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Abstract

Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the
choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as
IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and
applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all
possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null
model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not
for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size.
However, we found that no algorithm was able to consistently outperform the other and there was no significant difference
between regression and two- or three class predictors in this experimental setting. These results indicate that response-
modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.
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Introduction

Background
It is common clinical practice to treat cancer patients with a

variety of therapeutic agents, due to the simple fact that drug

efficacy varies among patients. Thus, general recommendations

for drug selection and finding the optimal dosage for a certain

drug are challenging tasks and often subject to change based on

new standards of care. This is one of the main reasons why drug

response to cancer therapeutics is being tested in in vitro studies,

where cancer samples from different cell cultures or patients are

cultivated under standardized laboratory conditions and tested for

their reactions to a variety of compounds. In such laboratory

environments, similar variance of response can be observed when

cancer cells from different patients are treated with the same drug.

Of course, it is expected that differences in drug response are

closely related to the type of cancer under treatment. Other factors

like ethnic, genetic and histological background of patients even

with the same type of cancer play an important role in drug

response, making cancer a very individual disease requiring a

personalized treatment.

The toxicity of the medication as well as the severity of the

disease itself requires a high degree of confidence in the effect of a

drug for the specific patient. The field of personalized medicine is

dealing with this type of challenge. One research focus is the

identification of markers that can be used to individualize

treatment recommendations, i.e. to reliably predict the response

of cancer to drugs. Markers are selected among high-dimensional

genetic data, such as gene expression data from microarrays and

machine learning methods are used for the prediction.

However, there is a multitude of challenges given a fairly

‘‘simple’’ question (i.e. the prediction of drug response to cancer

cell lines). The ‘‘no free lunch theorem’’ [1], for example, says that

no predictive model is superior to another if the performance is

averaged over all possible problems. This indicates that the search

for a particularly good predictive model should be driven by the

structure of the problem at hand. The data used in this study is

high-dimensional genetic data from gene expression microarrays

and has the special property that the number of variables p far

exceeds the number of samples n. The major problems in dealing

with such p.. n prediction tasks are extreme overfitting and high

variation that can be observed in the fitted models. As a general
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guideline, the use of simple models or highly regularized

approaches has been recommended [2].

Study Aim
In this study, we have examined the factors influencing the

feasibility of predicting the outcome of drug response experiments.

An accurate prediction of drug response could help economize on

the vast resources necessary for laboratory experiments. To this

end, we have designed a study using well-known machine learning

algorithms, response data of drugs inhibiting cell growth by

targeting different mechanisms of the cell, gene expression data

from in-house and public efforts. It is expected that the underlying

biochemical processes of these cellular mechanisms can be

differently well observed through gene expression analysis.

Therefore, we have formulated five hypotheses to determine

important factors contributing to the above question.

Hypothesis relating to the choice of drug:

N H1: The successful prediction of efficacy depends on the

particular drug.

Hypotheses relating to the machine learning methods:

N H2.1: The machine learning algorithms used for the

prediction task at hand have a strong influence on the

predictability.

N H2.2: One labeling is superior in predictiveness than the

others.

Hypotheses relating to the choice of cell line panel:

N H3.1: There is a connection between the choice of panel and

drug predictability.

N H3.2: The number of samples influences the predictiveness.

In this study, we have evaluated drug response predictions for

23 drugs. This prediction task has been solved by seven different

machine learning approaches and up to three labeling variants (see

Table 1). Thus, many different machine learning algorithms and

gene expression drug response combinations have been evaluated

in this study in order to generate data to determine the factors

influencing the predictability of drug response in cell lines. Each

combination of variables is fully defined by the notation:

hmodel X ,y
labeling
drun

� �panel

:

In the above notation, hmodel can be any model according to

Table 1 and panel can be any of the utilized cell line panels (see

Materials & Methods). Drug denotes any of the 23 drugs

considered, to which response was predicted using one of the

three labelings (binary, i.e. responder vs. non-responder; ternary,

i.e. responder, intermediate, non-responder, or continuous, i.e. the

IC50 values of the drug). We have evaluated every possible

combination of the variables for the original data and for null

model data with randomly permutated class labels (illustrated in

Figure 1). In total, 510 combinations have been evaluated and

their empirical p-values have been recorded.

We utilized random forests (RF) and a decision tree for

evaluating the prediction results and to identify factors influencing

the prediction quality. We could show that the choice of the cell

panel and the drug has a greater influence on the prediction

quality than expected by chance. A correlation between small

sample size and low predictive accurateness and high variation has

been found. Thus, we could show that the efficacy of different

drugs is not equally good to predict. The machine learning

algorithm used for prediction has little to no influence on

accuracy.

Related Works
Brown et al. [3] compare five machine learning techniques to

predict functional distinct gene classes by using gene expression

data. They find that SVM outperform other techniques (i.e.

Fisher’s linear discriminant, Parzen window, and tow decision tree

learners).

Zhu and Hastie [4] compare support vector machine (SVM)

and penalized logistic regression (PLR) for microarray cancer

diagnosis problems. The techniques have been tested on three data

sets. He finds that PLR and SVM perform similarly in cancer

classification, though PLR with recursive feature elimination

(RFE) often selects fewer genes. They stress PLR’s advantage to

give class probabilities.

Diaz-Uriarte and Alvarez de Andres [5] compare machine

learning algorithms by their ability to select relevant genes for

sample classification. They use random forest to select features by

iteratively fitting random forest and discarding features with

smallest variable importance. They find that random forest have a

comparable performance to other classification methods (diagonal

linear discriminant analysis (DLDA), k nearest neighbors (KNN),

and SVM) but achieve that with an often smaller set of genes.

Shi et al. [6] evaluate a large number of different models for

predicting clinical endpoints in humans and toxicity endpoints in

rodents. They report that predictivity depends mainly on the

endpoint and on the experience of the modeling group.

Statnikov et al. [7] compare SVM and random forest for cancer

diagnosis and clinical outcome prediction. They evaluate both

methods with over 22 data sets. They report that random forests

are outperformed by SVM with or without feature selection

methods.

Riddick et al. [8] propose a multistep algorithm to predict

in vitro drug sensitivity using gene expression data from the

NCI60 panel. They build a predictive model for two drugs and test

them on 19 breast cancer cell lines, which are not in the NCI60

panel. The three main steps in their research are: Selection of

features based on random forest variable importance, removal of

Table 1. Overview of machine learning algorithms used in
this study.

Algorithm Regression 2-class 3-class

elastic net regression RMSE – –

L1 PLR – AUC –

PCA & random forest RMSE AUC mAUC

PCA & SVM RMSE Accuracy F1-Score

SVM RMSE Accuracy F1-Score

random forest RMSE AUC mAUC

two stage random
forest

RMSE AUC mAUC

The first column indicates the algorithm, the second to forth if this algorithm
was applied to regression, binary or three class classification. A dash indicates
that the algorithm was not used for that problem. Otherwise, the metric
reported in this article is indicated. RMSE: Root mean square error. AUC: Area
under the ROC curve, mAUC: multiclass AUC, F1-Score: this.
doi:10.1371/journal.pone.0070294.t001
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outlying cell lines based on the random forest case proximity, and

training of random forest regression models on selected samples

and features. They conclude that their algorithm is superior to

existing techniques.

Materials and Methods

Working Hypotheses
Generally, two categories of machine learning algorithms exist:

Regression models to predict continuous variables and classifica-

tion models to predict categorical variables. The choice of the

algorithm is then usually based on expert knowledge from the

problem domain. A typical classification problem features two

classes (binary classification) but some models can also be used for

multiclass classification. The process of separating the cell lines

according to the IC50 values into two or three classes is referred to

as labeling here (e.g. responder vs. non-responder or responder vs.

intermediate vs. non-responder). The factor labeling consists of

three levels: regression, binary, and class3 (multi classification with

3 classes). All three levels have been applied, since there is no clear

direction for a certain classification level suggested by prior

research for the problem considered here. Different machine

learning algorithms have been proposed [3,4,5,6,7,8] as being

superior to others to process microarray data. Considering all the

aspects described above, different models for regression and

classification have been selected for this study.

A panel of cell lines has different properties that can be expected

to influence the prediction task. The cell line panels used in this

study have differing numbers of samples (either 22 or 59) from a

diverse range of tissues and cancer types. Therefore, it was tested

whether the average predictiveness over all drugs is significantly

different between the cell line panels. In such a case, it can be

further tested whether the number of samples can explain this.

Therefore, a model performing well on the larger panel and worse

on the smaller panel is reevaluated with only a subset of the

samples.

Cell Line Panels
The most comprehensive study of compounds in a diverse set of

cell lines has been undertaken by Holbeck et al. [9] at the National

Cancer Institute (NCI) with the screening of the so-called NCI60

panel, a panel of 60 human tumor cell lines (NCI60) representing

9 tissue types, with which about 100,000 compounds and 50,000

natural product extracts have been screened to date. These data

are publicly available and have been used here as well.

Further cell lines have been selected to cover a broad set of

different indications and according to their response to different

standard chemotherapeutics. One aim of this study was to

compare the NCI60 panel to our panel of 21 cell lines, including

18 tumor cell lines (786-O, A549, Caco-2, DU 145, HCT 116,

HeLa, HT-29, KPL-4, MCF7, MDA-MB-231, MIA PaCa-2,

NCI-H460, PC-3, SK-MEL-28, SK-OV-3, SW480, T47D, U-2

OS) and 3 non-tumorigenic cell lines (HaCaT, Hs68, MCF 10A),

named hereafter the Bayer Pharma (BPH) panel (see Table 2 and

Table 3 for summaries of the respective cell line panels). Cells were

obtained from the American Type Culture Collection (ATCC)

and the ‘‘Deutsche Sammlung von Mikroorganismen und

Zellkulturen’’ (German Collection of Microorganisms and Cell

Cultures), (DSMZ) and cultivated in appropriate media according

to supplier recommendations. Isolation of genomic Deoxyribonu-

cleic acid (DNA) and total Ribonucleic acid (RNA) was performed

using Qiagen systems following provided instructions. Quality of

RNA and DNA preparation was analyzed using Agilent

Bioanalyser. We deposited the data to the Gene Expression

Omnibus (GEO) [10] and are freely available from there

(Identifier: GSE41445).

Microarray Data
The gene expression microarray data for the NCI60 panel have

been downloaded from the European Bioinformatics Institute

(EBI) ArrayExpress website [11] (Identifier: E-GEOD-32474).

Gene expression microarray data for BPH cell line panel has been

generated in-house.

The microarray data have been downloaded as CEL-files and

have been processed to obtain the gene expression matrix used for

modeling, according to the following procedure:

1. CEL-files from real data sets were uniformly processed using

the MAS5 algorithm [12] as implemented in the R package

simpleaffy (version 2.28.0; [13]).

2. All expression values were transformed to log2 values.

3. In case several probe sets shared the same gene symbol, the

probe set with the largest mean expression over all samples

was used as representative for that symbol.

Figure 1. Illustration of main steps to calculate the p-value for model predictability. A model depending on algorithm, drug and panel is
trained, used for prediction on a test set and the prediction results are evaluated by a metric. The same is done with a null model. Comparing the two
evaluations results in an empirical p-value.
doi:10.1371/journal.pone.0070294.g001
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A subset of 10,846 genes was selected for comparison purposes

to already existing studies covering these genes.

Synthetic panel data have been generated according to a

previously published procedure [14]. Virtual gene expression

values of 1,000 genes have been generated arbitrarily based on 5

state variables for 100 samples. One state variable represents the

response to be predicted, called state1. Another response variable,

state0, has been constructed by randomly sampling the state1

vector. Consequently, this vector contains no correlation between

gene expression and response. State1 represents a positive, state0 a

Table 2. Cell lines and Tissue of the NCI60 panel (NCI60).

No CellLine Tissue

1 786-O Renal

2 A498 Renal

3 A549 Lung

4 ACHN Renal

5 BT-549 Breast

6 CAKI-1 Renal

7 CCRF-CEM Leukemia

8 COLO205 Colon

9 DU-145 Prostate

10 EKVX Lung

11 HCC-2998 Colon

12 HCT-116 Colon

13 HCT-15 Colon

14 HL-60 Leukemia

15 HOP-62 Lung

16 HOP-92 Lung

17 HS578T Breast

18 HT29 Colon

19 IGROV1 Ovarian

20 K-562 Leukemia

21 KM12 Colon

22 LOXIMVI Melanoma

23 M14 Melanoma

24 MALME-3M Melanoma

25 MCF7 Breast

26 MDA-MB-231 Breast

27 MDA-MB-435 Melanoma

28 MDA-N Melanoma

29 MOLT-4 Leukemia

30 NCI-ADR-RES Ovarian

31 NCI-H226 Lung

32 NCI-H23 Lung

33 NCI-H322M Lung

34 NCI-H460 Lung

35 NCI-H522 Lung

36 OVCAR-3 Ovarian

37 OVCAR-4 Ovarian

38 OVCAR-5 Ovarian

39 OVCAR-8 Ovarian

40 PC-3 Prostate

41 RPMI-8226 Leukemia

42 RXF-393 Renal

43 SF-268 CNS

44 SF-295 CNS

45 SF-539 CNS

46 SK-MEL-2 Melanoma

47 SK-MEL-28 Melanoma

48 SK-MEL-5 Melanoma

49 SK-OV-3 Ovarian

Table 2. Cont.

No CellLine Tissue

50 SN12C Renal

51 SNB-19 CNS

52 SNB-75 CNS

53 SR Leukemia

54 SW-620 Colon

55 T47D Breast

56 TK-10 Renal

57 U251 CNS

58 UACC-257 Melanoma

59 UACC-62 Melanoma

60 UO-31 Renal

doi:10.1371/journal.pone.0070294.t002

Table 3. Cell lines and Tissue of the Bayer Pharma panel
(BPH).

No CellLine Tissue

1 786-O Renal

2 A549 Lung

3 Caco-2 Colon

4 DU 145 Prostate

5 HaCaT Keratinocytes (non-tumorigenic)

6 HCT 116 Colon

7 HeLa Cervix

8 Hs68 Fibroblasts (non-tumorigenic)

9 HT-29 Colon

10 KPL-4 Breast

11 MCF-10A Breast (non-tumorigenic)

12 MCF7 Breast

13 MDA-MB-231 Breast

14 MIA-Paca-2 Pancreas

15 NCI-H460 Lung

16 PC-3 Prostate

17 SK-MEL-28 Melanoma

18 SK-OV-3 Ovary

19 SW-480 Colon

20 T47D Breast

21 U2-OS Bone

doi:10.1371/journal.pone.0070294.t003
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negative control for the computational workflow and thus upper

and lower bounds for predictivity.

Drug Response Data
For the BPH panel, sensitivity towards treatment with eight

different chemotherapeutics (Cisplatin, Docetaxel, Paclitaxel,

Erlotinib, Gemcitabine, Sorafenib, Regorafenib, Pemetrexed) has

been determined by analysis of inhibition of cell proliferation after

72h treatment with different concentrations of respective com-

pounds. The concentration ranges from 1E-05 to 2E-10 mol/L.

Cells were seeded into 96-well cell culture plates required to ensure

approximately 80% confluence in control at end of experiment.

After 72 hours, cells growth was analyzed using Cell-Titer

GlowTM according to manufactures instruction. One part of the

sample was measured after 24 hours to get ‘‘zero-growth’’ value

which corresponds to full inhibition. Data were normalized to

Dimethylsulfoxid (DMSO) treated cells as ‘‘no-inhibition’’. The

drug response was quantified by the half maximal inhibitory

concentration (IC50) for a particular cell line. IC50 determination

was done using a statistical approach based on normalized growth

curves of different compound-concentrations.

Correspondingly, drug response data (IC50) of the NCI60

panelfor 48,129 drugs were downloaded from the NCI website

[15]. Two subsets have been selected from the available 48,129

drugs from the NCI60 data set.

Selecting Subsets of Drug Response Data of the NCI60
Panel

One subset contains all drugs that have been tested on the BPH

and NCI60 cell line panels (i.e. Cisplatin, Docetaxel, Gemcitabin,

Paclitaxel, and Pemetrexed). The second subset is a subset of drugs

found by clustering the response values according to the following

procedure:

1. Drugs have been removed, if more than five values were

missing or less than 29 distinct values existed (13,978 drugs

left).

2. Drug response was then standardized for each drug by

subtracting the mean value and dividing by the mean

absolute deviation.

3. The CLARA clustering algorithm [16], as implemented in

the R package cluster (version 1.14.2; [17]), has been applied

to the preprocessed drug response/cell line matrix. The

following parameters have been changed from the default

configuration:

N k = 30 (number of clusters)

N sample = 50 (number of samples to be drawn from the

dataset)

N samplesize = 500 (number of observations in each sample)

4. The medoids of the fourteen largest clusters have been

selected as representatives (NSC numbers: 180973, 18320,

321568, 628115, 679597, 680649, 687350, 687806, 700861,

703472, 710715, 710715, 711816, and 715585).

Preparation of Gene Expression Data
Different panels of cancer cell lines are commonly available and

have been used here to train models for the prediction task. Each

panel contains cell lines representing different patients. A matrix of

gene expression data X has been constructed for each panel used

in this study, as well as a drug response matrix Y that contains

individual information of drug efficacy for each cell line.

Labeling IC50 Measurements
IC50 values were converted to the pIC50 scale (-log10(IC50)).

These pIC50 values have been labeled for a binary and a three

class classification problem as described in the following.

Labeling for a binary classification problem:

1. Find the class threshold by:

a. Removing of all samples that are equal to the

minimum or maximum value of the set.

b. Set the class threshold equal to the median of the

remaining samples.

2. Label all samples greater than the class threshold with 2 and

the remaining samples with 1.

Labeling for a three class classification problem:

1. Find the two class threshold by:

a. Removing of all samples that are equal to the

minimum or maximum value of the set.

b. Set the upper class threshold equal to the 66-quantile

of the remaining samples.

c. Set the lower class threshold equal to the 33-quantile

of the remaining samples.

2. Label all samples that are greater than the class threshold

with 3, the samples smaller than the lower class threshold

with 1 and the remaining samples with 2.

The labeling results in three different sets of labels for each drug:

The pIC50 values for regression, binary classification and three

class classification.

Utilized Models and their Parameters
Lasso (L1) regularized logistic regression. We have

utilized penalized logistic regression which is a linear model to

predict categorical variables. The penalty term used here is called

LASSO or L1 penalty. The L1 penalty term introduces a variable

selection of at most n variables, where n is the number of samples

available in the training set. A disadvantage in the usage of a

penalty term can be observed for group wise correlated variables.

In this case, often only one variable per group is selected, while the

others are ignored [18].

The implementation used in this study is from the R package

glmnet (version 1.7.3; [19]). All parameters have been used with

default values.

Elastic net regularized linear regression. The elastic net

penalty term overcomes some of the limitations of the L1 penalty.

The number of selected variables is not limited. Rather, adding or

removing whole groups of variables is encouraged. In addition, the

L1 regularization path is stabilized [20].

The implementation applied in our study has been taken from

the R package glmnet (version 1.7.3; [19]). All parameters have

been used with default values. The tradeoff parameter has been set

to a= 0.5.

Support vector machines for regression or

classification. A support vector machine (SVM) constructs a

hyper plane in a high or infinite dimensional space to separate

classes. By maximizing the distance between the hyper plane and

the closest samples, intuitively the generalization error is

How to Improve Drug Response Prediction
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maximized and the risk of overfitting is reduced [21]. SVMs have

also been established for binary classification problems in form of a

primal optimization problem [22].

We have utilized the implementation from the R package e1071

(version 1.5–25; [23]). The package provides a wrapper for the

LIBSVM library [24]. For classification, the class weights have

been set to the reciprocal of the class size. Nested cross validation

(i.e. a simple cross-validation where in each validation run, the

training set is validated in itself by another split into training and

test set) has been used to select tuning parameters

fromj[ 0:1,0:2f gfor regression and fromC[ 4,8,16f gfor classifica-

tion. The SVM types used in this study were type = eps-regression and

type = C-classification.

Random forests. The random forest (RF) algorithm is an

ensemble method [25] with many decision trees as individual

learners. The idea is based on bagging, a method in which each

learner is trained on a different bootstrap to increase their

variation. The algorithm is described in detail elsewhere [26].

The implementation utilized by us is from the R package

randomForest (version 4.6-2; [27]) maintaining the default values.

The number of trees has been set to 500 for both regression and

classification. The number of variables sampled as candidates for

each split depends on the problem type. For classification, the

number of sampled candidates equals
ffiffiffi
p
p

where p is the total

number of variables. For regression, the number of sample

candidates has been set to p/3. The class probabilities have been

calculated using the normalized votes of the base learners (trees).

Principal component analysis+RF or SVM. The principal

component analysis (PCA) has been used as a dimension reduction

method, before applying the random forest or SVM algorithm.

For each run of the 10-fold cross validation, we have applied the

following steps:

1. Train the PCA model on the training data.

2. Use the first five principal components obtained from the

PCA model to training the SVM or RF model.

3. Predict the first five principal components for the samples in

the test set.

4. Use the PCA prediction as input for the SVM or RF model

to predict the classes or regression values.

This way, the instability of the PCA has been included in the

cross validation. This would not have been the case, if the PCA

would have been calculated on the whole data beforehand. The

SVM and RF settings have been chosen as explained above.

Two stage random forest. RF has been used to select the

most important genes. These genes have then been used to build

the final model. To avoid a feature selection bias, the following

steps have been executed for each run of the 10-fold cross

validation:

1. The random forest has been trained on the training data.

2. The resulting model has been used to rank the genes by the

variable importance obtained from the out-of-bag (OOB)

data. For classification, the MeanDecreaseGini has been used

for ranking and the %IncMSE for regression.

3. In the next step, the 300 highest ranked genes have been

used to retrain the random forest on the training data.

4. Lastly, the so retrained random forest has been used to

predict the test set samples.

All settings have been chosen the same way as described for

random forests above.

The Null Model
Purpose of the null model. To establish if a model is

significantly better than expected by chance, a suitable null model

is needed. One way to generate such a null model is estimating the

model performance after random permutation of the class labels or

target values. This approach ensures that the data of the null

model are based on a similar distribution as the real model. After

establishing this null model, an empirical p-value can be calculated

to reject or accept the following hypothesis:

H0: The classifier can extract information from the data. This means, there

is a correlation between the data and the class labels.

Empirical p-values. For our study, we have utilized

empirical p-values proposed by Good [28], supplemented with

the recommendations by Ojala et al. [29] as a substitute for the

closely related Mann-Whitney-Wilcoxon two-sample rank sum

test. This test assumes that the prediction errors are independent

of each other, which is however not true in the case of cross

validation prediction errors.

Model Evaluation
Background. The metric used to quantify the prediction

power of a model plays a key role in finding and tuning the best

model. The choice of the metric is important, since metrics put

unequal importance to different aspects of the model performance;

it is therefore problem and data specific. We have used the

following metrics for evaluation:

N Accuracy: The ratio of all correct (true positive and true

negative) predictions to the total number of cases evaluated

(true positive, true negative, false positive and false negative).

The accuracy metric is not suited, however, for unbalanced

classification problems as the contribution of each class depends

directly on the number of samples [30]. We therefore calculate

additional evaluation metrics:

N Precision: The ratio of the number of correct predictions

actually made (true positive) to the total number of incorrect

and correct predictions (true positive and false positive).

N Recall: The ratio of the number of correct predictions

actually made (true positive) to the total number of all

correct predictions (true positive and false negative).

N F-Score: Uses a weighted combination of Precision and Recall

(see above). Further, it is not sensitive to imbalanced classes.

The F-Score with b= 1 is called the F1-Score and denotes

the harmonic mean of Precision and Recall, used here as

defined as follows:

F{Score~
b2z1
� �

|Precisiion|Recall

b2|Precision
� �

zRecall

Metric based on class probability. Several classifier assign

a class probability to each prediction. Precision and recall can be

influenced by the choice of a threshold for the class probability. In

such a setting, the threshold can be trimmed for varying

misclassification costs between the classes. This optimal choice

depends on the cost of wrong classification (Precision) versus the

cost of missing a sample from a class (Recall). In cases where this

tradeoff is not clear, the metric incorporating all possible choices

best evaluates a classifier.
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Using this receiver-operator-curve (ROC) analysis, the power of

the classifier can be defined independently from the decision

threshold by calculating the area under the curve (AUC). The

AUC is in general better suited to compare classifiers than the

accuracy metric [30]. The AUC was originally proposed for

binary classifier evaluation but has been extended to multiclass

classification tasks as well [31]. We have used both AUC and

multiclass AUC for our evaluations.

Metric for regression. Regression problems deal with

continuous values and are therefore differently evaluated than

classification problems.

For this, we have used the Root Mean Square Error (RMSE),

measuring the distance between two sets of data points P = [p1, …,

pn] and A = [a1, …, an]:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 pi{aið Þ2

N

s

The fact, that the divergence between predicted and observed

value is quadratic penalized, makes this metric, however, very

sensitive to outliers.

Metric use depends on labeling and algorithm. Different

metrics have been compared. When assessed as empirical p-values,

it can be shown that these metrics are, in general, correlated (data

not shown). However, here we report p-values only based upon

RMSE (for regression problems) and AUC (two class) or multiclass

AUC (tree class problem). SVMs do not provide class probabilities

directly, hence there the accuracy metric (two class) resp. F1-score

(three class) was used. See Table 1 for an overview of algorithms,

labeling and metrics used.

Performance estimation for small sample size

problems. Independent of the metric used to evaluate the

classification or regression model, we have also employed a

method to estimate the generalization performance. By this, we

mean the expected prediction capability of a model on indepen-

dent test data. The generalization performance can easily be

estimated if a large set of samples is available. In this case, the data

are partitioned in a test and a training set. Each set is a

representative sample of the overall distribution. The error on the

test can therefore be expected to be reliable. One possible split for

the two partitions can be such that 70% of the data lies in the

training set and 30% in the test set.

In cases of small sample size, however, k-fold cross validation

uses the samples more efficiently and provides a more accurate

estimate. The data are first partitioned in k folds. Then, each fold

is used as test set once, while the model is trained on the remaining

data.

Let f̂f {k ið Þ denote the model prediction of the ith sample after

having been trained on all data except the kth partition. Here, L

denotes the loss function that can be represented by any of the

metrics addressed before:

CV f̂f
� �

~
1

N

XN

i~1

L yi,f̂f
{k ið Þ xið Þ

� �

If the model includes a tuning parameter or any kind of feature

selection, a second cross validation has to be incorporated in a

nested manner (i.e. the training data is partitioned repetitively in

inner-training and inner-testing sets).

10x10-fold cross validation. When dealing with microarray

data, often very small sample sizes are available (,100). This

results in unstable cross validation error estimates that can depend

heavily on the partition used for the cross validation. To stabilize

the error estimates, the 10-fold cross validation was repeated ten

times with different partitions. The results of all ten runs were then

averaged. This method, called the 10610-fold cross validation, is

one of the most accurate estimators for direct comparison between

models [32].

Variations in sample size. The following procedure has

been used to examine the influence of sample size on the

predictive power of the model. The drugs NSC180973 and

NSC700861 have been selected due to their relatively low

empirical p-values (see Results). The RF (alone) and PCA+RF

algorithms described above have been selected for the evaluation

due to their fast execution time. For each drug-algorithm

combination, the following steps have been computed:

1. Estimate the RMSE using 10-fold cross validation.

2. Remove five samples and perform the estimation again.

3. Repeat (2) until less than 20 samples remain.

Results

Specific Observations
The 510 p-values (see Table S1 and S2) have been

partitioned into a decision tree by their four categorical

variables: drug, panel, model and labeling (see Figure 2). The

resulting tree is unbalanced with five nodes and a depth of four

on the left side and two nodes and a depth of three on the right

side. The left side contains 83% of all samples and the right

side the remaining 17%. The factor model occurs three times as

split variable. All three splits occur on the lowest split level after

a split based on the factor drug. The root node splits based on

the factor drug and separates five drugs from the rest. The left

side is split on the highest level by the factor panel, which

separates the BPH panel samples from the NCI60 and from the

synthetic drug (state1– perfect information) samples.

In addition, a random forest model has been trained on the

same data as the decision tree (response: p-values, variables:

drug/model/panel/labeling). The variable importance based on

OOB predictions has been used to rank the results as can be

seen in Table 4. Both importance metrics show a clear

separation between the two highest ranked factors (compound

and panel) and the two lowest ranked factors (model and

labeling). This is consistent with the observation from Figure 2,

where the root node is split based on the drug factor. The

second ranked factor is the panel. The two lowest ranked

factors play only a minor role, according to both variable

importance measures.

Correlation between Drug Selection and p-values
All empirical p-values for the NCI60 (representative) panel and

the synthetic data are summarized in Figure 3 and listed in Table

S1. Each boxplot represents all models and labelings that have

been tested for this drug. The strong connection between gene

expression data and drug response for the simulated drug state1

has been correctly predicted by all models (all models have the

lowest possible p-value (p = 0.009)). Two other drugs (NSC700861,

NSC180973) have noticeable lower p-values than the others. The

simulated drug state0, for which no connection between input and

output exists, shows p-values in the range between p = 0.5134 and

p = 0.9375– marked by vertical red lines. The median, indicated
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Figure 2. Graphical representation as a decision tree: Factors to achieve good prediction quality. A decision tree has been trained on all
empirical p-values obtained from all possible model comparisons. The decision tree has been constructed according to the output from the R
package rpart (version 3.1–49; [33]), after applying it to the p-value data. Each node represents a decision rule based on one of the four categorical
variables: drug, panel, model or labeling. The text in the leaf node gives a summary for each partition with a list of included or excluded entities. The
first row of the terminal nodes (elipses) is the mean p-value. The second row displays the number of cases (n), and percentage of total number of
cases. The leftmost terminal node represents the lowest achieved p-values, the path through the tree shows the necessary conditions. The model is
not among them.
doi:10.1371/journal.pone.0070294.g002

Table 4. Variable importance ranking for factors influencing
the p-values.

%IncMSE IncNodePurity

compound 0.05 15.29

panel 0.03 7.35

model 28.00E-04 1.77

labeling 25.00E-05 0.47

The ranking is constructed by random forest on OOB data.
doi:10.1371/journal.pone.0070294.t004

Figure 3. Summary of p-values for NCI60 (representative) and
synthetic drug models. Each boxplot summarizes the p-values for all
models tested for this drug. The red lines mark the lowest and the
highest p-value calculated for the synthetic data with no information.
doi:10.1371/journal.pone.0070294.g003
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by the vertical line in the boxplot of the drug NSC321568 is clearly

in the range of p-value from state0.

Boxplots for the p-values of the panels BPH and NCI60 are

shown side by side in Figure 4. A direct comparison is therefore

possible for all drugs that are represented in both panels. The

two drugs Vinorelbin and Regorafinib of the BPH panel are

clearly not predictable whereas the drugs Docetaxel and

Cisplatin have a median below p,0.15. The remaining drugs

of the BPH panel show no clear tendency. The drugs in the

NCI60 panel have a p-value of p,0.2, with a single exception.

The overall picture shows that NCI60 drugs have significantly

smaller p-values than the ones from the BPH panel. The p-

values for one drug in one panel give no information about the

p-values in the other panel.

Correlation between Panel Selection and p-values
Boxplots for all p-values from one panel can be seen in Figure 5.

The boxplots for the two synthetic data sets have clearly lower

(state1) and higher (state0) p-values than the real datasets. The two

subsets of the NCI60 panel are clearly lower than the p-values

from the BPH panel. The BPH and the NCI60 panel have eleven

cell lines in common. The correlation coefficient has been

calculated for five drugs that have been tested on both panels

(Table 5). The two drugs Cisplatin and Paclitaxel show a weak

correlation (p,0.1) between the panels, while Gemcitabin and

Pemetrexed show no correlation. Docetaxel shows no clear sign in

either direction.

Correlation between Model and Labeling Selection and
p-values

The two factors model and labeling show no clear connection to

the p-values. The choice of the model appears as a splitting

variable in Figure 2, but only at the lowest level. The random

forest variable importance in Table 4 gives a very low rating to

both variables.

Case Studies
Gemcitabin is here used to illustrate the difficulties with class

assignments: Figure 6 shows the pIC50 values and the class labels

for Gemcitabin for BPH panel (left) and the NCI60 panel (right).

The pIC50 values in the first row are sorted by size. The BPH

panel contains 19 samples and the NCI60 panel 59 samples. A

large proportion of data points are above 7.5 for the NCI60 panel.

This influences the class threshold as can be seen in the second and

third row. The threshold for the binary labeling is at 6.0 for the

BPH panel and at 7.4 for the NCI60 panel. Many samples that

would belong to the lower class in the BPH panel are added to the

upper class in the NCI60 panel.

Differences in panels are not only manifested in sample size, but

they may, for some drugs, show differences in IC50 value

distribution: Density plots for the overlap of drugs between the

BPH and the NCI60 panel can be seen in Figure 7. It shows

clearly that the drugs Paclitaxel, Gemcitabin and Docetaxel have a

similar range on both panels. Pemetrexed, in contrast, has a

narrower range on the BPH panel. The range of Cisplatin on the

BPH panel covers only the left half of the range on the NCI60

panel. Cisplatin, Pemetrexed and Paclitaxel have a similar shape

on both panels. The samples for Docetaxel follow a uniform

distribution on the BPH panel but have a peak at 7.9 on the

NCI60 panel. Gemcitabin has a similar shape on the left 2/3 of

the range.

Influence of Sample Size on Prediction Error
Two drugs (NSC180973, NSC700861) have been evaluated for

various sample sizes with the random forest algorithm and

PCA+RF (see Methods). Those drugs were selected because they

are highly predictable (p-value on average 0.01, while the next best

predictable compound has an average p-value of 0.03). It can be

expected, that even with decreased sample size the data contains

sufficient information to train a model. The RMSE and variation

of the results decrease with the number of samples used to train the

model. This observation is consistent for all four experiments

shown in Figure 8. It is of interest to note that the median RMSE

Figure 4. Summary of p-values for BPH and NCI60 models. Each
boxplot summarizes the p-values for all models tested for this drug. The
red lines mark the lowest and the highest p-value calculated for the
synthetic data with no information.
doi:10.1371/journal.pone.0070294.g004

Figure 5. Summary of the p-values for each panel. Each boxplot
summarizes all p-values tested on this panel. The horizontal line in the
box plot marks the median and the number gives the number of tested
models.
doi:10.1371/journal.pone.0070294.g005

Table 5. Correlation for drug response values between BPH
and NCI60 panels.

No. Cor p-value RMSE n compound

1 0.54 0.09 0.39 11 Cisplatin

2 0.43 0.18 1.04 11 Docetaxel

3 20.3 0.37 1.42 11 Gemcitabin

4 0.55 0.08 0.96 11 Paclitaxel

5 0.08 0.82 1.67 11 Pemetrexed

The correlation was calculated for the cell lines that are in both panels.
doi:10.1371/journal.pone.0070294.t005
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Figure 6. Variation of class threshold between panels for the drug Gemcitabin. The left column is from the BPH panel and the right from
the NCI60 panel. The first row shows the unlabeled data, the second and third row color codes labeling for binary and three class labeling. Jitter was
added to class labels for display.
doi:10.1371/journal.pone.0070294.g006

Figure 7. Comparison of drug response value distributions between panels. Overlaid density plots for all drugs that are in NCI60 and BPH
panel.
doi:10.1371/journal.pone.0070294.g007
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increases only slightly with decreasing sample size, while the

spread increases strongly.

Discussion

Summary
In our present study, we have evaluated drug response

predictions for 23 drugs and positive and negative controls. The

prediction task has been solved by 17 different machine learning/

labeling approaches. The resulting predictions have been analyzed

to find factors that influence the prediction quality. It has been

found that the choice of the panel and the drug plays a major role

for the prediction quality. The two most predictable compounds

were used to demonstrate a connection between small sample size

and low predictive accuracy. While this is intuitively expected, it is

still possible that other algorithms are more robust towards

decreasing sample sizes.

The results of this study suggest that the choice of cell line panel

and drug have a strong impact on predictiveness, while the

selection of machine learning algorithm plays only a minor role in

the cases of low predictivity.

We will discuss this in the following with regard to the

hypotheses postulated in the Introduction. For evaluation, a

decision tree was used to determine the factors leading to low p-

values (for the hypothesis that a model predicts drug response) and

the irrelevant factors. In addition, a random forest was used to

determine the importance of factors towards differentiating

between low and high p-values (again, for the hypothesis of model

predictivity). To our knowledge, random forests and decision trees

have not been used to evaluate results in this way before.

Hypothesis Concerning the Choice of Drug
H1: The successful prediction of efficacy is depending on

the particular drug. The first split in the root node of the

decision tree (Figure 2) is based on the variable drug and, therefore,

the information which drug is being predicted by the model. The

random forest variable importance supports that the drug selection

has a great influence on predictability (Table 4). The boxplots in

Figure 3 and Figure 4 show that response to some of the drugs can

be predicted reasonably well (i.e. NSC180973 and NSC700861),

whereas response to other drugs is essentially unpredictable (i.e.

NSC321568). This hypothesis can be accepted based on Figure 3

and Figure 4.

Our finding has several implications. There are drugs that are

not predictable by machine learning algorithms which were

trained on gene expression data. However, this result could turn

out differently when using different cell lines. Therefore, the results

should be replicated with different cell line panels to verify this

hypothesis further.

If it is confirmed that the in vivo response to a specific compound

is not predictable from gene expression data, the experimentalist is

advised to move to other types of biomarkers.

Hypotheses Concerning the Machine Learning Methods
H2.1: The machine learning algorithms used for the

prediction task at hand have a strong influence on the

predictability. The random forest variable importance does

not indicate that one of the tested algorithms did consistently

better than the others. Therefore, this hypothesis is rejected. This

is an interesting result, since, on the one hand, algorithms are

generally being developed to perform well for a very specific

Figure 8. Influence of sample size on prediction error for two selected drugs. The blue lines are the averaged median, upper and lower
quartiles. Each dot represents the error estimate of one model evaluation.
doi:10.1371/journal.pone.0070294.g008

How to Improve Drug Response Prediction

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e70294



problem type, so that differences in the prediction power of

algorithms would be expected. On the other hand, much effort has

been put into the selection and comparison of algorithms included

into the problem solving model.

One explanation for this result could be the fact, that the

problem under consideration is a low predictable task. Therefore,

the highly specialized algorithms performed similarly. However, it

can be expected that the differences in prediction power between

the algorithms become more apparent when the overall predict-

ability of the model is improved. This could be achieved, for

example, through a larger sample size or the choice of the panel.

The finding that the choice of machine learning algorithm is of

little importance for the overall quality of predictions is interesting

and deserves further attention. In particular, it would be of interest

if other problems with inherent low predictability would be

independent of the choice of algorithms in a similar manner.

For future research in this medical domain, the result could

indicate that efforts should be invested in other parameters first,

before optimizing the choice of machine learning algorithms. The

next hypothesis evaluates the importance of labeling levels.

H2.2: One labeling is superior in predictiveness than the

others. The random forest variable importance does not

indicate that one of the labeling types did consistently better than

the others. Therefore, this hypothesis is rejected. The lack of a

clear class threshold could have negatively influenced the

performance of the classification algorithms. Cisplatin for example

has considerable different values on the two different panels

(Figure 7, Cisplatin), and therefor different class thresholds. This

results in different labeling of one cell line depending on the

underlying panel. The regression does not have this restriction

since no threshold is needed. Due to that, a regression seems to be

the more suite approach for this type of problem.

Hypotheses Concerning the Choice of Cell Line Panel
H3.1: There is a connection between the choice of panel

and drug predictability. According to Figure 5, the hypothesis

is supported. The predictiveness between the BPH panel and both

NCI60 subsets are significantly different. We are currently

investigating how much of this is due to the observed variability

of the IC50 measurements or the choice of the cell lines in a panel.

Figure 7 displays examples ofe compounds that have very different

IC50 distributions, which will result in different models.

H3.2: The number of samples influences the

predictiveness. According to Figure 8, the hypothesis is

supported. This could explain the observed differences in

predictiveness between the panels. This implicates that for state-

of-the-art machine learning algorithms better performance could

be expected with larger sample sizes. However, it must be

considered that the model selection was only done for the full set of

samples and therefor the so found model has been retrained with a

decreasing number of samples. This procedure could introduce a

selection bias toward the full sample size.

Caveats
In this study, two independent experimental and an artificial

data set was used. While both experimental datasets are different

in size, the conclusions drawn from them are similar: Labeling and

choice of algorithm are not determining the predictivity. However,

this must not be true for all possible data sets.

Data preprocessing and normalization is an important step in

data analysis. This step was not varied; hence influence of

preprocessing and normalization on the prediction error was not

assessed.

In this work, the learning of drug response from gene expression

data was studied. Drug response classifier could be trained on

different types of data, e.g. genomic data. There, the link between

prediction errors and, for example, choice of machine learning

algorithm may be different.

Conclusions and Outlook
This study has shown that the predictability differs between

drugs. The machine learning algorithm used for prediction has

only a minor influence on this. The choice of the cell line panel,

used to obtain the drug response profile and gene expression data,

has a strong influence on the predictability.

The recommended approach to identify a predictive model for

a new chemical entity is to start with a small panel to assess

whether the compound belongs to the cluster of predictable drugs.

If that is the case, further efforts shall be directed towards

extending this panel until a satisfactory predictability is achieved.

The choice of machine learning algorithm is not relevant for the

outcome, proficiency should guide the selection. As labeling,

regression has some advantages over 2-class or 3-class labeling as

for former it is not required to set class boundaries (which depend

on previously seen samples) while the quality of prediction is

comparable.

It has been shown that quality of drug response prediction

depends on the drug under investigation. There is a need to learn

more about what causes these differences. Especially the question

about biological implications of our findings deserves further

attention. The causes for these differences could also be explained

by factors that cannot be observed by gene expression data, e.g.

structural differences in proteins with a compound specific effect.

The results can also be influenced by a lack of diversity in the

response or by cell lines that are very sensitive or resistant. In

addition, the reliability of the IC50 measurements can be a source

of inaccuracy.

We have shown here that the predictability of one and the same

drug can greatly differ if different cell line panels are used to obtain

the drug response profile and gene expression data. The origin of

these differences and whether sample size or other important

factors influence these findings is currently under investigation.

Supporting Information

Table S1 Empirical p-Values for every compound, panel,

algorithm, and labeling combination. A comma separated data

table: The metric column contains an abbreviation of the used

metric, the ‘metric.median’ column has the numerical value in this

metric, while ‘p_value’ contains the empirical p-Values estimated

from the null-model. Columns expSet, labeling, model, and

compound contain the panel, the labeling (one of regression,

binary or 3class), the algorithm, and the compound (drug)

respectively.

(CSV)

Table S2 Raw prediction quality values for every compound,

panel, algorithm, and labeling combination. A comma separated

table. Here, the metric used, and the result in each CV run (‘cv1’ to

‘cv10’) is reported, otherwise columns are labeled as in Table S1.

(CSV)
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