I) and the Mace's study (ABCA2 rs908832) (Table S1). For LPL Ser447Ter, the subgroup metaanalysis by excluding Fidani's study found a significant association between LPL Ser447Ter and the risk of AD (Z = 2.33, P = 0.02). Moreover, subgroup meta-analyses by ethnicity were also performed to prevent the bias among different ethnic populations (Figure S1). Our subgroup meta-analyses indicated that A2M V1000I was a risk factor of AD in Italian population among 171 cases and 212 controls (OR = 1.37, 95% CI = 1.07– 1.75, P = 0.01), and LPL Ser447Ter polymorphism was likely to be a protective factor of AD in Northern-American population (OR = 0.56, 95% CI = 0.35–0.91, P = 0.02, Figure S2).

Discussion

In the present study, we carried out a systematic overview of case-control association studies for the susceptibility of AD. We screened all the available studies to harvest the eligible SNPs that were involved in at least three independent datasets. In the end, 8 SNPs of 6 AD candidate genes were included in the current metaanalyses. Our results showed significant evidence for 2 AD

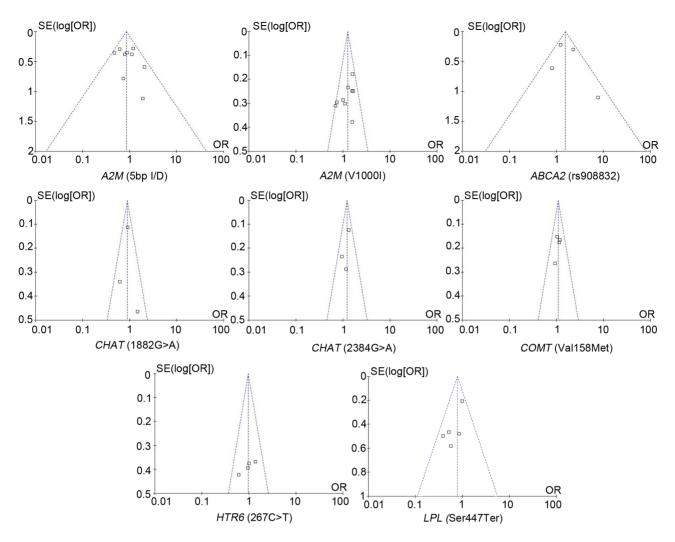


Figure 4. Funnel plots for the relationship between 8 SNPs and AD in the meta-analyses. doi:10.1371/journal.pone.0073129.g004

susceptibility SNPs (*A2M* V1000I polymorphism (OR = 1.26, 95% CI = 1.07–1.49, P=0.007), *ABCA2* rs908832 polymorphism (OR = 1.55, 95% CI = 1.12–2.16, P=0.009). We also observed a moderate association of AD for *CHAT* 2384G >A polymorphism (OR = 1.22, 95% CI = 1.00–1.49, P=0.05), and an association of AD for *LPL* Ser447Ter polymorphism in the Northern-American population (OR = 0.56, 95% CI = 0.35–0.91, P=0.02). No significant associations were found between the rest 4 SNPs and AD.

Large ethnic differences were observed for some of SNPs such as V1000I (20.8% in Germans versus 4.6% in Chinese), and Val158Met (12.4% in Colombians versus 34.8% in British). Under a moderate risk of AD (OR = 1.2), power analysis showed that there might be a lack of power for the meta-analyses of the 4 SNPs, including 5bp I/D of A2M (59.6%), Ser447Ter (56.6%) of LPL, rs908832 of ABCA2 (31.6%) and 267C >T of HTR6 (29.9%). These might partly explain our failure to observe significant results for the meta-analyses of most polymorphisms.

A2M is the one of the key ligands for low density lipoprotein receptor-related protein (LRP) which modulates the critical step for the clearance of A-beta, the major component of beta-amyloid [60]. A2M may regulate AD progression through its ability to mediate the degradation of A-beta [61]. V1000I polymorphism is located near the C-terminal region of A2M which inhibits the

β-sheet formation and fibril-formation activities of beta-amyloid [15]. V1000I polymorphism has been shown to increase betaamyloid directly [34]. Moreover, our meta-analysis has confirmed that *A2M* V1000I polymorphism is associated with a 26% increase in the risk of AD (P = 0.007), although validation of this finding is warranted among other ethnic populations.

As a member in the Sub-family A, ABCA2 may regulate cholesterol homeostasis and LDLR metabolism in neuronal cells [62–64]. ABCA2 expression has been shown to increase endogenous expression of amyloid precursor protein (APP) and the production of A β fragment that is a key player in AD progression [65]. SNP rs908832 is C-T polymorphism in exon 14 of the *ABCA2* gene. Our result showed a significant contribution of *ABCA2* rs908832 polymorphism to the susceptibility of AD (OR = 1.55, 95% CI = 1.12–2.16, P = 0.009). Future research is needed to clarify the mechanistic details of this polymorphism.

As the enzyme responsible for the biosynthesis of acetylcholine [66], CHAT protein is a marker of evaluating the function of basal forebrain cholinergic cells [67], the dementia severity in Alzheimer's disease [68,69] and the density of senile plaques [70]. By modulating levels of acetylcholine, CHAT influences a wide range of cholinergic-dependent neurophysiological functions including cognitive ability [44,71]. In early stage of AD, reduction in CHAT activity is a more sensitive indicator than the loss of

Table 1. The characteristics of the enrolled SNPs (5bp I/D, V1001I, and rs908832).

Gene	SNP	Year	Author	Ethnic group	No. case/control	Genotype (case/control)	Allele (case/control)		
A2M	5bpl/D					I/I	I/D	D/D	I	D	
		2000	Beghi, M	German	102/191	75/139	27/47	0/5	177/325	27/57	
		2004	Camelo, D	Colombia	51/13	39/11	11/2	1/0	89/24	13/2	
		2004	Chen. D	Chinese	166/215	150/175	8/20	8/20	308/370	24/60	
		2003	Clarmon, J	Spanish	112/91	77/65	33/25	2/1	187/155	37/27	
		2001	Jhoo, J	Korean	100/203	89/192	10/11	1/0	188/395	12/11	
		2001	Ki, C, S	Korean	88/50	81/45	6/5	1/0	168/95	8/5	
		2001	Prince, J	Swedish	200/183	139/137	56/40	5/6	334/314	66/52	
		2002	Zappia, M	Italian	132/184	95/105	32/72	5/7	222/282	42/86	
		2000	Zill, P	German	89/118	65/78	22/39	2/1	152/195	26/41	
	V1000I					AA	AG	GG	А	G	
		2010	Bruno, E	Italian	125/310	57/174	58/111	10/25	172/459	78/161	
		2004	Chen, D	Chinese	158/195	127/168	29/26	2/1	283/362	33/28	
		2003	Clarmon, J	Spanish	112/89	45/42	56/36	11/11	146/83	78/58	
		2006	Depbylu, C	German	271/280	24/45	127/151	120/84	175/241	367/319	
		2006	Mariani, E	Italian	100/136	49/70	41/49	10/17	139/189	61/83	
		2003	Styczynska, M	Polish	100/100	49/40	37/41	14/19	135/121	65/79	
		2002	Zappia, M	Italian	132/184	61/98	48/77	23/9	119/163	94/95	
		2004	Zappia, M	Italian	148/158	65/85	58/65	25/8	188/235	108/81	
		2000	Zill, P	German	89/98	44/32	37/56	8/10	125/120	53/76	
ABCA2	rs908832					СС	СТ	Π	С	т	
		2005	Mace, S	French	440/519	376/484	63/35	1/0	815/1003	65/35	
		2009	Minster, R	American	1228/2012	1160/1920	67/90	1/2	2387/3930	69/94	
		2006	Wollmer, M	Swiss	122/179	113/177	9/2	0/0	235/356	9/2	
				Greek	269/97	253/89	15/8	1/0	521/186	17/8	
				Japanese	175/121	175/121	0/0	0/0	350/242	0/0	

a:N.A. denotes not available.

doi:10.1371/journal.pone.0073129.t001

cholinergic neurons in AD brains [72]. In the current study, two SNPs of *CHAT* gene were analyzed, but only 1882G >A was shown a moderate association with AD (OR = 1.22, 95% CI = 1.00-1.49, P = 0.05).

Encoding lipoprotein lipase, LPL functions as an Aβ-binding protein promoting cellular uptake and subsequent degradation of Aβ [73]. Lipoprotein lipase genes such as *APOE-ε* and *LPL*, are known to be involved in AD pathogenesis [74][75]. LPL has a neuroprotective effect on AD by participating in the pathophysiological effects of oxidative stress [76]. Our meta-analysis indicates that *LPL* Ser447Ter polymorphism is a protective factor of AD in the Northern-American population (OR = 0.56, 95% CI = 0.35–0.91, P = 0.02) and thus supports this above speculation.

There were several limitations in our meta-analyses. Firstly, for some SNPs such as Ser447Ter of *LPL* gene, the involved samples were only limited in a few populations. The results of our metaanalyses may not stand for all ethnic populations. Future investigations in other populations are needed to clarify the contribution of the SNPs of interest to AD susceptibility. Secondly, we didn't probe the interaction of the two positive SNPs (*A2M* V1000I and *ABCA2* rs908832) and two less significant SNPs (*CHAT* 2384G >A and *LPL* Ser447Ter) with *APOE-* ε 4 genotype which is the strongest risk factor of AD. Thus, we can't exclude the possibility that our findings are dependent on APOE-ɛ4 genotype. Thirdly, according to the disease onset age, there are two subtypes of AD, early-onset of AD (EOAD) and late-onset of AD (LOAD). A potential stratification by age may exist in the current meta-analyses, although no significant heterogeneity was found for all the 8 meta-analyses (Table S2 and S3). Among all the studies, we are able to get only three study mentioning the age of onset A2M 5bp I/D polymorphism. There are a total 111 EOAD and 235 LOAD cases and 129 controls younger than 65 and 338 controls with age equal to or over 65. The subgroup analysis has shown that A2M 5bp I/D polymorphism is not associated with AD in both young (Figure S2, OR = 0.78, 95% CI = 0.28-2.16, P = 0.64) and old (OR = 1.41, 95% CI = 0.62-3.18, P = 0.41) subgroups. As shown in the funnel plot of Figure S2, no obvious publication bias is shown for the above two meta-analyses. Fourthly, the incidence of female is higher than male in clinical and over half of the subjects participating in all the studies are female [1]. As an important factor of AD, gender should be considered as a stratifying variable for the further study exploring the diversity among the results of different studies. Due to a paucity of gender-related information, we are unable to perform the subgroup meta-analyses by gender. Fifthly, as shown in the Table S4, we have performed a thorough scanning for the criteria used to determine AD diagnosis. Among all the studies,

Table 2. The characteristics of the enrolled SNPs (1882G >A, 2384G >A, Val158Met, 267C >T, and Ser447Ter)^a.

Gene CHAT	SNP	Year	Author	Ethnic group	No. case/control	Genotype (case/control)			Allele (case/control)	
	1882G >A					GG	GA	AA	G	А
		2011	Grunblatt, E	Italian	37/79	24/51	7/26	6/2	55/128	19/32
		2003	Harold, D	British	68/85	34/49	25/33	9/3	93/131	43/73
		2006	Ozturk, A	American	1001/705	563/369	376/292	62/44	1502/1030	500/380
	2384G >A					GG	GA	AA	G	А
		2006	Ahu Jo, S	Korean	316/201	211/192	99/7	6/2	521/454	111/74
		2003	Harold, D	British	131/118	69/65	51/47	11/6	189/177	73/59
		2012	Lee, J. J	Korean	736/1386	505/1023	205/342	26/21	1215/2388	257/384
COMT	Val158Met					AA	AG	GG	Α	G
		2006	Forero, D. A	Colombian	99/161	41/53	43/90	15/18	125/196	73/126
		2012	Lanni, C	Italian	276/248	61/57	141/131	74/60	259/248	293/248
		2009	Martmez, M. F	Spanish	345/253	74/67	176/125	95/61	324/259	366/247
		2011	Thornton, V	British	349/340	99/105	167/151	83/84	365/361	333/319
HTR6	267C >T					CC	CT	Π	С	Т
		2003	Alvarez, M	Basque	173/102	149/81	23/18	1/3	321/180	25/24
		2004	Kan, R	Chinese	105/130	70/101	35/25	0/4	175/227	35/33
		2002	Orlacchio, A	Italian	127/100	92/76	32/19	3/5	216/171	38/29
		2001	Thome, J	German	69/156	50/107	17/47	2/2	117/261	21/51
LPL	Ser447Ter					Ser/Ser	Ser/Ter	Ter/Ter	Ser	Ter
		2000	Baum, L	American	290/25	N.A	N.A	N.A	522/43	58/7
				Canadian	136/70	N.A	N.A	N.A	250/121	22/19
		1999	Baum, L	European-American	119/315	N.A	N.A	N.A	229/568	9/62
		2002	Fidani, L	Caucasian	459/554	368/444	85/104	6/6	821/992	97/116
		2002	Matthew D	American	108/79	N.A	N.A	N.A	194/140	22/18

a: N.A. denotes not available.

doi:10.1371/journal.pone.0073129.t002

only one study by Kan did the subgroup analysis of clinic and pathology. Due to a lack of informative subgroup analysis in the involved studies, we discontinue the subgroup analysis by the diagnosis criteria. Sixthly, as shown in the Table S5, there are inconsistencies in the presentation of the score of Mini Mental State Examination (MMSE) for controls. This may lead to the discrepancy in the association studies worldwide. Lastly but not least, we didn't include the genomewide association studies into our meta-analyses. There are a total of 33 GWA studies on AD GWAS catalog (http://www.genome.gov/page. in the cfm?pageid = 26525384#searchForm) and 14 studies in the NCBI dbGap dataset (http://www.ncbi.nlm.nih.gov/gap/ ?term = alzheimer). All the loci in our meta-analyses are not presented among the strongest loci in those GWA studies.

In conclusion, we identified significant associations between 2 SNPs (A2M V1000I and ABCA2 rs908832) and AD. Meta-analysis among 1235 cases and 1550 controls has confirmed that A2M V1000I is a risk factor of AD in German, Korean, Chinese, Spanish, Italian and Polish populations. Further, meta-analysis among 2234 cases and 2928 controls has confirmed that rs908832 of ABCA2 gene is a risk factor of AD in French, American, Swiss, Greek and Japanese populations. In addition, meta-analysis among 222 cases and 259 controls indicates a moderate association of CHAT 2384G >A with AD in British and Korean populations. Another meta-analysis among 1112 cases and 1043

controls indicates that *LPL* Ser447Ter polymorphism is likely to be associated with a reduced risk of AD in the Northern-American population (OR = 0.56, 95% CI = 0.35-0.91, P = 0.02).

Supporting Information

Figure S1 Subgroup analysis by ethnicity between SNPs (5bp I/D, V1001I, rs908832, Ser447Ter). (TIF)

Figure S2 Subgroup analysis by mean age of AD patient. (TIF)

Table S1The meta-analysis results of excluding eachstudy in turn.

(DOC)

Table S2 The stratifying variables of the enrolled SNPs (5bp I/D, V1001I, and rs908832). (DOC)

Table S3 The stratifying variables of the enrolled SNPs (1882G >A, 2384G >A, Val158Met, 267C>T, and Ser447Ter).

Table S4Subgroup analysis by AD diagnosis criteria.(DOC)

Table S5 Subgroup analysis by Mini Mental StateExamination (MMSE) in control population.(DOC)

Checklist S1 PRISMA Checklist.

References

- Vina J, Lloret A (2010) Why women have more Alzheimer's disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis 20 Suppl 2: S527–533.
- Molsa PK, Marttila RJ, Rinne UK (1986) Survival and cause of death in Alzheimer's disease and multi-infarct dementia. Acta Neurol Scand 74: 103– 107.
- Bonin-Guillaume S, Zekry D, Giacobini E, Gold G, Michel JP (2005) [The economical impact of dementia]. Presse Med 34: 35–41.
- Meek PD, McKeithan K, Schumock GT (1998) Economic considerations in Alzheimer's disease. Pharmacotherapy 18: 68–73; discussion 79–82.
- Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 66: 137–147.
- Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 12: 383–388.
- Mudher A, Lovestone S (2002) Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 25: 22–26.
- Mubumbila V, Sutter A, Ptok U, Heun R, Quirin-Stricker C (2002) Identification of a single nucleotide polymorphism in the choline acetyltransferase gene associated with Alzheimer's disease. Neurosci Lett 333: 9–12.
- Kooi EJ, Prins M, Bajic N, Belien JA, Gerritsen WH, et al. (2011) Cholinergic imbalance in the multiple sclerosis hippocampus. Acta Neuropathol 122: 313– 322.
- Mengel-From J, Christensen K, Thinggaard M, McGue M, Christiansen L (2011) Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly. Genes Brain Behav 10: 876–882.
- Orlacchio A, Kawarai T, Paciotti E, Stefani A, Sorbi S, et al. (2002) Association study of the 5-hydroxytryptamine(6) receptor gene in Alzheimer's disease. Neurosci Lett 325: 13–16.
- Guldberg HC, Marsden CA (1975) Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev 27: 135–206.
- Gennatas ED, Cholfin JA, Zhou J, Crawford RK, Sasaki DA, et al. (2012) COMT Val158Met genotype influences neurodegeneration within dopamineinnervated brain structures. Neurology 78: 1663–1669.
- Blacker D, Wilcox MA, Laird NM, Rödes L, Horvath SM, et al. (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19: 357–360.
- Hughes SR, Khorkova O, Goyal S, Knaeblein J, Heroux J, et al. (1998) Alpha2macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci U S A 95: 3275–3280.
- Narita M, Holtzman DM, Schwartz AL, Bu G (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69: 1904– 1911.
- Herring A, Yasin H, Ambree O, Sachser N, Paulus W, et al. (2008) Environmental enrichment counteracts Alzheimer's neurovascular dysfunction in TgCRND8 mice. Brain Pathol 18: 32–39.
- Jin M, Shepardson N, Yang T, Chen G, Walsh D, et al. (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108: 5819–5824.
- Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and Proteolytic Processing of APP. Cold Spring Harb Perspect Med 2: a006270.
- Lambert MP, Sabo S, Zhang C, Enam SA, Klein WL (1995) Constitutive Alzheimer's-type tau epitopes in a neuritogenic rat CNS cell line. Neurobiol Aging 16: 583–589.
- Kaminski WE, Piehler A, Pullmann K, Porsch-Ozcurumez M, Duong C, et al. (2001) Complete coding sequence, promoter region, and genomic structure of the human ABCA2 gene and evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 281: 249–258.
- Chen ZJ, Vulevic B, Ile KE, Soulika A, Davis W Jr, et al. (2004) Association of ABCA2 expression with determinants of Alzheimer's disease. FASEB J 18: 1129–1131.
- Nunez M, Peinado-Onsurbe J, Vilaro S, Llobera M (1995) Lipoprotein lipase activity in developing rat brain areas. Biol Neonate 68: 119–127.
- Ben-Zeev O, Doolittle MH, Singh N, Chang CH, Schotz MC (1990) Synthesis and regulation of lipoprotein lipase in the hippocampus. J Lipid Res 31: 1307– 1313.
- Lee JJ, Jo SA, Park JH, Lee SB, Jo I, et al. (2012) Choline acetyltransferase 2384G >a polymorphism and the risk of Alzheimer disease. Alzheimer Dis Assoc Disord 26: 81–87.

Author Contributions

Conceived and designed the experiments: QW YW MY SD. Performed the experiments: XX YH HY LMX. Analyzed the data: QL LC LTX. Contributed reagents/materials/analysis tools: CC XS FZ. Wrote the paper: XX LW QW YW SD.

- Harold D, Peirce T, Moskvina V, Myers A, Jones S, et al. (2003) Sequence variation in the CHAT locus shows no association with late-onset Alzheimer's disease. Hum Genet 113: 258–267.
- Mace S, Cousin E, Ricard S, Genin E, Spanakis E, et al. (2005) ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiol Dis 18: 119–125.
- Depboylu C, Lohmuller F, Du Y, Riemenschneider M, Kurz A, et al. (2006) Alpha2-macroglobulin, lipoprotein receptor-related protein and lipoprotein receptor-associated protein and the genetic risk for developing Alzheimer's disease. Neurosci Lett 400: 187–190.
- Chen D, Zhang JW, Zhang ZX, Wu YN, Qu QM (2004) Association of alpha 2macroglobulin polymorphisms and Alzheimer disease in Mainland Han Chinese. J Neurol Sci 217: 13–15.
- Jhoo JH, Kim KW, Lee DY, Lee KU, Lee JH, et al. (2001) Association of alpha-2-macroglobulin deletion polymorphism with sporadic Alzheimer's disease in Koreans. J Neurol Sci 184: 21–25.
- Ki CS, Na DL, Kim HJ, Kim JW (2001) Alpha-1 antichymotrypsin and alpha-2 macroglobulin gene polymorphisms are not associated with Korean late-onset Alzheimer's disease. Neurosci Lett 302: 69–72.
- Camelo D, Arboleda G, Yunis JJ, Pardo R, Arango G, et al. (2004) Angiotensinconverting enzyme and alpha-2-macroglobulin gene polymorphisms are not associated with Alzheimer's disease in Colombian patients. J Neurol Sci 218: 47– 51.
- Clarimon J, Bertranpetit J, Calafell F, Boada M, Tarraga L, et al. (2003) Joint analysis of candidate genes related to Alzheimer's disease in a Spanish population. Psychiatr Genet 13: 85–90.
- Zappia M, Cittadella R, Manna I, Nicoletti G, Andreoli V, et al. (2002) Genetic association of alpha2-macroglobulin polymorphisms with AD in southern Italy. Neurology 59: 756–758.
- 35. Prince JÄ, Feuk L, Sawyer SL, Gottfries J, Ricksten A, et al. (2001) Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer's disease. Eur J Hum Genet 9: 437–444.
- Bagli M, Papassotiropoulos A, Jessen F, Schmitz S, Rao ML, et al. (2000) Identical distribution of the alpha 2-macroglobulin pentanucleotide deletion in subjects with Alzheimer disease and controls in a German population. Am J Med Genet 96: 775–777.
- Styczynska M, Religa D, Pfeffer A, Luczywek E, Wasiak B, et al. (2003) Simultaneous analysis of five genetic risk factors in Polish patients with Alzheimer's disease. Neurosci Lett 344: 99–102.
- Zappia M, Manna I, Serra P, Cittadella R, Andreoli V, et al. (2004) Increased risk for Alzheimer disease with the interaction of MPO and A2M polymorphisms. Arch Neurol 61: 341–344.
- Mariani E, Seripa D, Ingegni T, Nocentini G, Mangialasche F, et al. (2006) Interaction of CTSD and A2M polymorphisms in the risk for Alzheimer's disease. J Neurol Sci 247: 187–191.
- Bruno E, Quattrocchi G, Nicoletti A, Le Pira F, Maci T, et al. (2010) Lack of interaction between LRP1 and A2M polymorphisms for the risk of Alzheimer disease. Neurosci Lett 482: 112–116.
- Minster RL, DeKosky ST, Kamboh MI (2009) No association of DAPK1 and ABCA2 SNPs on chromosome 9 with Alzheimer's disease. Neurobiol Aging 30: 1890–1891.
- Wollmer MA, Kapaki E, Hersberger M, Muntwyler J, Brunner F, et al. (2006) Ethnicity-dependent genetic association of ABCA2 with sporadic Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 141B: 534–536.
- Ozturk A, DcKosky ST, Kamboh MI (2006) Genetic variation in the choline acetyltransferase (CHAT) gene may be associated with the risk of Alzheimer's disease. Neurobiol Aging 27: 1440–1444.
- Grunblatt E, Reif A, Jungwirth S, Galimberti D, Weber H, et al. (2011) Genetic variation in the choline O-acetyltransferase gene in depression and Alzheimer's disease: the VITA and Milano studies. J Psychiatr Res 45: 1250–1256.
- 45. Ahn Jo S, Ahn K, Kim JH, Kang BH, Kim E, et al. (2006) ApoE-epsilon 4dependent association of the choline acetyltransferase gene polymorphisms (2384G >A and 1882G >A) with Alzheimer's disease. Clin Chim Acta 368: 179–182.
- Forero DA, Benitez B, Arboleda G, Yunis JJ, Pardo R, et al. (2006) Analysis of functional polymorphisms in three synaptic plasticity-related genes (BDNF, COMT AND UCHL1) in Alzheimer's disease in Colombia. Neurosci Res 55: 334–341.
- Martinez MF, Martin XE, Alcelay LG, Flores JC, Valiente JM, et al. (2009) The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers. BMC Neurosci 10: 125.

- Lanni C, Garbin G, Lisa A, Biundo F, Ranzenigo A, et al. (2012) Influence of COMT Val158Met Polymorphism on Alzheimer's Disease and Mild Cognitive Impairment in Italian Patients. J Alzheimers Dis.
- Thornton V, Warden D, Talbot C, Mastana SS, Bandelow S, et al. (2011) Modification of estrogen's association with Alzheimer's disease risk by genetic polymorphisms. Brain Res 1379: 213–223.
- Thome J, Retz W, Baader M, Pesold B, Hu M, et al. (2001) Association analysis of HTR6 and HTR2A polymorphisms in sporadic Alzheimer's disease. J Neural Transm 108: 1175–1180.
- Alvarez-Alvarez M, Galdos L, Fernandez-Martinez M, Gomez-Busto F, Garcia-Centeno V, et al. (2003) 5-Hydroxytryptamine 6 receptor (5-HT(6)) receptor and apolipoprotein E (ApoE) polymorphisms in patients with Alzheimer's disease in the Basque Country. Neurosci Lett 339: 85–87.
- Kan R, Wang B, Zhang C, Yang Z, Ji S, et al. (2004) Association of the HTR6 polymorphism C267T with late-onset Alzheimer's disease in Chinese. Neurosci Lett 372: 27–29.
- Fidani L, Compton D, Hardy J, Petersen RC, Tangalos E, et al. (2002) No association between the lipoprotein lipase S447X polymorphism and Alzheimer's disease. Neurosci Lett 322: 192–194.
- Baum L, Wiebusch H, Pang CP (2000) Roles for lipoprotein lipase in Alzheimer's disease: an association study. Microsc Res Tech 50: 291–296.
- Martin-Rehrmann MD, Cho HS, Rebeck GW (2002) Lack of association of two lipoprotein lipase polymorphisms with Alzheimer's disease. Neurosci Lett 328: 109–112.
- Baum L, Chen L, Masliah E, Chan YS, Ng HK, et al. (1999) Lipoprotein lipase mutations and Alzheimer's disease. Am J Med Genet 88: 136–139.
- Zill P, Burger K, Behrens S, Hampel H, Padberg F, et al. (2000) Polymorphisms in the alpha-2 macroglobulin gene in psychogeriatric patients. Neurosci Lett 294: 69–72.
- Estrela C, Silva JA, de Alencar AH, Leles CR, Decurcio DA (2008) Efficacy of sodium hypochlorite and chlorhexidine against Enterococcus faecalis–a systematic review. J Appl Oral Sci 16: 364–368.
- Coory MD (2010) Comment on: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 39: 932; author reply 933.
- Kang DE, Pietrzik CU, Baum L, Chevallier N, Merriam DE, et al. (2000) Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest 106: 1159–1166.
- Mettenburg JM, Webb DJ, Gonias SL (2002) Distinct binding sites in the structure of alpha 2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J Biol Chem 277: 13338–13345.
- Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C, et al. (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45: 635–644.

- Davis W Jr (2011) The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells. Biochim Biophys Acta 1811: 1152–1164.
- Ricciarelli R, Canepa E, Marengo B, Marinari UM, Poli G, et al. (2012) Cholesterol and Alzheimer's disease: a still poorly understood correlation. IUBMB Life 64: 931–935.
- Davis W Jr (2010) The ATP-binding cassette transporter-2 (ABCA2) increases endogenous amyloid precursor protein expression and Abeta fragment generation. Curr Alzheimer Res 7: 566–577.
- Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49: 921–937.
- Gil-Bea FJ, Garcia-Alloza M, Dominguez J, Marcos B, Ramirez MJ (2005) Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neurosci Lett 375: 37–41.
- Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, et al. (1995) Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J Neurochem 64: 749–760.
- DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, et al. (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51: 145– 155.
- Wilcock GK, Esiri MM, Bowen DM, Smith CC (1982) Alzheimer's disease. Correlation of cortical choline acctyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57: 407–417.
- Kanju PM, Parameshwaran K, Sims-Robinson C, Uthayathas S, Josephson EM, et al. (2012) Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus. PLoS One 7: e31073.
- Nunes-Tavares N, Santos LE, Stutz B, Brito-Moreira J, Klein WL, et al. (2012) Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-beta peptide oligomers. J Biol Chem 287: 19377–19385.
- Nishitsuji K, Hosono T, Uchimura K, Michikawa M (2011) Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycandependent cellular uptake of Abeta in astrocytes. J Biol Chem 286: 6393–6401.
- Xie C, Wang ZC, Liu XF, Yang MS (2010) The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. Eur J Hum Genet 18: 3–7.
- Papassotiropoulos A, Wollmer MA, Tsolaki M, Brunner F, Molyva D, et al. (2005) A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J Clin Psychiatry 66: 940–947.
- Paradis E, Clement S, Julien P, Ven Murthy MR (2003) Lipoprotein lipase affects the survival and differentiation of neural cells exposed to very low density lipoprotein. J Biol Chem 278: 9698–9705.