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Abstract

The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of
the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a
sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it
affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the
behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is
degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In
addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs.
These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of
transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their
protein products.
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Introduction

Genes function in networks, whose building blocks are motifs of

few genes. Several motifs have been identified, which perform a

specific function in networks [1]. Examples include genetic

switches, which can be used as memory circuits or for digital

control of processes; oscillators, which can be used for time-

keeping and synchronization; and genetic filters, which can be

used for noise filtering and computation via genetic logic [1].

In addition to the gene-gene interactions, the behavior of a

motif depends on the expression pattern of each constituent gene.

Investigating this dependency is of relevance given recent evidence

that both mean level and the cell to cell diversity in RNA and

protein numbers vary between genes by several orders of

magnitude [2]. For that, we need to use models that account for

the nature of gene expression, since genes with low expression

levels are abundant in bacteria [2,3]. Such low numbers cause the

dynamics of motifs to be poised with correlations and low copy

number fluctuations.

Much effort has been made to characterize the processes of

transcription and translation in bacteria. In vitro studies [4,5]

showed that transcription, the process by which RNA molecules

are produced, is controlled mostly at the promoter region of the

gene. Once the RNA polymerase reaches the transcription start

site and forms the closed complex, it remains there until the open

complex is complete. Following this, the polymerase can escape

the promoter and elongate along the DNA sequence, according to

which the RNA sequence will be assembled. Both in vitro and in

vivo studies suggest that the closed and open complex formations

are the lengthiest (rate-limiting) steps of the process of gene

expression, along with protein folding and activation.

Recently, the intervals between transcription events in individ-

ual, live cells have been measured for two promoters, lac-ara-1 [6]

and tetA [7]. These studies suggest that, under optimal conditions,

there are two to three major rate-limiting steps, which occur

during initiation, that control both mean rate and noise in RNA

production. These steps durations were also shown to vary widely

with induction level and environmental conditions [6,7]. In that

sense, they are major regulators of the dynamics of mRNA

production.

Since the duration of the rate-limiting steps in transcription is

both sequence-dependent and regulated by activator and repressor

molecules, these steps are both evolvable and adaptive to the

environment [6]. Since in prokaryotes translation is coupled with

transcription, these steps are likely also key regulators of protein

numbers [8]. However, it remains unknown to what extent one

can tune the behavior of genetic motifs by selecting specific

kinetics of initiation of the constituent genes.

In this work, we study the behavior of stochastic genetic motifs,

while varying the kinetics of transcription initiation of the

constituent genes. Two motifs are considered: one performs

filtering in the amplitude domain, and the other in the frequency

domain. The response of the motifs is quantified for a wide range of

transcriptional dynamics that are in accordance with measurements.

The results indicate that the dynamics of these two genetic

motifs, while dependent of the gene-to-gene interactions, is also

affected by the kinetics of transcription initiation of each

component gene. This, in turn, suggests that it is possible to

engineer synthetic circuits to be more robust or having higher

plasticity than the present ones, by selecting for promoters with

appropriate initiation kinetics.
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Methods

Gene expression
We use the delayed stochastic modeling strategy [9,10], which

correctly accounts for the low copy number effects, that is, the

fluctuations and correlations, of the interacting components, coupled

with non-exponential waiting times. The results are quantified from

Monte Carlo simulations of the reaction system, using SGN Sim

[11].

To model gene expression we use the following set of reactions.

The syntax A
k

BzC(t) denotes a reaction where A is

transformed into B and C, with a stochastic rate of k. While B
is released in the vessel of reactions instantaneously once the

reaction occurs, C is released after a delay of t [10].

S
?

S(t)zM(t) ð1Þ

M
dM 1 ð2Þ

1
kP M

P ð3Þ

P
dP 1 ð4Þ

where S~1 (S~0) denotes that the promoter is free (occupied),

M is the messenger RNA, and P is the protein. Reaction 1 models

transcription, Reaction 2 mRNA degradation (dM being the

mRNA degradation rate), Reaction 3 translation (kP representing

the per-mRNA translation rate), and Reaction 4 protein degra-

dation (dP denoting the protein degradation rate).

The infinite rate set for Reaction 1 derives from the assumption

that there is an inexhaustible pool of polymerases (which is a

common assumption for bacteria in optimal growth conditions).

The delay t represents the effects of all rate-limiting steps,

including the initiation of transcription up to the production of an

mRNA. As mentioned, recent evidence suggests that, in E. coli

under optimal growth conditions, t is determined to a great extent

by the sum of two to three rate-limiting steps, each following an

exponential distribution in duration [6,7]. We use t*C(a,a{1 l{1),
which denotes that the delay t is drawn from gamma distribution

with a shape of a and a mean of l{1. Integer values of a indicate that

transcription consists of a sequential steps, each with a rate of al.

The gamma distribution has a coefficient of variation (the standard

deviation over the mean) of a{1=2 regardless of the mean (cf. unity of

the exponential distribution, which is a gamma distribution with

a~1). Consequently, values of a~1 will result in a Poisson

distributed M*Poi(ldM
{1), while values of av1 result in a more

noisy (super-Poisson), and values of aw1 less noisy (sub-Poisson)

mRNA number dynamics. We note that even if transcription initia-

tion consists of sequential steps of unequal duration, the gamma

distribution is still a good approximation. If the steps are of the same

order of magnitude, they can be considered approximately equal,

else, fast steps can be neglected.

Finally, we let l ¼: kM f (X1, . . . ,Xn), where kM indicates the

maximal expression rate of the promoter, and f (X1, . . . ,Xn) :
N0

n.½0,1� is a regulatory function of the promoter, which

depends on substances X1 through Xn. It is generally not known

which steps are affected by which transcription factors, so we

assume that each step is affected in an equivalent manner. The

choice of these functions is discussed in the next section. Moreover,

we let m ¼: kM dM
{1 kP dP

{1, which coincides with the expected

protein level of a gene under full expression.

Unless otherwise stated, we use the parameters kM dM
{1~5,

dM~(5 min){1, kP dP
{1~100, and dP~(60 min){1. These

values were selected in accordance with measurements in live E.

coli [2]. In the results presented, each simulation is ran for 106 min,

and the system is sampled uniformly every 1 min. To assess the

kinetics of initiation within a realistic range of parameter values,

we set the number of rate-limiting steps a[f1,2,3,5,10g. The first

three have been observed in measurements of mRNA production

kinetics in live E. coli cells [6,7]. In vitro studies of the kinetics of

this process (see e.g. [12]) provide evidence for the existence of, at

least, five rate-limiting steps, namely, closed complex formation,

three isomerization steps, and promoter clearance. We also study

the effects of setting a to 10 to observe the behavior of the model in

limit conditions and due to the fact that some of the steps might be

non-exponential in duration, thus requiring multiple exponentially

distributed steps to be well described.

Gene regulation
The genes are coupled by interactions between their promoter

regions and the proteins they express. The activation/repression of

a gene is achieved by the binding of the protein expressed by

another gene. Once bound, this protein can either degrade while

bound, or unbind. While bound, the propensity for the gene to

express differs from the unbound case. The activation/repression

of gene B by gene A could be represented by the following set of

reactions:

PAzTB

kAB
T ’B ð5Þ

T ’B
kAB KAB

PAzTB ð6Þ

T ’B
dP

TB ð7Þ

where PA denotes the protein product of gene A, TB~1 denotes

that the binding site of the gene B for that protein is free, and

T ’B~1 (implying TB~0) that the binding site is occupied. Here,

Reaction 5 models the binding of the activator/repressor molecule

PA to the promoter region of gene B, Reaction 6 its unbinding,

and Reaction 7 the degradation of a bound protein. The rate of

binding is denoted by kAB and the disassociation constant by KAB.

To simplify the model, we take the limit kAB??. In this limit,

the binding of the regulatory proteins is assumed to be much faster

than the rate of transcription. It can be found that in this limit, the

expectation E½T ’B�~(1zKAB PA
{1){1 if PA is constant. Follow-

ing this, to implement the regulation, we vary the transcription

rate such that:

fAB(A)~ 1z(KAB P{1
A )zd

� �{1

iff gene A activates gene B
ð8Þ

fAB(A)~ 1z(KAB P{1
A ){d

� �{1

iff gene A represses gene B
ð9Þ
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and

fABC(A,B)~fAC(A)fBC(B)

iff genes A and B regulate gene C
ð10Þ

where d denotes the Hill coefficient, which represents the

cooperativity of binding, (e.g. d~2 can be taken that there are

two binding sites for a same type of protein) determining how steep

the transition between on- and off-states (e.g. E½T ’B�~0 and

E½T ’B�~1) is. Also, the role of the disassociation constant in this

context is now apparent, namely, it follows that E½T ’B�~0:5 iff

KAB~PA. In our simulations, we use d~2, since many proteins

are known to function in a dimeric form [13].

Results

Amplitude filtering
We start by examining how the properties of a genetic motif

performing amplitude filtering are affected by the transcriptional

dynamics. A genetic motif capable of behaving as a biphasic

amplitude filter should allow the output to be active only for a

certain range of input levels, which allows a process to be trigged

by a narrow range of molecular concentration [1]. The region of

inputs where the output is active is called the passband and the

non-active regions are referred by stopbands. We model a biphasic

amplitude filter consisting of four genes as follows. Gene A

activates the expression of genes B and C, and gene B activates the

expression of gene D, while gene C represses gene D. We model

explicitly the expression of genes B through D, while the relative

expression level of gene A acts as an input parameter. This is

illustrated in Figure 1. Such a circuit was used to explain the

narrow range of induction triggering the expression of Xbra in

Xenopus laevis [14].

We simulate the model for various values of shape a’ and rate

k’M of transcription of genes B and C, while the output gene shape

and rate are kept constant (a~2, kM dM
{1~5). This is due to the

fact that the effects of changes in a and kM in the protein

distribution of the output gene are more apparent and not related

to the internal behavior of the filter, and because it allows the

different cases to be easily compared. We set KBD~0:25m’ and

KCD~0:1m’, which is expected to produce a biphasic response (see

Equations 11 through 13). In this, m’~k’M dM
{1 kP dP

{1 denotes

the expression rate of genes B and C under full expression. To

vary the mean input level, we vary the quantity r~KAB
{1

PA~10KAC
{1 PA!PA.

If all molecule numbers were constant, the response of the filter

could be characterized by the following equations:

PB~m’ 1z(KAB PA
{1)d

� �{1 ð11Þ

PC~m’ 1z(KAC PA
{1)d

� �{1 ð12Þ

PD~m 1z(KBD PB
{1)d

� �{1
1z(PC KCD

{1)d
� �{1 ð13Þ

which is a good approximation for high expression levels. Note

that in Equation 13, PD is a function of r, but invariant to the

parameters a’ and k’M , thus the effects of varying them lie beyond

this formula. The response of the filter using Equations 11 through

13 is depicted in Figure 2.

The molecular levels will not be constant in our stochastic

model. We quantify the noise in molecular levels using Fano factor

(the variance over the mean), which is convenient, since Fano

factor of Poisson-distributed molecules equals unity regardless of

the mean. Even in the limit a?? the protein levels will remain

highly noisy (Fano factor Fano½P�§1), since in this case

PB,PC*Poi(m’) and their noise further propagates through the

probabilistic expression of gene D to the output protein levels PD.

Next, we present the response of the biphasic amplitude filter

using the stochastic model, and study how much it deviates from

the expected response when the shape and rate of transcription are

varied. The mean output level of the output gene D is presented in

Figure 3. As expected, the response resembles the curves in

Figure 2. Lower values of a (which imply higher noise) produce

slightly degraded performance in terms of the response of the filter.

That is, the maximum output protein level will be lower, and the

transition between the on- and off-states will be less steep. In

addition, the increased noise makes the passband to shift toward a

higher input level, since the distributions resulting from the model

tend to have right skew.

We also assessed the response for various mean expression levels

m’ of the component genes (Figure 4). The results are qualitatively

similar to those in Figure 3. Decreasing a’ or k’M (either leading to

higher noise) will degrade the filter performance. Moreover, as the

expression rate is lowered the shape of the transcription takes

greater role in determining the filter behavior. This implies that for

rarely expressed genes, it might be important to have sub-

Poissonian transcript dynamics, to compensate the increased low

copy number noise.

Adding noise in the processes within the filter must shift

downwards the value of the maximum output protein level.

Generally, adding noise results in a flatter response, which can be

interpreted as a degradation in performance, since the filter aims

to selectively turn the output on or off. Furthermore, it is possible

that adding noise also shifts the input level for which the maximal

output is attained or the locations of the transition bands. The

results depend on whether the input distributions and the response

function of the filter are symmetric or not.

Finally, we assessed quantitatively the effects on the output of

having different values of a’, for each expression ratio of the input

gene shown in Figure 4. For m’m{1~0:01, increasing a’ from 1 to

2, causes the output amplitude in the passband to increase by

10:8%. Increasing a’ from 1 to 3 causes the output amplitude to

Figure 1. Illustration of the biphasic amplitude filter motif. In
the biphasic amplitude filter, gene A acts as input to the filter, while
genes C and D compose the filter, represented by the dashed box,
along with the regulatory connections between each gene. The protein
level of gene D acts as the output.
doi:10.1371/journal.pone.0070439.g001
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Figure 2. Event probabilities in biphasic amplitude filter. Probabilities of events in the biphasic amplitude filter as a function of the input
protein level E½PA�. The solid black line denotes the probability that the output gene D is expressing, while the dark gray lines denote those of the
intermediate genes (solid denoting gene B and dashed gene C). The probabilities that the intermediate genes allow the output gene to express are
depicted by the light gray lines (solid denoting gene B and dashed gene C).
doi:10.1371/journal.pone.0070439.g002

Figure 3. Mean response of biphasic amplitude filter. Mean response E½PD� of the biphasic amplitude filter as a function of the protein level
E½PA� of the input gene, for various shapes a’. Different levels of gray denote different shape parameter a’. The simulations were performed with
m’m{1 of 0:05. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g003

Transcription Initiation and Genetic Filter Motifs

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e70439



increase by 12:9%. For other values of m’m{1, the differences are

smaller. For example, for m’m{1~0:05, these increases are,

respectively, 7:2% and 8:5%, while for m’m{1~1, these differences

are of the order of 1:5%.

Since our model dynamics is poised with noise, we study the

noise in the output gene protein level, as a function of the input

gene level. One might expect the noise to take a shape that is

characteristic to the output gene, e.g. constant for Poisson, or some

monotonically decreasing curve in our case. In the presence of

noisy molecular levels in the circuit, this is generally not true. The

noise in the output of this motif is expected to be higher in the

transition bands of the biphasic amplitude filter, with the

magnitude more characteristic to the output gene in the pass-

and stop-bands. An example from stochastic simulations is

presented in Figure 5.

From Figure 5 we find that even when the effects of changes in

transcription initiation on the response of the biphasic amplitude

filter are slight, the change in the fluctuations of the protein

numbers of the output gene might be significant. In Figure 6, we

present the output noise for various mean levels. For very low

expression levels, the low copy number noise in the output

becomes dominant.

As a consequence of the amplification of the noise in the

transition bands, the output of the filter becomes unpredictable in

these regions. Therefore, for this circuit to operate properly in

these regions, it is of importance to minimize the noise in the genes

composing the filter, for example, by adding rate-limiting steps in

initiation. Alternatively, regulation schemes that can provide

steeper transition bands are required, which can be accomplished

via regulatory schemes of higher-order. We hypothesize that the

latter scheme has less effect, since it cannot remove the problem,

only reduce its effects. Moreover, it is harder to implement in real

genetic circuits, as it requires altering both the protein and the

promoter sequences.

Frequency filtering
In this section, we study the effects of changes in the

transcription dynamics to a motif that performs filtering in the

frequency domain. It is known that changes in the transcriptional

dynamics can affect the period and its robustness of genetic

oscillators [15], so we expect that these changes affect the response

of certain frequency filters as well.

We constructed a motif that can perform low-pass frequency

filtering composed of four genes (A through D). This filter

suppresses highly transient signals while letting slowly varying

signals to pass through as-is. Such a filter would allow a specific set

of genes to be subject to only stable signals, by filtering out fast

fluctuations in the numbers of the regulatory molecules. Here,

gene A acts as an input, required to enable the expression of gene

B. Gene B represses gene C, C represses D, and D represses B,

that is, genes C through D form a loop (three-gene repressilator).

The structure of the motif is illustrated in Figure 7.

When a periodic signal PA is applied, the behavior of this circuit

should vary, depending on the frequency of the signal. When the

signal is of high frequency, the feedback loop should be the main

responsible for the frequency content of the output. For low

frequencies, the input from gene A will disconnect the feedback

loop periodically, and lower frequencies, including that of PA, are

introduced in the output. Thus, it is expected that the modulated

circuit would have a synchronization point when the input

frequency equals that of the repressilator, and that a phase

transition would occur in the output frequency response.

For simplicity, we let the Hill coefficient d ’??, in the

regulatory connection where A activates B. That is, the regulatory

connection becomes Boolean, with a threshold of KAB. We denote

the Boolean input signal by X ¼: (1z(KAB PA
{1)d ’){1. This

allows us to omit the explicit modeling of gene A, and

consequently this parameter does not need to be determined.

Instead, we can apply an arbitrary X[B. In this case, it does not

Figure 4. Mean response of biphasic amplitude filter for various transcription rates. Mean response E½PD� of the biphasic amplitude filter
as a function of the input gene protein level E½PA�, for various shapes a’ and rates k’M of transcription. Different levels of brightness denote different
shape parameter a’. The simulations were performed with m’m{1 of 1 (cyan), 0:05 (red), and 0:01 (green), in the order of decreasing performance. The
three cyan lines overlap. We also performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally
nonlinear and more drastic for low mean levels. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g004
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Figure 5. Noise of response of biphasic amplitude filter. Noise of the response Fano½PD� of the biphasic amplitude filter as a function of the
input gene protein level E½PA�, for various shapes a’. Different levels of gray denote different shape parameter a’. The simulations were performed
with m’m{1 of 1.
doi:10.1371/journal.pone.0070439.g005

Figure 6. Noise of response of biphasic amplitude filter for various transcription rates. Noise of the response Fano½PD� of the biphasic
amplitude filter as a function of the input gene protein level E½PA�, for various shapes a’ and rates k’M of transcription. Different levels of brightness
denote different shape parameter a’. The simulations were performed with m’m{1 of 0:01 (green), 0:05 (red), and 1 (cyan), in the order of decreasing
noise. We also performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally nonlinear and more
drastic with low mean levels. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g006
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matter if the connection is an activating (as in Figure 7) or

repressing, since the Boolean input can be flipped.

First, we let the input signal to be constant X~1. We analyze

the periodic behavior characteristic to the submotif of genes B, C,

and D. Since the genes B, C, and D are identical, we can treat

them interchangeably and quantify the distribution of periods

from any of the protein levels, denoted by TBCD, from the zeros of

the autocorrelation function of each time series.

We simulate our model for values of shape a’ and rate k’M of

genes B, C, and D, and m’ is defined analogously to the previous

subsection. Moreover, the disassociation constants are set to

KBC~KCD~KDB~0:05m’, which were found to produce an

oscillatory signal under constant input. The mean period of the

protein levels of genes B, C, and D, as a function of the mean

expression level m’ of the genes, is shown in Figure 8.

Interestingly, the period changes as a function of the number of

steps in transcription initiation. Also, changing the mean

transcription level affects the period (note that the disassociation

constants are a function of the expected expression level m’, which

would make a deterministic model invariant of m’).
We also examined if the robustness of the period is affected. We

quantify robustness by the coefficient of variation of the periods of

the protein numbers. This measure is convenient, since it equals

unity for exponentially distributed periods regardless of the mean.

The results are shown in Figure 9. For low mean protein numbers,

the period becomes unpredictable (i.e. exponential-like), whereas

for moderate levels, the period distribution is Gaussian-like, due to

lower noise in transcript production, implying more robust period

length. The shapes of the distribution were verified from period

histograms (see examples in the insets in Figure 9).

Next, we apply an unbiased Boolean square wave to X , that is,

X (t)~0 for time t that satisfies kTƒtv(kz1=2)T with any

integer k and X (t)~1 otherwise, and we denote its frequency by

fX ~T{1, where T refers to the period. The autocorrelation

function of this signal X is a triangular wave of the same

frequency, and consequently its spectral power is concentrated to

the harmonics of fX . The spectral power is measured in terms of

power spectral density (PSD), which is given by the Fourier

transform of the autocorrelation function and measures how much

of the signal power per unit frequency is concentrated around

certain frequency. Specifically, the PSD of X at frequency fX is

4p{2 (cf. Figure 10).

We measure the power spectral densities of the input X and the

output PD. An example is shown in Figure 10, with the input PSD

plotted for reference. The motif exhibits a low-pass behavior in the

frequency domain. Frequencies lower than those corresponding to

the mean period of the three-gene submotif when functioning

Figure 7. Illustration of the frequency filtering motif. In the
frequency filtering motif, gene A acts as an input to the motif, while the
filter consists of genes B, C, and D in a feedback loop structure along
with the modulation by the input, represented by the dashed box. The
protein level of gene D acts as an output of the filter.
doi:10.1371/journal.pone.0070439.g007

Figure 8. Mean period of frequency filtering motif with constant input. Mean period of the protein levels of genes B, C, and D (E½TBCD�), for
constant input X~1. Different levels of gray denote different shape parameter a’.
doi:10.1371/journal.pone.0070439.g008
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independently (see Figure 8) are only slightly attenuated (ampli-

fication factor of w10{1). In contrast, higher frequencies are

highly attenuated (amplification factor of v10{4).

Changing the shape parameter a’ of the transcription results in

slight variations in the performance of the frequency filter, while

the main characteristics are not changed. Namely, the attenuation

Figure 9. Noise in period of frequency filtering motif with constant input. Noise in the period of the protein levels of genes B, C, and D
(Cv½TBCD�), for constant input X~1. Different levels of gray denote different shape parameter a’. The insets exemplify the distributions of periods
TBCD for shape of a’~1 and ratios m’m{1 of 0:005 and 0:5 (units of the x-axis are seconds).
doi:10.1371/journal.pone.0070439.g009

Figure 10. Power spectral density of the frequency filtering motif. Power spectral density of the frequency filter as a function of the input
frequency. Different levels of gray denote different shape parameter a’. The simulations were performed with m’m{1 of 0:1. The dashed black line
represents the PSD of the input X at the input frequency.
doi:10.1371/journal.pone.0070439.g010

Transcription Initiation and Genetic Filter Motifs
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of the frequencies is of the same order of magnitude, more noisy

shapes resulting in slightly higher attenuation in the passband.

Moreover, the cutoff frequency is affected by changes in the

characteristic frequency of the three-gene submotif (Figure 8). We

also varied the transcription rate k’M of the genes in the motif

(Figure 11). Again, lower transcription rates, implying more noise

in mRNA and protein levels, degrades performance, similarly to

when varying a’. The changes in the steepness of the transition

band of the filter are more apparent in the former case.

Similarly to the amplitude domain filter, the performance of the

frequency domain filter is affected by changes in the transcrip-

tional dynamics of the constituent genes. A transcription process

that is less noisy results in a frequency filter with steeper transition

bands. Consequently, an efficient frequency domain filter requires

limited noise level in transcription, which in the case of low

transcript levels can be implemented by a promoter with a

sequential initiation process. Interestingly, the cutoff frequency of

the filter is also affected by the kinetics of transcription.

As in the case of the amplitude filter, we assessed quantitatively

the effects on the output of having different values of a’, for each

expression ratio of the input gene shown in Figure 11. For

m’m{1~0:01, increasing a’ from 1 to 2, causes the magnitude of

the PSD in the passband to increase by 236:0%. Increasing a’ from

1 to 3, causes the PSD to increase by 275:1%. For other values of

m’m{1, the differences are smaller as before. In particular, for

m’m{1~0:05, these increases are, respectively, 32:5% and 41:9%,

while for m’m{1~1, these differences are of the order of 7%.

Discussion

Motivated by recent findings of the relevance of the kinetics of

the process of transcription initiation on the dynamics of RNA

production in bacteria [6,16], we investigated the functioning of

genetic filter motifs as a function of the kinetics of transcription

initiation of the constituent genes. We focused on two common

filters, namely, an amplitude filter and a frequency filter, as these

have several practical applications. One major concern regarding

their performance is that most genes in bacteria exhibit very low

expression levels. We investigated whether one can utilize the

multi-step nature of the process of initiation to compensate for the

low copy number noise.

We found that, for realistic parameter values, genetic motifs

with stochastic dynamics differ significantly from their determin-

istic counterparts. Consequently, the latter do not serve as a means

to predict the realistic behavior of genetic motifs in live cells. Also,

for low expression levels, high noise in the transcripts production

significantly degrades the performance of the motifs. The effects of

low copy number noise can be compensated by a multi-step (less

noisy) transcription process. We suggest that natural motifs with

low-expressing constituent genes might employ a multi-step

transcription initiation process so as to limit the noise in the

mRNA and protein levels, therefore allowing the motif to behave

robustly.

The sequence-dependent distribution of transcripts production

can have intriguing effects on the behavior of the motifs. These

were most prominent in the characteristic frequency of the

oscillatory circuit, in which, within a realistic interval of parameter

values, it is possible to have a period double that of the one of high

Figure 11. Power spectral density of the frequency filtering motif for various transcription rates. Power spectral density of the frequency
filter as a function of the input frequency, for various shapes a’ and rates k’M of transcription. Different levels of brightness denote different shape
parameter a’. The simulations were performed with m’m{1 of 1 (cyan), 0:05 (red), and 0:01 (green), in the order of decreasing performance. We also
performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally nonlinear and more drastic with low
mean levels. The dashed black line represents the PSD of the input X at the input frequency.
doi:10.1371/journal.pone.0070439.g011
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mean levels. Importantly, in both motifs studied, the cutoffs that

separate the different regimes of operation of the filters were found

to be tunable. The effects of changing the kinetics of transcription

initiation were found to be slight, partly masked by the noise, but

non-negligible.

It is known that changes in the kinetics of the sequential process

of transcription initiation affect the dynamics of mRNA abun-

dances of individual genes [16,17]. Here, we provided tentative

evidence that these changes affect the behavior of genetic motifs as

well. This is of relevance, since both the number and the kinetics of

these steps are dependent of the promoter sequence and

transcription factors alone, i.e., are independent of the protein

coding region. Due to this, we hypothesize that it is possible to

alter the kinetics of a genetic circuit significantly by replacing the

promoter region of the constituent genes, without the need of

altering the protein under their control. Further, we hypothesize

that changes in the promoter sequence of the constituent genes of

motifs constitutes a significant degree of freedom in their

evolutionary process in natural organisms.
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