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Abstract

Co-adaptation (or co-evolution), the parallel feedback process by which agents continuously adapt to the changes induced
by the adaptive actions of other agents, is a ubiquitous feature of complex adaptive systems, from eco-systems to
economies. We wish to understand which general features of complex systems necessarily follow from the (meta)-dynamics
of co-adaptation, and which features depend on the details of particular systems. To begin this project, we present a model
of co-adaptation (‘‘The Stigmergy Game’’) which is designed to be as a priori featureless as possible, in order to help isolate
and understand the naked consequences of co-adaptation. In the model, heterogeneous, co-adapting agents, observe,
interact with and change the state of an environment. Agents do not, ab initio, directly interact with each other. Agents
adapt by choosing among a set of random ‘‘strategies,’’ particular to each agent. Each strategy is a complete specification of
an agent’s actions and payoffs. A priori, all environmental states are equally likely and all strategies have payoffs that sum to
zero, so without co-adaptation agents would on average have zero ‘‘wealth’’. Nevertheless, the dynamics of co-adaptation
generates a structured environment in which only a subset of environmental states appear with high probability (niches)
and in which agents accrue positive wealth. Furthermore, although there are no direct agent-agent interactions, there are
induced non-trivial inter-agent interactions mediated by the environment. As a function of the population size and the
number of possible environmental states, the system can be in one of three dynamical regions. Implications for a basic
understanding of complex adaptive systems are discussed.
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Introduction

Many of the most interesting biological and social systems fall

into the category of complex adaptive systems (CAS), by which we

mean systems of (generally) heterogeneous agents who co-adapt or

co-evolve. The process of co-adaptation or co-evolution is one in

which agents alter their strategies or natures (and consequently

their actions) in response to the actions of other agents who are, in

parallel, also altering their strategies and natures, and their

subsequent actions. The environment (more generally, the context)

experienced by an agent is, in part, endogenously produced by the

actions of other agents, and it is that context which conditions the

adaptations or the evolution of that agent. This strong population-

wide endogenous feedback loop is one of the most basic underlying

dynamics of CAS’s. (To avoid awkward text, in the sequel, except

where it may lead to confusion, we will often use the term ‘‘co-

adaptation’’ to stand for ‘‘co-adaptation and/or co-evolution’’.

There will be times when we will want to distinguish between co-

adaptation and co-evolution. Those will be clear in the text.)

Aside from co-adaptation, CAS’s exhibit a number of other

directly observable general features, albeit with variations. These

include, for example, specific inter-agent interactions with various

kinds of dynamics (e.g., mutualism, amensalism, etc.), as well as the

existence (presumably emergence) of higher order structures or

communities (eg. multi-celled organisms in biological systems or

manufacturing firms with specialized workers in economic systems)

which can themselves be thought of as agents at higher levels of

organization. Other important common features have to do with

the nature of the environment in which agents find themselves and

their interactions with it, which therefore involve questions of

niche formation and exploitation, habitat selection, etc. [1] [2]

[3][4].

Our notion is that the fundamental process of co-adaptation is

of a different type from, and (in a logical sense) lies outside the

universe of observed specific inter-agent dynamics, the interaction

of agents with their environment, and the consequent emergence

of higher order structures. We therefore consider co-adaptation (or

co-evolution) as meta-dynamics. Because these meta-dynamics are

so central to social or biological complex systems, it is important to

ask what the observable consequences are of such meta-dynamics,

absent any other specific assumptions about inter-agent dynamics.

In asking this question we are well aware of the many confounding

elements, contingencies and particular details of specific systems

that may affect the observed inter-agent interactions and emergent

structures. Nevertheless, it is important to understand what follows

simply from co-adaptation, and what is dependent on other details

of the system. That is, one of our overriding questions is the

question of ‘‘universality’’ in co-adaptive systems.

In searching for universality in CAS’s, it is not clear what

quantities are candidates for universal behavior or, indeed, in what

sense (e.g. quantitative or qualitative) one can expect to see

universality. Nevertheless, the fact that some features do seem to

be common across many different CAS’s does suggest that the

search for universality may bear fruit.
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In this paper we report on the results of a study of a very simple

model of co-adaptation which represents a first step in our project

of understanding which features of CAS’s flow from the meta-

dynamics of co-adaptation, and which features are universal and

in what sense. This model has been designed to be as simple and a

priori as featureless as possible, the better to try to isolate and

understand the naked consequences of co-adaptation. Further-

more, in this first version of the model, we restrict the agents’

direct actions to actions on the environment. We shall see that

identifiable agent-agent interactions are induced in this model, but

they are all mediated by the environment. We will also see that an

a prior random environment can become ordered as a result of the

actions of the co-adapting population of agents. Because all

interactions are mediated by the environment, we call this model

the ‘‘Stigmergy Game’’.

In the model, N adaptive agents interact with and modify the

environment by inducing transitions among the E possible states in

which the environment can find itself. When a given agent acts on

the environment, he gains a payoff (positive, negative or neutral)

and benefits (positive payoff) if, at the time he acts, the

environment is in a certain subset of its E possible states. Different

agents benefit from different environmental states. But the

probability that the environment is in a particular state at a

particular time depends on the cumulative actions of all agents.

Thus there is a very strong feedback effect in that the wealth

accrued by each agent depends on the way in which the

environment is endogenously modified by the combined actions

of all the agents.

The adaptive agents are heterogeneous. Each agent has

available to it a set of strategies which are random in a sense

that will be described below. The actions of an agent, as well as the

rewards it accrues for its actions are dictated by one of the agent’s

(random) strategies. The adaptivity of the agent is embodied in the

agent’s ability to adopt different (random) strategies at different

times, in reaction to the current structure of the environment

which is the result of the cumulative action of all the agents.

As a function of N and E, we find three fairly distinct regions in

systems with co-adaptive agents. In one region, the (initially

disordered) environment takes on a strongly ordered form, with a

subset of environmental states dominating. This region exhibits

strong niche formation (i.e., the predominance of a subset of

environmental states) and niche exploitation by agents (i.e., agents

reap positive wealth from those predominating environmental

states). In this region most agents do well at amassing wealth. In a

second region, agents continue to amass positive wealth, but the

environment has much less order (less than or equal to the

environmental order produced by a set of non-adaptive agents). In

the third region, agents amass only limited wealth, and the

environment is also less ordered than in the non-adaptive case.

This third region is distinguished from the other two by a kind of

‘‘thrashing’’ behavior in which agents continually change which

strategies they use and are unable to sustain much long-lived

coordination.

The rest of this paper is organized as follows. In the next section

we will describe our computational model, and will also define a

set of metrics that we will use to characterize the behavior of the

model. In the results section we will present some results of

numerical studies of the model. The paper ends with a discussion

section which contains a discussion of the results, conclusions, and

suggestions for future research.

The Stigmergy Game

A. Model Specification
The model studied in this paper consists of N co-adaptive

agents. Agents do not interact directly with each other, but act on

the environment, so that information about other agents is only

transmitted stigmergically, that is, through the medium of the

environment. The local environment can be in any one of E states.

Agents act on the environment in random order. (We shall

describe a version of this game in which agents act in a fixed order,

elsewhere.) When an agent acts, he first observes the current state

of the environment (say, e1) and then changes it to a new state, say,

e2. (In this formulation of the models, the environment is passive.

But in many cases, environments have their own non-agent

(physical) dynamics and/or are composed of agents themselves

and are therefore not passive. We will address this issue in future

versions of our models.)

As a result of his action the agent receives a payoff which in this

version of the game can be +1, 21 or 0. The agent’s actions and

consequent payoffs are dictated by a strategy, which is a look-up

table of E rows and 3 columns, an example of which is shown in

Table 1 below for E = 7. A strategy is a complete specification of

actions and rewards for an agent given any circumstance he will

encounter. The first column is a list of all E environmental states.

When it is some agent’s turn to act, he observes the current state of

the environment and finds that state in the first column of his

current strategy. The second column is a list of those states which

result after the agent acts and the third column is a list of rewards

for each possible action. The second and third columns are

random (IID) lists, with the added constraint that the sum of the

third column is zero, so that each strategy is reward neutral. Thus,

if an agent using the strategy in Table 1 observed environmental

state 4, he would turn that into state 7 and gain a payoff of +1 for

that action. Each agent is endowed with S such randomly

generated strategies (different sets of strategies for different agents).

At a given point in the game, an agent uses its strategy which, had

it played that strategy for all times in the past, would have resulted

in the largest total payoff among all his strategies. If two or more

strategies share the highest payoff, the agent chooses among them

randomly. Thus, the agents are adaptive in that they can change

their strategies at various points in the game in response to their

own experience. (Here we discuss the simplest possible version of

the game. We have also studied variations of this game including

games in which strategy rankings are based on historically

discounted accrued rewards. These variations do not materially

alter our conclusions. They will be discussed in detail elsewhere.) It

is important to stress that the agents’ strategies in this game are

random and reward neutral and so, a priori, any non-random

structure or positive wealth generation in this game is likely to be

attributable to the meta-dynamics of co-adaptation. (The effects of

small sample random structure will be addressed below.)

B. Metrics
There are many questions that can be asked of this model. A

more extensive analysis of this model will be reported elsewhere,

but here we concentrate on four metrics: 1. average rate of agent

wealth accumulation, 2. standard deviation of wealth among

agents in a game, 3. environmental order, and 4. a measure of how

often agents switch their strategies. We will also briefly comment

on induced inter-agent interactions in this model. These metrics

will be sufficient to demonstrate the most striking aspects of the

emergence of structure (including niche formation and exploita-

tion) as a consequence of co-adaptation.

Co-Adaptation and the Emergence of Structure
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1. Average rate of agent wealth accumulation. This is just

the average over all agents of the net increase in an agent’s wealth

for each time the agent acts, averaged over some time window.

This rate is between [1,21] with a (non-adaptive) expectation

value of zero. Specifically, the rate of wealth accumulation by an

agent, i, during a time, T can be written

W (i)~
1

~TT

XtzT

t~t0

rj(t)(i; e(t)), ð1Þ

Where the times during which agent i acts are denoted by t and ~TT
is the total number of times that agent i acts during the time

interval [t0,t0+T]. We suppose that this ith agent uses his jth

strategy at time t, and rj(t)(i;e(t)) is the entry in the reward column

of the jth strategy associated with the (input) environmental state

which the agent sees at time t, e(t). This can be rewritten as

W (i)~
XE

e~1

Sr(i; e)Tep(e), ð2aÞ

where p(e) is the probability for finding the environment in state e

during the time T, and Sr(i; e)Te is the average value of the reward

column of the strategies that agent i used over the time T,

whenever that agent encountered environment e. If there are no

correlations between the environment an agent sees and the

strategy that the agent uses (which we expect to be the case for

large T), then 2a becomes

W (i)~
XE

e~1

Sr(i; e)Tp(e), ð2bÞ

In the special case that an agent uses only his jth strategy over

this time, Sr(i; e)T just becomes rj(i). Since
PE
e~1

Sr(i; e)T~0

(strategies are reward neutral), (2b) can also be written as

W (i)~
XE

e~1

Sr(i; e)Tg(e), ð3Þ

where p(e)~ 1
E

zg(e). I.e., g(e) measures the deviation from a flat

distribution of the probability of finding the environment in state e.

Note from (3), that W(i) can be understood as a measure of an

agent’s ability to adapt and exploit niches. Contributions to W(i)

are positive if an agent ‘‘likes’’ an environment, e, and if that

environment occurs with probability greater than 1/E. Similarly,

contributions to W(i) are also positive if an environmental state

occurs with probability less than 1/E (g(e),0) and an agent

‘‘dislikes’’ that state(Sr(i; e)T,0). W(i) can thus be thought of as an

agent’s success in the process of habitat selection, or niche

exploitation. Note that since rewards and agent actions are

embodied in the same strategies, the probability distributions p(e)

are endogenously created by the agents themselves in acts of

collective habitat construction. Thus, the extent to which the g(e)
are non-zero can be thought of as a measure of the efficacy of the

system at creating niches (niche formation) [3][4]. Note also that if

all g(e) = 0, then all W(i) will be exactly zero (although the

converse is not true). The wealth accumulation, averaged over

agents is

W~
1

N

XN

i~1

W (i): ð4Þ

2. Standard deviation of wealth accumulation. For a

given run of the model, we compute the standard deviation of the

rate at which wealth is accumulated by all agents over some time

window. This is just

s(W )~
1

N

XN

i~1

W (i){W½ �2 ð5Þ

3. Environmental order. As a measure of environmental

order we use

H~1z
V

ln E
, ð6Þ

where the environmental entropy is

V~
XE

e~1

p(e) ln p(e) ð7Þ

and p(e) is the probability to find the environment in state e,

averaged over some time window. If the environment is maximally

disordered so that p(e)~ 1
E

for all e, then H~0. If the environment

is maximally ordered so that p(e � )~1 for some e* and p(e)~0
for all e=e�, then H~1.

The more the g(e) are non-zero the greater will be the

environmental order. Thus, the environmental order can be

thought of as a measure of the efficacy of the system at creating a

subset of favored environmental states. We think of these

environmental states as niches, since, typically, (as indicated in

equation (3)) larger values of g(e) lead to greater agent wealth

(although the relationship is not entirely monotonic, as we shall

show below). The collective process of generating non-zero values

of the g(e) can be thought of as an abstract example of niche

formation.

4. Switching Rate. There are several possible metrics of

switching rate which illuminate somewhat different features of the

model. Here we take a very straight-forward one as a measure of

switching rate, namely, the probability that an agent switches his

strategy in a given time step. Since the agents act in random order,

Table 1. An example of a strategy table.

Current environmental state New environmental state Reward

1 5 +1

2 2 21

3 4 0

4 7 +1

5 6 0

6 1 0

7 7 21

doi:10.1371/journal.pone.0071828.t001

Co-Adaptation and the Emergence of Structure

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e71828



this probability represents a uniformly sampled average over all

agents of the probability that an agent switches his strategy.

Results

In the following figures we show results as a function of E and N

for our four metrics, primarily (but not exclusively) for S = 64.

These data represent averages over 32 runs (with different initial

sets of random strategies) for each value of N, E and S. Each trial

of the game was run for N6106 time steps and the data for the last

104 time steps was collected and analyzed. Note that in the S = 1

case each agent is endowed with only one (random) strategy and so

there is no possibility of adaptation. This non-adaptive game is a

base case for understanding the role of co-adaptation.

In figures 1–4, we present an overview of the results for this

system. In these figures, S = 64, and each of our four metrics is

presented, as a function of E and N. In figures 1–3 the metrics are

presented in two different formats. For each metric, Fig. a shows

the value of the metric as a function of E and N, while Fig. b show

that metric normalized with respect to the results found for the

S = 1 case. Specifically, for a metric, M, we plot in Figs. b the

following quantity:

Q½M(S)�~ M(S){M(1)

s M(1)½ � : ð8Þ

Here M(S) is the mean value of the metric M in one run of the

game played with S strategies, M(S), is the average of that

quantity over several different runs of the game, and s M(1)½ � is the

standard deviation of that metric over several different runs with

S = 1. Q is therefore a measure of the degree to which the results in

games with S.1 strategies (co-adaptive) differ from the results with

S = 1 (no co-adaptation). The sign of Q is also important. The

reason for considering this normalization is to more directly see

the effects of co-adaptation (S.1). This is important because even

with S = 1 there may be some small sample random effects, as we

shall discuss in more detail below. Of course, there is no Fig. 4b

since there is, by definition, no switching for S = 1.

Look first at Fig. 1, mean wealth. In Fig. 1a, we see that for all N

and E, mean wealth is positive. Recall that each strategy is reward

neutral so, absent the dynamics of co-adaptation, we expect mean

wealth to be zero. (This is, in fact, the case for S = 1, when

averaged over many runs.) For small N, mean wealth is high.

There is also an interesting ridge around E = 6 which we shall

briefly discuss in the discussion section, part D, below. In Fig. 1b

we plot Q[mean wealth], and we see that relative to the S = 1 case,

mean wealth tends to rise as N and E increase, although it is also

high for small N. The systematic rise in Q with N is due to the fact

that as N increases, deviations in small sample random effects

become less pronounced so that the denominator in (8) becomes

smaller. That is, it becomes increasingly difficult for non-adaptive

agents to accumulate any positive wealth as the number of agents

increases. For very small E, the numerator of (8) also decreases so

in that case Q in Fig. 1b is small, but still positive.

In Fig. 2a, we plot the standard deviation of wealth among

agents in a run. Here we see a relatively large standard deviation

for small N (although in absolute terms rather small) falling as N

increases. For low E the standard deviation of wealth is quite

small. This is associated with the small value of mean wealth in this

region (Fig. 1a): For small E, agents obtain only small positive

wealth and there are no very wealthy agents. Interestingly, Fig. 2b

shows that for all N and E, the standard deviation of wealth is

smaller than in the non-adaptive case (S = 1). Q also tends to fall as

E decreases and as N increases. Thus one persistent product of co-

adaptation is that wealth tends to be more uniformly distributed

among the agents: There are fewer (relatively) very poor or very

wealthy agents.

Figs. 3 show environmental order. Recall that some degree of

environmental order (some nonzero g(e)) is necessary for agents to

obtain non-zero wealth. In Fig. 3a we see high order for small N,

rapidly falling off as N increases. (It is worth remarking that in

cases in which the environmental order is fairly large, this order

develops over time. Typically, environmental order is close to zero

near the beginning of a run, rising over time, but not necessarily

monotonically, to a non-zero value. This will be discussed in detail

elsewhere.) Fig. 3b is particularly interesting. Here we see that for

larger E and N and for small E, the environment is typically less

ordered than in the non-adaptive (S = 1) case. In Fig. 1b, on the

other hand, we see that co-adaptivity results in larger average

wealth gain than in the non-adaptive case in all regions, despite the

fact that environmental order for large N, E and for small E is

smaller than in the non-adaptive case. We shall discuss this further

below.

An additional illuminating metric is the probability that an

agent switches his strategy at some time step during which he acts.

I.e., this is the probability that, at a given time step, an agent uses a

strategy which is different than the one he last used. Fig. 4 shows

this probability as a function of E and N, again for S = 64.

Figure 1. a. Mean wealth as a function of E and N for S = 64. Results shown here are averaged over 32 runs (with different initial sets of random
strategies) for each value of N and E. Each trial of the game was run for N6106 time steps and the data for the last N6104 time steps was collected
and analyzed. 1b. Q (equation 8) for mean wealth as a function of N and E.
doi:10.1371/journal.pone.0071828.g001
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Switching probability is very high for low E, independent of N and

drops rapidly near E = 5. The switching rate is also relatively high

for small N. We shall discuss these results below.

Figs. 1–4 suggest that, as a function of E and N, the system can

be in one of three different regimes governed by different

dynamics. To make this clearer, we present in Figs. 5 scatter

plots of the results for different E and N (S = 64). Fig. 5a shows

mean wealth vs. environmental order, and Fig. 5b shows Q(mean

wealth) vs. Q(environmental order). The colors refer to the region

of (E,N) space associated with that result. Blue is N#5 (region A),

black is N and E.5 (region B) and red is E#5 (region C). (The few

points that satisfy both N#5 and E#5 are colored violet.) (These

region boundaries are only approximate, and in any case depend

on S, as we shall discuss below.) In both these graphs the three

regions are fairly distinct. Consistent with our understanding of the

qualitative relationship between environmental order and mean

wealth, Fig. 5a shows a positive slope in all three regions.

However, the slope is markedly different for N#5, than in the

other two regions, as is the range of mean wealth and

environmental order that the system achieves. In Fig. 5b, the

three regions are again reasonably well demarcated. One

particularly interesting feature in Fig. 5b (which was alluded to

earlier) is that, for both E#5 (red) and N,E#5 (black), the

normalized mean wealth is positive, while the normalized

environmental order is negative. Thus, the dynamics in these

regions produces higher wealth than in the non-adaptive (S = 1)

case, while producing a less ordered environment. Finally, as is

apparent from Fig. 4, switching rate is highest in region C (red),

quite low in region B (black), but also relatively high in region A

(blue). (For examples of the histograms of p(e) and the values of

environmental order and mean wealth as a function of time in

runs in these three different regions, see Supporting Information

S1 and S2.)

It is clear from these figures that the high switch rate in region C

does not result in high mean wealth, nor in high environmental

order. However, the situation is markedly different in region A.

Refer to Figs. 6 in which we plot switch rate vs. mean wealth

(Fig. 6a) and vs. environmental order (Fig. 6b) for runs in regions A

and B. (Note the switching probabilities in these regions are less

than about 0.2. Switching probability in region C is much higher

and is not shown on this graph.) Here we see that mean wealth and

environmental order are nearly independent of switching rate in

region B, but strongly and positively dependent on switching

probability in region A. These observations will be discussed

below.

Figure 2. a. Standard deviation of the within-run agent wealth as a function of E and N for S = 64. Results shown are averaged over 32
runs (with different initial sets of random strategies) for each value of N and E. Each trial of the game was run for N6106 time steps and the data for
the last N6104 time steps was collected and analyzed. 2b. Q (equation 8) for the standard deviation of within-run agent wealth as a
function of N and E.
doi:10.1371/journal.pone.0071828.g002

Figure 3. a. Environmental order (equation 6) as a function of E and N for S = 64. Results shown are averaged over 32 runs (with different
initial sets of random strategies) for each value of N and E. Each trial of the game was run for N6106 time steps and the data for the last N6104 time
steps was collected and analyzed. 3b. Q (equation 8) for environmental order as a function of N and E.
doi:10.1371/journal.pone.0071828.g003

Co-Adaptation and the Emergence of Structure
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Discussion

A. The three regions
The three regions discussed above are associated with very

different dynamics. Turn first to region A (N#5). Here mean

wealth and environmental order are both high, suggesting that the

co-adaptive system has been able to find reasonably good

solutions, marrying high wealth with high order, as we would

expect from eq. (3). One interesting, somewhat counter-intuitive

feature of this region is that switching rate is still fairly high. Thus,

while the system does well at generating mean wealth and

environmental order, specific solutions are not generally stable and

the system continues to explore other regions of its strategy space.

In region B, (N,E.5) mean wealth is smaller, but still positive,

and normalized mean wealth is higher than in region A.

Environmental order is small, but non-zero, but is typically smaller

than in the S = 1 (non-adaptive) case, as seen in Fig. 3b. This is

also counter-intuitive: Compared to the S = 1 case, mean wealth is

higher, but environmental order is lower. In some sense, the

adaptive system, in region B, becomes less efficient at niche

formation (lower environmental order), but is very efficient at

exploiting those niches which are produced (higher average

wealth). The precise dynamical reasons for this are unclear.

However, we do believe that the separatrix between regions A and

B (which we have estimated here as N = 5) is related to a

satisfiability transition

In both regions A and B, it is possible to show, by explicit

enumeration, that there are typically very good solutions (i.e.,

choices of strategies by the agents) which result in very high wealth

as well as very high environmental order. However, those solutions

are apparently much easier to find in region A than in region B,

making this boundary analogous to an easy-hard boundary in a

satisfiability problem. From a dynamical perspective, the low

switching rate in region B suggests that the system finds a sub-

optimal solution and consequently has trouble exploring other

regions of the strategy space, in contrast to the dynamics in region

A. The work of Thompson [5] who emphasizes the role of co-

evolution in crossing maladaptive fitness valleys is also relevant

here. The specific boundary between regions A and B depends on

S, and also depends on the particular way in which co-adaptation

is implemented. Nonetheless, we expect, generically, that there will

be two regions with the characteristics of regions A and B.

Because the dynamics and the nature of the typical resulting

states in regions A and B are very different, a more detailed study

of the boundary between these regions, in particular, how that

boundary depends on N, E and S will be illuminating. (In a related

model, to be discussed elsewhere, we have found that the

boundary between regions A and C is approximately of the form

NE = g(S), where g is an increasing function of S.) E can be

thought of as a proxy for the degree of potential variation in the

environment, while S can be thought of as a measure of the degree

of potential adaptivity of the agents. Given a specific method of co-

adaptation, the dependence of the boundary on N, E and S may

suggest some general principles of the efficacy of co-adaptation in

various social and biological (or ecological) systems.

We turn now to region C. The hallmark of this region is high

switching rate, low mean wealth and very low environmental

order. The dynamics here can be described as thrashing. It is not

difficult to show that the probability that at least one of an agent’s

Figure 4. Switching probability as a function of E and N for
S = 64. Results shown are averaged over 32 runs (with different initial
sets of random strategies) for each value of N and E. Each trial of the
game was run for N6106 time steps and the data for the last N6104

time steps was collected and analyzed.
doi:10.1371/journal.pone.0071828.g004

Figure 5. a. Mean wealth vs. environmental order, color coded according to E and N. Red is E#5 and N.5, Blue is N#5 and E.5, violet is
N and E both #5, and black is N and E both .5. Data is the same as that used in Figs. 1–4. 5b. Q(mean wealth) vs. Q(environmental order).
Same coloring scheme as fig. 5a.
doi:10.1371/journal.pone.0071828.g005
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strategies shares the same reward column with its highest ranking

strategy is, roughly,

1{ 1{
1

3

� �E
" #S{1

: ð9Þ

When E is small, this probability can be substantial. Consequently,

when it is an agent’s turn to act, he will choose randomly among

those several highest ranking strategies. This will generate

additional randomness in the output states and will consequently

lower the environmental order and make it harder for agents to

generate wealth. From (9), it is easy to see that E*, the value of E

for which, we should find a transition from region C to region A or

B should go like

E �*ln S ð10Þ

a relationship that simulations validate (Supporting Information

S3).

Note that while the switching rate is high both in regions A and

C, the nature of that switching in different. In region A the high

switching rate is apparently an interesting collective effect as the

system explores other regions of strategy space in search of a better

solution. In region C, on the other hand, the high switching rate is

an individual effect resulting from strategies within an agent that

are too similar, and consequently giving rise to thrashing behavior

of the agents. This will be discussed in more detail elsewhere.

B. Induced inter-agent interactions
Suppose agent Y acts at time t. His payoff will be determined by

the current state of the environment (in the context of the strategy

he is using). That environmental state was produced by the agent

(say, X) who acted at time t-1. Thus, there is a (directed) induced

agent-agent interaction between X and Y, (stigmergically)

mediated by the environment. Because agents act in random

order, all ordered pairs of agents will have this induced interaction.

It is possible to represent this by a fully connected graph in which

there are directed pairs of links between each pair of agents, an

example of which is shown in Fig. 7a for N = 7, E = 5 and S = 16.

This graph represents average wealth that an agent gains from all

other agents, averaged over 20,000 time steps. Red indicates net

negative wealth, blue, net positive wealth and the density of the

color indicates the size of the wealth. While this graph is fully

connected, one can place threshold values on the wealth, removing

links that fall below a given threshold. The graph will then not be

fully connected, an example of which is shown in Fig. 7b. Many

interesting questions can be asked about these networks of induced

interactions. In general, one can study the distribution of

typologies of interactions. Do we induce mutualism or parasitism

or other kinds of inter-agent interactions, and what are the

distributions of these interactions? (In Fig. 7b, for instance, we see

examples of mutualism, commensalism, and amensalism.) Are

there agents with special characteristics? For example, one can ask

whether there are many agents who are ‘‘freeloaders’’, who gain

wealth from many other agents, but fail to provide positive wealth

by their actions. More generally, one can also ask about the

distribution of wealth received by an agent from other agents. Do

agents primarily receive wealth from only a subset of other agents,

or is there typically a wide distribution of wealth accrual by a given

agent from other agents. How do these metrics differ in the three

different regions of the (N,E) space. These and other related

questions will be discussed further elsewhere.

C. Extensions of the Model
There are a number of variations of this model that beg to be

explored. Two of the most important are these: First, the model

can be generalized by introducing spatial degrees of freedom. The

most straightforward way to extend the model is to add a column

to the strategies containing a ‘‘move’’ command. It is unclear

whether such models will develop spatially separated niches or sets

of distinct environments, and whether the introduction of spatial

degrees of freedom will affect the three regions discussed in the

zero dimensional model. Second, the model can easily be

converted to a model of co-evolution in which the agents’

strategies are allowed to change [6]. Using extensions of this

model, one can study the dynamics associated with the replace-

ment or mutation of poorly performing strategies, or one can study

the dynamics associated with the spread of very good performing

strategies (or agents), through sexual or asexual reproduction.

(Preliminary studies of a co-evolutionary version of the stigmergy

game to be reported elsewhere, indicates a much improved

system-wide performance over the co-adaptive system. The

improvement may be associated with dynamics described by

Thompson [5].) Studying variants of the model will also sharpen

the question of what aspects of the model’s emergent properties

are universal. An important corollary to this study is the

Figure 6. a. Mean wealth vs. switching probability, color coded according to E and N. Red is E#5 and N.5, Blue is N#5 and E.5, violet is
N and E both #5, and black is N and E both .5. Data is the same as that used in Figs. 1–4. 6b. Environmental order vs. switching probability
color coded according to E and N. Same coloring scheme as fig. 6a.
doi:10.1371/journal.pone.0071828.g006
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confrontation of the results of these models with data. For

example, our results suggest that small groups of agents (small N,

region A) often have an easier time coordinating and gaining

wealth that do larger groups (region B), and, moreover, that they

do that in a more actively adaptive way, altering their strategies

more often than do larger collectives. Are there examples of social

or biological systems that display this property, and how common

is it?

D. Relation to other work
There are at least three distinct bodies of work that are related

to our model.

First, in the stigmergy game, we do not specify, a priori, the

nature of the interactions among agents. Rather, those interactions

emerge from the meta-dynamics of co-adaptation. In spirit, this

approach is similar to recent work by Worden and Levin [7] and

by Akcay and Roughgarden [8]. Those groups, in a game

theoretic context, discuss evolutionary models in which, not only

do the populations of agents evolve, but also the nature of the

interactions among agents and their ensuing rewards also changes

over time. In the game theoretic context, this amounts to allowing

the payoff matrix governing the interactions among the agents to

evolve or adapt, along with the strategies of the agents themselves.

In our model, agent actions and their rewards both change as the

agents adapt and choose different strategies to play. Another body

of work closely related to our model concerns the subject of niche

construction [3][4]. This work emphasizes the importance of

endogenous modifications to the environment by the very agents

who utilize that environment. Our model, relying as it does on the

strong feedback between accrued agent wealth and the structure of

the endogenously produced environment, is entirely in the spirit of

this approach. For example, one of the questions addressed in Ref.

[3] concerns the distribution of acquired cultural traits in a

population. The distribution of transition probabilities among

agents in our model, i.e., the probability that an agent will produce

state e2 upon seeing state e1 is a direct analogue to this question.

Second, there is a large body of work on models incorporating

stigmergy. Stigmergic interactions have been studied in the context

of biological systems, such as ant colonies and other social and

biological systems including collective projects on the internet [9]

[10] [11]. Stigmergic interactions have also been exploited as

control mechanisms in various distributed, engineered systems

[12] [13]. In much of this prior work, stigmeric interactions are

inserted into systems with a preexisting structure, in which agents

have a pre-specified set of motivations or actions. Unlike this prior

work on stigmergy, we seek to place stigmergic dynamics in a

context which is otherwise, as random and structureless as possible

to understand what emerges from co-adaptive agents communi-

cating only through the medium of the environment.

Finally, from a formal perspective, this model has some relation

to the Minority Game. This is apparent in the structure of the

strategies that we use to formulate our model. However, this model

differs in some important ways from the Minority Game: Notably,

there is no strict limit on the utilization of a limited resource in the

stigmergy game. Nevertheless, there are some important similar-

ities between the stigmergy game and the minority game,

particularly, the minority game with private information [14].

(In the classic Minority Game agents all respond to the same

signals, i.e. to publically available information. In the stigmergy

game, agents rank their strategies on the basis of private

information—i.e., how well each agent did in the past, given the

environmental states that agent saw, and regardless of the wealth

accrued by other agents.)

In particular, the thrashing dynamics in region C is not unlike

the Minority Game dynamics in the mal-adaptive phase, and for a

similar reason, namely, sets of agents’ strategies are too similar

[15] [16]. But there is an important difference. In the classic

Minority Game, strategy similarity is across agents, whereas in this

version of the Stigmergy Game, relevant strategy similarity is

similarity in the reward structure and is within an agent. In either

case, the system-wide behavior is maladaptive due to thrashing,

but in the Minority Game, mal-adaptive behavior is accompanied

by a system-wide replica-symmetry breaking transition which is

not the case in this version of the Stigmergy Game. Another

interesting similarity is that in the Minority Game, for fixed N,

average accrued wealth, as a function of the amount of

information the agents use to make their decisions generally

increases as the maladaptive region is approached (i.e., as the

number of signals to which the agents must respond decreases).

This is very similar to the ridge in Fig. 1a that appears as E

decreases toward region C.

Figure 7. a. An example of an induced agent interaction network for N = 7, E = 5 and S = 16. This interaction network was generated by
averaging interactions over a 20,000 time step window. Blue lines indicate positive wealth provided by one agent to another, in the direction of the
arrow, and red lines indicate negative wealth. Color intensity indicates the magnitude of the (positive or negative) wealth. 7b. Same network as
shown in Fig. 7a, including a threshold. In this figure, only lines that exceed a threshold value of 60.5 points per time step are drawn.
doi:10.1371/journal.pone.0071828.g007
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E. Conclusion
The meta-dynamics of co-adaptation or co-evolution is a

common feature of complex adaptive systems. In this paper we

have taken a first step in an ongoing project of understanding the

necessary consequences of co-adaptation or co-evolution. We have

studied an a priori, relatively featureless model and we have shown

how co-adaptation can engender the emergence of a structured

environment, positive agent wealth with relatively uniform wealth

distribution and induced inter-agent interactions with various

characteristics such as symbiosis or parasitism, even when these

features are not introduced ab initio. The behavior of our model in

its three fairly distinct regions also raises a number of other

interesting questions, including more detailed questions about the

nature of the emergent dynamics in these three regions. In

addition, a wide range of other interesting questions, such as the

behavior of co-adaptive models in spatially extended systems, can

be addressed with straightforward extensions of the model

discussed here.

The ways in which structured environments arise, why inter-

agent interactions have the characteristics they do, and which of

these features necessarily flow from the meta-dynamics of co-

adaptation and which are contingent on the details of specific

systems are questions that lie at the heart of a better understanding

of complex adaptive systems.

Supporting Information

Supporting Information S1 Environmental order and
mean wealth per agent as a function of time. In this

graph we plot the environmental order,H, and the mean wealth

per agent, W, as a function of time for three runs, one each from

the three different regions of the (N, E) plane identified in the text.

N = 4, E = 16 (blue), N = 16, E = 16 (black) and N = 16, E = 4 (red).

The cross hatched areas of the relevant color indicate the values of

H, and W to be expected 99% of the time if the environmental

states occurred randomly and with equal probability.

(TIFF)

Supporting Information S2 Histogram of the occurrence
of environmental states. In this figure we show the histogram

of the occurrence of environmental states, p(e), for the three

examples shown in figures S1. Here the histograms are computed

from the final N61000 time steps of each game. The grey bars

indicate the range of values for p(e) to be expected 99% of the

time, if the environmental states occurred randomly and with

equal probability. We also show the location of the three runs in

the (N, E) plane.

(TIFF)

Supporting Information S3 Switching Probability for
agents. Here we show the probability of an agent switching his

strategy when he acts, as a function of E for N = 20 and for

different values of S. Results are color coded and each dot

represents the results of one run. Mean over runs is indicated by

the solid line. Note that the s-shaped curve moves to the right like

lnS.

(TIFF)
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