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Abstract

Using a symbolic dynamics and a surrogate data approach, we show that the language exhibited by common fruit flies
Drosophila (‘D.’) during courtship is as grammatically complex as the most complex human-spoken modern languages. This
finding emerges from the study of fifty high-speed courtship videos (generally of several minutes duration) that were
visually frame-by-frame dissected into 37 fundamental behavioral elements. From the symbolic dynamics of these elements,
the courtship-generating language was determined with extreme confidence (significance level . 0.95). The languages
categorization in terms of position in Chomsky’s hierarchical language classification allows to compare Drosophila’s body
language not only with computer’s compiler languages, but also with human-spoken languages. Drosophila’s body
language emerges to be at least as powerful as the languages spoken by humans.
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Introduction

Over the centuries, the evolution of human language has been

the subject of controversial discussions among philosophers,

linguists and biologists. Yet, a consensus on what causes language

to evolve has not been achieved. Traditionally, language has been

thought of as a strictly culturally transmitted phenomenon, with

few or no biological ties at all. In the second half of the 20th

century, under Chomsky’s influence who considered that language

is located in the brain and therefore is subject to biological

conditions [1–3], this view started to change. A discussion arose

what other driving forces of the evolution of language could be. As

is any complex ability of humans or animals, language could be

seen as the result of natural selection [4]. Chomsky suggested that

the language grammar basics are hard-wired into the brain, and

that this wiring may be the side-effect of the reorganization of the

brain needed to cope with its growing size during evolution [5] (cf.

[6] for a similar example). In order to study the evolution of

language and to determine its driving forces, Chomsky and

Schützenberger [7] proposed a hierarchical classification scheme,

comprising grammars of increasing grammatical complexities: t-3

(left regular grammar) 5c t-2 (context free grammar) 5 t-1

(context sensitive grammar) 5 t-0 (Turing machine), able to

account for the changes undergone. This classification approach

has been used to compare spoken human languages, for

distinguishing compiler languages, as a basis for the theory of

automata, and for classifying dynamical systems [8]. In this paper,

we apply this widely accepted classification scheme to the

precopulatory dance of Drosophila melanogaster, where we show, by

combining a nonlinear symbolic dynamics with a surrogate data

analysis approach, that the dance of this fly is generally of

complexity t-1: It is as, or even more, grammatically complex as

the Dutch or the Swiss-German [9], the most complex spoken

western languages (generally, human languages fall into Chomsky

hierarchy t-2 [9,10]). Note that our general approach could also be

applied to other taxonometries of language characterization.

In the animal world, courtship ranges from simple rituals to

complex communication-like behaviors. Despite its high cost for

the animal (energy- and death toll-wise), the origins and purpose of

courtship are still not well understood. A natural hypothesis is that

courtship is an evolutionary optimization mechanism that a species

may or may not take advantage of. Behavior is characterized by

rituals that consist of well-chosen sequences of individual actions.

Since it is in the nature of these rituals that they need to be

repeated if required, we characterize behavior by sequences of

indecomposable closed cycles of indecomposable individual

actions, so-called irreducible cycles of irreducible acts [11,12].

This approach is also motivated by the theory of complex

dynamical systems, where it has been shown that such systems can

be reduced to a minimal set of closed sequences of actions (there

called ‘irreducible closed orbits’). From this set the system can

systematically be approximated by combining ever more of these

sequences, starting with the shortest ones (for detailed references

cf. Ref. 12). Living in a simple and evolutionarily fast environment,

D. provides a well-suited courtship behavior testing case. Using a

decomposition of courtship data into irreducible cycles, it has been

found that with high confidence during D.’s precopulatory

courtship, individual information is transmitted to the prospective

partner, i.e. genuine communication with essential information

exchange takes place [11,12] (Fig. S2).

To the best of our knowledge we use here for the first time

Chomsky’s classification scheme to characterize courtship and

animal body language. Although the question by what grammar

a given experimental data was generated is in its narrower sense

undecidable (the ‘string problem’ is undecidable [13]), we are

able to provide an answer in the statistical sense: Namely, we

show that it is very unlikely that D.’s body language is generated

by grammars of complexity lower than those of human

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70284



languages. For some data we find indications of a t-1 grammar

underlying their generation, which reaches beyond the gram-

matical complexity of human language. An overview of the

experimental and computational procedures is presented in

Fig. 1.

Materials and Methods

The data that we use in this study originates from experiments

where the courtship behavior of a pair of fruit flies is recorded in

an observation chamber at fixed environmental conditions of 25uC
and 75% humidity. From high-speed camera recordings of 30

frames per second, we isolated 37 fundamental behavioral acts and

coded the recordings accordingly [11] (Fig. S1). Fundamental acts

are body movements that can freely be combined with each other.

Besides pairing single normal females in the immature, mature

and mated states with single normal males, additionally fruitless

mutant males [11] were paired with either mature females or with

mature normal males, leading to five types of experiments. Since

either of the protagonists gives rise to a time series, ten classes of

experimental time series were obtained in this way. Tagging each

fundamental act by an integer number, each camera episode is

represented by a string or time series of these symbols. A mature

female as the protagonist in the presence of a normal male, e.g.,

generates in this way a time series as

v~f9,17,21,20,17,20,6,21,6,21,17,18,21,25,20,

17,20,21,17,18,21,17,20,9,17,20,21,20,21,17,21,

17,18,21,17,21,20,24,17,18,20,21,17,21,20,17g:

The simplest grammatical model for the putative generation of

the experimental time series is a t-3 grammar from the Chomsky

hierarchy of languages. This model is equivalent to a random walk

on the given set of symbols with probabilities given by the symbol

frequencies observed in the respective experiments, but with no

further restrictions imposed. If D.’s body language is of low

complexity, the observed strings should fit well into the random

walk model. From simulating the random walk based on the

observed symbol probabilities of each experiment, we obtained

from each experimental file a set of surrogate files to compare with

(Fig. 1A; throughout our investigations, we use Nsim~100
simulated random walks). For the comparison, a figure of merit

is used. Every time series v~fx0,x1,:::,xLg is characterized by

Figure 1. Comparison of experimental files to grammar-generated files. A) For each experimental symbol string, strings with the identical
symbol probabilities are generated using a t-3 random walk. B) For each string (observed and simulated), Hthrough(x) is calculated. Thick red lines:
experiments, thin lines: t-3 random walks. E numbers the experiment. C) Red dots: Hthrough(v) for the experimental files. Blue dots: Mean values of
Hthrough(v) from Nsim~100 t-3 random walks. Bars: One standard deviation. For two thirds of all files, the t-3 model fails.
doi:10.1371/journal.pone.0070284.g001
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products along the string of the probabilities Pin(x) - measuring

that a random walk starting at x0 ends at point x - with Pout(x)
measuring the probability that a random walk starting at x reaches

point xL.

For the unrestricted random walk, these probabilities are

Pin(x)~
n!

n1!:::::nnsymb
!
:p

n1
1
::::p

nnsymb
n ,

Pout(x)~
(N{n)! : p

(N1{n1)

1
::::p

(Nnsymb
{nnsymb

)

n

(N1{n1)!:::::(Nnsymb
)!

,

where n is the number of steps needed to reach point x, producing

nj repetitions of the symbol tagged with index j.

The entropy Hth associated with a string realization is based on

the local walk-through probability Pth : ~Pin
:Pout, evaluated

along the string, as

Hth(v) : ~{
log (Pth(v))

L

~{
1

L

XL

i~1

log (Pth(xi))~ :
1

L

XL

i~1

Hth(xi),

with xi~(ni
1,ni

2,:::,ni
nsymb

) the coordinate of point xi[v in the

symbol space. In the figures, Hth will always be abbreviated by H

(Fig. 1B).

Results: Courtship Language Classification

We evaluated Hth(v) for each experiment and for the

corresponding surrogate random walks. For the latter, we also

determined the mean values and the standard deviations (Fig. 1C).

Whereas the t-3 model generates strings with similar Hth(x)
characteristics for approximately one third of the experimental

data (Fig. 1B, left panel) for the remaining two thirds, this

description fails (Fig. 1B, right panel). In the latter cases, the

experimental Hth(x) dramatically differs from those obtained for

the t-3 model: The experiment’s clear peak around position 170 is

very unlikely to be reproduced by a simple random walk. The

pyramid-like shape with its clear maximum of Hth suggests that in

the data, an eminent change has occurred in the way of how

symbols are chosen from the alphabet.

To proceed with those experiments that do not fit into a t-3

model, we apply a recursive approach (‘t-3, t-2, t-1 model’). We

split a string at the point of maximum Hth(x), and model the

partial strings v1, v2 separately by corresponding random walks.

Strings of the form v~v1v2 are generated from a t-2 (i.e.

context-free) grammar, since a word v~anbn, n[N cannot be

created by a t-3 grammar. t-2 grammars reproduce the

characteristics of five of our experiments, they remain, however,

to be inappropriate for about half of the data. The obvious

solution then is to expand the latter into ever more partial walks.

Technically, for each file we simulate a set of Nsim random walks.

On this set, we calculate Hth(v), their average and their standard

deviation. If the original file’s Hth(v) falls within a standard

deviation from the computed average, the random walk describes

the string well and the string is considered to be t-3. Otherwise, by

splitting the string v at the maximum of Hth(x), we obtain v1 and

Figure 2. Example of an experiment that requires a t-1 random walk (E = 23). A) Improvement of the modeling by going from t-3 via t-2 to
t-1 random walks. B) Hthrough(v) for each experiment and its surrogate set. Red dots: experiments. Blue: dots: mean values of Nsim~100 t-3 random
walks; bars: one standard deviation. Green: mean values of Nsim~100 t-3, t-2, t-1 random walks; bars: one standard deviation. Some blue dots and
bars are obscured by red and green dots and green bars. One can clearly see that the green dots approximate the experimental red dots much better
than the blue dots.
doi:10.1371/journal.pone.0070284.g002
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v2. For these partial strings, random walks are then performed

separately, and compared to the original data. If they are close

enough in the above sense, we consider the string to be t-2.

Otherwise we proceed recursively, which implies context-sensitivity

[13] and therefore a t-1 grammar (Fig. 2A.). Surrogate walks

generated according to this ‘t-3, t-2, t-19-construction (Fig. 2B, green

dots and intervals), now perfectly capture the experimental data.

A key characteristic for assessing behavior - and therefore also

the underlying generative grammar - is by irreducible cycles

[11,12]. We observed in surrogates from files that we classified as

t-2 or t-1, a massive increased number of irreducible closed cycles

(Fig. 3A). Whereas our experimental data clearly stands out from a

surrogate distribution based on t-3 grammar models for all files

(Fig. 3Aa), it fits well into the surrogate distribution based on the ‘t-

3, t-2, t-1’-model (Fig. 3Ab. The numbers of cycles deviate from

the cumulative numbers of different cycles exhibited in ref. 2, but

demonstrate the same tendency). This not only corroborates our

conclusion that a higher-complex grammar underlies D.’s body

language, it also validates the relevance of this observation for the

behavioral context.

Discussion

The comparison between the behavior of all observed female flies

and all observed normal males reveals that female flies tend to follow

t-3 or t-2 grammars, while normal males tend to use t-1 (Fig. 3B).

This provides a novel insight into the role of the courtship

protagonists depending on their sexual group from the grammatical

perspective. More fundamentally, we stress the conclusion that D.’s

precopulatory body language is not the result of the simplest

grammar t-3 (i.e., a random walk on states of a finite automaton).

There is a general agreement that natural human languages fall

mostly into t-2 Chomsky’s characterization (with among the

European languages the Swiss-German and the Dutch showing

the highest degree of grammatical complexity [9]). On the basis of

our analysis one can safely say that the D.’s body language is of no

lesser grammatical complexity than the spoken language of humans.

The supremacy of human intellect can thus not be founded in

the formal grammatical complexity of the language used.

Surprisingly, species as simple as the fruit fly have recursive

elements too (recursion is often the key argument for distinguishing

between t-3 and t-2 grammars [14]). It appears, however, that only

humans have acquired a kind of awareness of theses structures and

have learnt to purposefully use them. It is conceivable that the

evolutionary anatomical changes of our growing neocortex has led

to an outsourcing of loops and stacks to other areas of the brain,

which may have brought along a notion of loop-awareness. The

usefulness of this concept (for navigation tasks or for general

counting processes), may have enhanced the awareness and the

purposeful use of these structures further during evolution. This in

distinction to animals that in principle do have these structures as

well (as the D. example), but are not aware of them and do not use

them purposefully. An indication of the importance of infinite

loops [15] can be seen in how they particularly fascinate children,

as exemplified by the children rhyme: ‘‘Once, there was a man

with a hollow tooth, and in this tooth there was a little box, and in

this box there was a paper, on which was written: Once, there was

a man.’’ (translation from Swiss-German). It is hard to imagine an

animal finding such a construct as fascinating as we do.

Supporting Information

Figure S1 Table of Drosophila acts.

(PDF)

Figure 3. Effect of random-walk grammar on closed cycles. A) Histogram of the cumulative number of closed cycles across all data files from
a) in a t-3 random walk model of the data, b) in t-3, t-2, t-1 random walk model according to the data’s classification,. The experimental data (‘‘exp’’)
with 468 cycles fits well only into the t-3, t-2, t-1 model. Histograms are based on 100 simulations for each experimental file. B) Distribution of t-3, of t-
2, of t-1 classifications a) across all experiments, b) across all experiments with females, c) across all experiments with normal males, where the
absolute numbers are exhibited.
doi:10.1371/journal.pone.0070284.g003
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Figure S2 Drosophila experimental group identification
based on closed-orbit characterization of behavior. A)

mean-difference test at p-value 0.9 for whether observed

similarities across all the population could origin from the same

distribution (white: yes, black: no); B) individual similarity (white:

low, black: high). Group pooling can be justified by means of

majority voting.

(PDF)
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