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Abstract

Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-
binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms
in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing
parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained
from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique
sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated
polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni
corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three
DBL3X segments contained signatures of high parasite density (P,0.003) that were highly prevalent in the parasite
population (49–91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X
motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density
among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that
a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with
high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional
characterization of VAR2CSA and the development of tools against placental malaria.
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Introduction

Plasmodium falciparum binds carbohydrate molecules to recognize,

attach and invade cells both in the human and mosquito hosts [1].

Among the different parasite-encoded ligands involved in these

interactions, those containing a specific fold structure called Duffy-

binding like (DBL) domain bind to host receptors such as

glycophorin A, complement receptor 1 and chondroitin sul-

phate-A (CSA) to promote the invasion of erythrocytes by

merozoites, the binding of infected erythrocytes (IE) to uninfected

erythrocytes (‘rosettes’) and the sequestration of mature parasites

in the placenta, respectively [2]. Although structural requirements

are still incompletely understood, all these interactions are targets

for the treatment and/or prevention of the disease, including

vaccine development.

The accumulation of P. falciparum IE in the placental intervillous

spaces is an important cause of premature delivery and fetal

growth restriction in malaria endemic areas, leading to an

increased risk of low birth weight (LBW) and mortality in

newborns [3,4,5]. IE adhesion to CSA is mediated by VAR2CSA,

a 350 KDa P. falciparum variant antigen codified by the highly

polymorphic var2csa gene and expressed on IE surface [6,7].

Antibodies against VAR2CSA are acquired after exposure to P.

falciparum during pregnancy, increase with parity and have been

associated with improved pregnancy outcomes [8,9,10], although

conclusive evidence of their protective effect remains controversial

[11,12,13,14,15]. Extracellular VAR2CSA is composed of 6 DBL

domains plus a cysteine-rich inter-domain region (CIDR) between

DBL2X and DBL3X [16] (Figure 1). Although recombinant

DBL2X, DBL3X and DBL6e have shown to individually bind

CSA [17,18,19,20], the precise molecular interaction is still not

known in detail due to the absence of full-length VAR2CSA

crystal structures. Recent studies suggest that residues providing

the highest binding specificity lie within DBL2X domain [21], with

contribution from DBL1X and DBL3X [22,23].

The high variability of VAR2CSA has hampered the iden-

tification of residues critical for the induction of antibodies

blocking adhesion to CSA in a strain-transcending manner
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[13,24,25,26,27,28,29,30,31]. Polymorphisms in VAR2CSA may

affect the intensity of IE binding to CSA [32,33] and contribute to

the evasion of host immunity. Characterization of these amino

acid changes can help to understand the mechanisms leading to

placental sequestration of IE and inform the development of new

control tools to reduce the adverse effects associated with placental

malaria. Previous studies identified two amino acid motifs in

DBL3X that were over-represented in parasites isolated from

Senegalese and Kenyan primigravid women (PG) [34,35],

suggesting that parasites with these motifs may bind more

efficiently to placenta in women with limited immunity. Polymor-

phisms in DBL5e have also been associated with the CSA-binding

Figure 1. Variability in DBL2X and DBL3X amino acid sequences. (A) VAR2CSA domain structure and regions covered by sequencing in the
reference strain A4 (NTS: N-terminal segment; DBL, Duffy-binding like; CIDR, cysteine-rich inter-domain region, TM: trans-membrane; ATS: acidic-
terminal segment). (B, C) Shannon entropy values were calculated on the multiple sequence alignment of 176 DBL2X (and Dataset S1) and 191 DBL3X
amino acid sequences (and Dataset S2) transcribed by placental parasites. Dotted horizontal lines indicate median of all positive entropy values
(HDBL2X = 0.48 and HDBL3X = 0.14). Arrows indicate DBL sub-domain boundaries [16]. White boxes delimit segments with residues below the entropy
threshold; colored boxes delimit variable segments carrying signatures not associated (yellow) or associated with high placental parasite density
(orange, Bonferroni corrected Wald test: P[S2A] = 0.0020, P[S2B, S2C, S3A and S3B],0.001; P[S3C] = 0.0032). Regions corresponding to previously
reported parity-linked motifs (P1, P2) [34,35] and variable blocks (VB) [38] are underlined.
doi:10.1371/journal.pone.0069753.g001
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intensity of placental isolates [36], but a direct role for this domain

in CSA-VAR2CSA interaction is unclear [17,22,23,37]. Here, we

hypothesized that polymorphisms in VAR2CSA may affect

parasite densities in the placenta by altering the antigenicity of

domains involved in the adhesion to CSA and their ability to

escape immune recognition by the host. To test this, polymor-

phisms in DBL2X and DBL3X domains were assessed for their

association with placental parasite density, and natural immuno-

genicity of identified sequence variants was evaluated.

Results

Characteristics of pregnant women and placental isolates
Median age of the 20 women included in the study was 20 years

(interquartile range [IQR] 18–26), and 10 of them (50%) were PG.

The median number of pregnancies among multigravid women

(MG) was 3 (IQR 2–6). Five newborns presented LBW. Placental

parasite density ranged from 208 to 213451 parasites/ml (median

of 12192 parasites/ml). There was no significant difference in

parasite density between PG (14781 parasites/ml, IQR 4425–

39171) and MG (7740 parasites/ml, IQR 2394–67396; P = 0.605)

or between mothers delivering LBW (15740 parasites/ml [IQR

13821–17598]) and normal weight babies (8199 parasites/ml [IQR

1995–67396]; P = 0.327). A median number of 4 different

merozoite surface protein (msp) genotypes were found in placental

isolates (IQR 3–6).

Sequence diversity of DBL2X and DBL3X
Three-hundred and seventy-three DBL2X and 328 DBL3X

sequences were obtained from the RNA of 20 placental isolates

after PCR amplification, transformation in E. coli and sequencing

(Table 1). Among them, 203 DBL2X (54%) and 222 DBL3X

(68%) sequences were different at the nucleotide level, with lengths

ranging from 450 to 555 nucleotides for DBL2X and from 537 to

591 for DBL3X (Figure 1). Pair-wise nucleotide diversity (p) in the

sequenced regions of DBL2X and DBL3X was 0.0729 and

0.0617, respectively. In each isolate, a median of 10 DBL2X and

12 DBL3X different nucleotide sequences were identified,

exceeding by .2-fold the number of genotypes estimated by

standard PCR-typing of msp alleles (Table 1). The most common

sequence in each placental infection accounted for 55% (DBL2X)

and 42% (DBL3X) of the sequenced clones (Table 1). The number

of sequences transcribed by P. falciparum isolates was not

significantly associated with age, parity or parasite density in the

placenta.

Among all different nucleotide sequences, 176 (87%) from

DBL2X and 191 (86%) from DBL3X were unique at the protein

level (Table 1) and used for the multiple amino acid sequence

alignments (see Datasets S1 and S2). Global mean pair-wise amino

acid identity was 73% for DBL2X and 82% for DBL3X. Ignoring

gaps, 124 out of the 205 DBL2X alignment positions (61%) and

145 out of the 198 DBL3X positions (73%) were found to be

polymorphic. The level of amino acid variability at each site was

quantified through the Shannon entropy score (H), yielding

median values of 0.48 for DBL2X and 0.14 for DBL3X (Figure 1).

Regions with the highest entropy (i.e., scores above the median)

corresponded to already defined variable blocks (VB) of

VAR2CSA [38]: VB5 (alignment positions [pos.] 26–34; for

reference, amino acids 693–670 in the A4 strain, AAQ73926),

VB6 (pos. 61–103; 727–748 in A4), VB7 (pos. 145–175; 790–810

in A4) and VB8 (pos. 181–203; 816–832 in A4) in DBL2X, and

VB2 (pos. 51–78; 1324–1337 in A4), VB3 (pos. 124–142; 1382–

1399 in A4) and VB4 (pos. 159–178; 1417–1435 in A4) in

DBL3X.

Signatures associated with placental parasite density
A segmentation analysis was conducted to divide amino acid

sequence alignments in ,10-amino acid segments containing

combinations of strongly correlated polymorphic positions, inde-

pendent from the polymorphisms in other segments [38]. A

segment was then categorized into a maximum of 5 sequence types

according to the pattern of amino acids in the polymorphic

positions of the segment. Alignments of DBL2X and DBL3X were

partitioned in 21 and 24 segments, respectively (Figure 1).

Eighteen DBL2X segments had an entropy score above the

median, covering 147 alignment positions (72%) with a median

length of 8 residues and a median number of 3 sequence types per

segment. The 15 DBL3X segments with high entropy scores

covered 129 alignment positions (65%) and had a median of 9

residues and 3 sequence types per segment. Amino acids in

positions 51–60 and 61–69 of the DBL3X alignment were

segmented in two perfectly linked sequences and were therefore

merged as a single segment of 19 residues. The sequence types in

all the 18 DBL2X and 14 DBL3X variable segments were

analysed for their association with parasite density in the placenta

using regression models and Bonferroni correction for multiple

comparisons, by setting P values for statistical significance at

0.0028 [0.05/18] for DBL2X and 0.0036 [0.05/14] for DBL3X.

Three DBL2X segments (S2A, S2B and S2C) and 3 DBL3X

segments (S3A, S3B and S3C) contained sequences associated with

high parasite density (or high density signatures, HDS) compared

Table 1. Sequenced clones and DBL2X/DBL3X sequence diversity in 20 placental isolates.

Median n per infection (IQR) Total

DBL2X DBL3X DBL2X DBL3X

Sequenced clones 19 (17–20) 17 (14–19) 373 328

Different nucleotide sequences 10 (7–15)* 12 (9–14)* 203 222

Different amino acid sequences 9 (5–14)* 10 (8–12)* 176 191

Frequency of most common nucleotide
sequence

55% (20%–84%) 45% (20%–54%) NA NA

Different nucleotide sequences per msp
alleles

2.2 (1.5–2.6) 2.5 (1.7–2.8) NA NA

IQR, interquartile range; msp, merozoite surface protein; NA, not applicable.
*Normalized values (see Materials and Methods).
doi:10.1371/journal.pone.0069753.t001
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to the reference sequence (or low density signature, LDS; Table 2

and Table S1; see Figure 1 for segment positions). Adjusting

regression models by parity and age did not change results of the

univariate analysis. Placental isolates transcribing var2csa genes

with HDS in the 3 DBL2X segments or in the 3 DBL3X segments

were associated with higher parasite density than isolates

transcribing sequences with other combinations of sequence types

(proportional increase in placental parasite density for DBL2X:

8.1, 95% CI [3.7–17.9], P,0.001; and DBL3X: 4.9, 95% CI [2.0–

12.0], P,0.001; Wald tests).

Parity was not associated with the transcription of any

sequence type in the variable segments obtained through the

segmentation method (P.0.0045, Wald tests; see results for S2A–

C and S3A–C in Table S1). The segment containing a 5-amino

acid motif in DBL3X previously associated with parity in

infected women from Senegal (region P2 in Figure 1; amino

acids 1407–1411 in A4) [34] was not associated with increased

parasite density in the regression analysis of the present study

(P = 0.048, Wald test). A second DBL3X motif of 4 amino acids

associated with parity in Kenya (region P1 in Figure 1; amino

acids 1385–1389 in A4) [35] was split in two different segments

in the present analysis, none of them containing a motif

associated with increased placental density (P = 0.024 and

P = 0.008, respectively). Similarly, none of the segments was

associated with LBW by logistic regression models (P.0.122,

Wald tests; see results for S2A–C and S3A–C in Table S1),

although women carrying LDS sequence types at S2C or S3B (3

and 5 women, respectively) all delivered babies with normal

weight (P,0.001, Fisher’s exact, Table S1).

Amino acid changes and evolutionary analysis
Single amino acid substitutions occurred in all the six

identified segments, with deletions being present in S2C, S3B

and S3C. Substitution matrices [39] were used to assess the

potential impact on DBL structure/function of amino acid

exchanges between the most frequent HDS and LDS sequence

types (Table S1), whereby positive scores indicate favorable

substitutions with low impact and vice versa. A favorable

substitution was found in S2A (FLDS-YHDS, score +2), whereas

unfavorable exchanges were present in S3B (GLDS-KHDS, 21)

and S3C (CLDS-GHDS, 26) (Table S1). A third unfavorable

substitution found in S3A (DLDS-YHDS, 26) seems unlikely to

have an effect on parasite density since this exchange can also

occur between two HDS sequences (DHDS-YHDS).

The effect of natural selection on each segment was evaluated

by estimating the difference in the numbers of synonymous and

non-synonymous nucleotide substitutions per site (dS and dN,

respectively) as well as Tajima’s D and Fu and Li’s D statistic

[40]. Mean dN-dS differences were 21.058 for S2A, 0.197 for

S2B, 21.294 for S2C, 1.819 for S3A, 0.704 for S3B and 2.583

for S3C, with positive values being indicative of natural selection

that promotes polymorphisms at non-synonymous sites. Com-

parison of dN and dS using a codon-based test (Nei-Gojobori

method for Z-test of selection) showed a significant departure

Table 2. Amino acid segments and sequence types associated with P. falciparum density in the placenta.

Segment Positiona
Sequence
type Consensusb

Mean
parasites/ml
6103 (range)

IRR
(95% CI) Pc

Median B
epitope
score (IQR)d

DBL2X

S2A 668–674 S2A.1 EYTKxLE 59.0 (0.2, 213.4) 4.6 (1.7, 12.5) 0.003 0.1 (20.3, 0.4)

S2A.2 DFTK(D/N)xE 12.8 (0.2, 77.1) ref. 20.01 (20.2, 0.3)

S2B 772–780 S2B.1 EQRQx(K/E)VNA 88.4 (0.2, 213.4) 10.7 (3.4, 33.6) ,0.001 0.2 (20.1, 0.4)

S2B.2 KQRQENVNA 58.6 (0.3, 134.7) 7.1 (2.6, 19.8) ,0.001 0.2 (0.1, 0.5)

S2B.3 (E/K)QRQxKVKx 14.0 (0.2, 7.3) 1.7 (0.5, 5.6) 0.383 0.3 (0.2, 0.6)

S2B.4 (E/K)QRQ(E/A)KVNA 8.2 (0.2, 134.7) ref. 0.1 (0.02, 0.4)

S2C 802–803 S2C.1 (E/K)CKNK(C/2) 47.1 (9,2, 202.9) 27.4 (5.6, 133.7) ,0.001 0.3 (0.3, 0.5)

S2C.2 (K/E)C 44.9 (0.2, 213.4) 26.1 (8.8, 77.3) ,0.001 0.6 (0.6, 0.7)

S2C.3 EC(E/K)KKC 1.7 (0.2, 4.9) ref. 0.6 (0.5, 0.6)

DBL3X

S3A 1275–1283 S3A.1 NLWxK(S/R)Y(G/V) 62.8 (0.2, 202.9) 13.8 (4.0, 47.1) ,0.001 0.3 (0.01, 0.7)

S3A.2 ELWYK(S/R)Y(G/V) 48.7 (0.3, 213.4) 10.7 (3.4, 33.5) ,0.001 0.1 (20.2, 0.4)

S3A.3 ELWDKxYG 4.6 (0.2, 39.2) ref. 0.5 (0.2, 0.7)

S3B 1324–1332 S3B.1 xNx(M/2)(D/2)(K/2)K(G/2)
(Q/2)(K/2)x(K/2)

48.4 (0.3, 213.4) 12.6 (3.1, 51.5) ,0.001 1.5 (0.8, 1.8)

S3B.2 RNPMKEGGEDGKG(K/N)QKEGG 3.8 (0.2, 67.3) ref. 1.9 (1.2, 2.1)

S3C 1424–1431 S3C.1 xKKQKKxGT 69.6 (0.5, 213.4) 6.0 (2.1, 17.5) 0.001 1.3 (0.9, 1.4)

S3C.2 NKKxK(K/E)(N/D)GT 23.0 (0.3, 134.7) 2.0 (0.7, 5.8) 0.214 1.3 (0.8, 1.4)

S3C.3 xKK(Q/2)(N/D)NK(C/G)T 11.6 (0.2, 77.2) ref. 0.9 (0.8, 1.0)

IRR, incidence rate ratio (i.e., proportional increase in placental parasite density); CI, confidence interval; IQR, interquartile range; ref., reference category.
aReferred to A4 VAR2CSA.
b‘x’ indicates positions with 3 or more possible residues, including alignment gaps (see Datasets S1 and S2). Conserved lysine in S3B (K1328 in A4 strain) is underlined.
cNegative binomial regression with robust estimation of variance.
dMedian of all BepiPred scores for each residue within a sequence type.
doi:10.1371/journal.pone.0069753.t002
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from neutrality for segments S3A (P = 0.036) and S3C

(P = 0.006). Fu and Li’s D was significant for S3A (23.495,

P,0.020) and S3C (22.705, P,0.005) together with moderate

negative Tajima’s D values (Figure S1), suggesting an excess of

rare variants compared to expectation under a neutral model of

evolution.

Surface exposure and epitope prediction
Mapping the 6 amino acid segments containing sequences

associated with high parasite density on 3D structures of individual

domains showed that they were all localized in exposed areas on

the surface of the proteins (Figure 2). Segments S3B and S3C in

DBL3X were assigned as predicted B cell epitopes according to

existing database records with a specificity of 91% in BepiPred

(Table 2 and Figure 2). BepiPred scores between HDS and LDS

motifs were similar in all segments.

Antibody recognition of amino acid sequences
associated with high parasite density

Linear peptides representative of HDS and LDS sequences in

each segment were tested for IgG recognition by 100 plasmas

from Mozambican pregnant women at delivery (41 from PG and

59 from MG) to evaluate differences in natural immunogenicity.

S2BHDS, S3BLDS/HDS and S3CHDS peptides were recognized by

.25% of the plasmas tested (Figure 3). In contrast, recognition

of peptides for S2A and S3A was low (,6%). HDS peptides from

S2B, S2C and S3C were significantly more recognized by

plasmas than LDS peptides (McNemar’s test for paired data,

Figure 3). A similar trend was observed for S3B, although the

marked difference in peptide lengths between S3BHDS (7 amino

acids) and S3BLDS (19 amino acids) may confound differences in

immunogenicity for this specific comparison.

Geographical distribution of high parasite density
signatures

The frequency at which HDS were found among the repertoire

of VAR2CSA variants expressed by Mozambican isolates was

estimated from the 176 DBL2X and 191 DBL3X VAR2CSA

unique amino acid sequences (Figure 4). At least one HDS was

present in 163 (93%) DBL2X and 187 (98%) DBL3X sequences

obtained in this study, with 47 (27%) and 88 (46%) of DBL2X and

DBL3X domains, respectively, carrying the 3 HDS sequence

types. Presence of motifs associated with high placental parasite

density in publicly available DBL2X and DBL3X sequences from

other geographical areas was evaluated. Sequences from all HDS

signatures identified in Mozambique were found in the DBL2X

sequences from Senegal [41] and in the DBL3X sequences from

Senegal, Malawi, Kenya and Papua New Guinea parasites at

similar prevalence [34,35,42,43], ranging from 9% (n = 3 out of

34, S2BHDS in Senegal) to 85% (n = 64 out of 76, S3AHDS in

Kenya). Sequences containing 3 HDS motifs accounted for 9–45%

of the non-Mozambican sets of sequences.

Figure 2. Surface mapping of segments containing high parasite density signatures. (A) 3D model for DBL2X domain. (B) Crystal structure
of DBL3X domain (PDB 3BQK). Segments with BepiPred scores $0.9 are shown in dark grey. Residues predicted to interact with CSA sulfate groups by
Higgins [19] and Singh et al. [18] are colored in blue (R1467, R1503, K1504, K1507, K1510), or orange for those that are also part of the S3B segment
(K1324, K1327, G1329). (C) Detail of predicted CSA binding amino acids [18,19]. (D) Ribbon visualization of the DBL3X loop containing segment S3B
and K1328 in the presence (PDB 3BQK, left) or absence (PDB 3BQI, right) of sulfate groups [19].
doi:10.1371/journal.pone.0069753.g002
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Discussion

Development of interventions against malaria targeting P.

falciparum cytoadhesion, such as vaccines or anti-adhesive adjuvant

therapies, is hampered by our limited understanding of the effect

that the extreme polymorphism of parasite ligands may have on

host-parasite interactions. This study identifies 6 amino acid motifs

in DBL2X and DBL3X domains of VAR2CSA -the ligand

mediating P. falciparum IE adhesion to human receptor CSA- that

are predominantly transcribed by parasites causing placental

infections of high parasite density. Four out of the 6 segments have

B cell epitope features (including exposure on the surface of the

domain and high B epitope scores by in silico predictions, as well as

significant recognition by IgGs from malaria exposed pregnant

women), suggesting they are targets of naturally acquired

immunity. Moreover, the high prevalence of signatures associated

with increased parasite density among placental isolates from

Mozambican and other geographical areas suggest they may be

relevant to the breadth of maternal antibody responses against

diverse geographical isolates [8].

Placental isolates analysed in this study showed a high degree of

genetic complexity, reaching a median of 10–12 different var2csa

sequences per infection, that exceeds by 2-fold the number of msp

genotypes [35,44]. This ratio supports previous reports showing

multiple var2csa copies in parasite genomes [41,45,46], what may

provide the parasite means to escape immune response throughout

pregnancy [46]. The degree of polymorphism of DBL2X

(p= 0.062) and DBL3X (p= 0.073) sequences expressed by

Mozambican parasites is similar to the level described in smaller

sequence sets from other geographical areas [34,35,43], indicating

that diversity is limited despite still being considerably higher than

for other polymorphic malarial antigens such as the apical

membrane antigen-1 (p= 0.016) [47].

The evolutionary tests used for detecting departure from

neutrality showed evidence that polymorphisms observed in 2

DBL3X segments (S3A and S3C) were maintained by natural

selection. Codon-based test comparing dN and dS rates suggested

that diversifying selection is acting on these regions with non-

synonymous variants being positively selected [48]. Moreover, this

was supported by negative Fu and Li’s D indicating an excess of

rare polymorphisms. Although other factors such as recent

population expansion may also contribute to the shift towards a

low-frequency spectrum of polymorphisms and despite the limited

sample size to conduct more robust evolutionary analysis, the

consistency with dN-dS data suggests that signatures of positive

selection may promote adaptation of VAR2CSA to optimize

placental colonization.

Amino acid polymorphisms in DBL2X and DBL3X may affect

the folding and tertiary structure of the domains, leading to

different binding affinities to CSA or changing the degree of

immune recognition by antibodies naturally acquired during

pregnancy, as previously suggested for the P. vivax Duffy-binding

protein [49]. Results of this study point towards the relevance of

polymorphisms in the S3B segment of DBL3X, a flexible loop of

19-amino acids with a conserved lysine residue (K1328 in A4

strain; see Figure 2). This lysine stabilizes the loop conformation in

the presence of CSA and facilitates the establishment of hydrogen

bonds between residues surrounding lysine and the receptor sulfate

Figure 3. Recognition of DBL2X and DBL3X peptides by plasma
IgG from 100 pregnant women. Seroprevalence is represented by
bars as the % of responders. Peptides representative of signatures of
high (HDS) and low (LDS) parasite density (Table 2 and Materials and
Methods) and their optical density thresholds for seroprevalence (mean
plus 3 standard deviations of OD in negative controls) were: HDS,
S2A.1 = 0.690, S2B.1 = 0.210, S2C.1 = 0.266, S3A.1 = 0.293, S3B.1 = 0.140,
S3C.1 = 0.295; LDS, S2A.2 = 0.450, S2B.4 = 0.266, S2C.3 = 0.480,
S3A.3 = 0.366, S3B.2 = 0.151, S3C.3 = 0.195. P-values were calculated
using McNemar’s test (tests for S2A and S3A were not applicable due to
low seroprevalence).
doi:10.1371/journal.pone.0069753.g003

Figure 4. VAR2CSA sequences with high parasite density
signatures in different P. falciparum populations. Colored bars
show the frequency of the HDS sequence types identified among
Mozambican isolates (Table 2) in DBL2X (A) and DBL3X (B) sequence
sets from other geographical origins. Likewise, white bars show the
frequency of LDS sequences. Plain columns indicate cDNA sequences,
dotted columns indicate gDNA sequences. Columns ‘A+B+C’ show
prevalence of VAR2CSA sequences with 3 signatures of high parasite
density.
doi:10.1371/journal.pone.0069753.g004
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groups [18,19]. It has been hypothesized that, when the protein is

unbound to the receptor, the polymorphism and flexibility of the

S3B loop protects conserved features of the CSA-binding pocket

from immune recognition [18,19]. In accordance with this, S3B

matched databases of B cell epitopes with high specificity and both

S3BHDS and S3BLDS peptides were recognized by 40% of plasmas

from pregnant women (Figure 3). S3B segment shows a marked

dimorphic pattern, with signatures of high parasitemia being those

deleted around K1328 (Table 2). The unfavourable score for the

substitution of a lysine (characteristic of S3BHDS motifs) by a

glycine (characteristic of S3BLDS; G1327K substitution in A4

strain) suggests this may be one of the changes potentially affecting

the domain properties. Similar B epitope scores and IgG

recognition rates between HDS and LDS sequences does not

support a reduced antigenicity for motifs associated to high

parasite densities. In accordance with this interpretation, HDS

peptides from S3C in DBL3X as well as S2B and S2C in DBL2X

were even significantly more recognized than their corresponding

LDS, although we cannot exclude that some of the women had

not had contact with some of the epitopes tested. These results

reinforce the concept that limited host antibody-mediated

immunity against sequences associated with high parasite density

may not be the mechanism contributing to a high parasite biomass

in the placenta. Rather, polymorphisms in HDS sequences such as

the unfavorable loss of a cysteine in S3C or the substitution of a

glycine by a lysine in S3B may provide an increased affinity of

binding to CSA, either through modifications at this specific site or

by changes in the conformation of nearby regions. Whether

adhesion affinity of parasites expressing different VAR2CSA

signatures varies enough to affect placental parasitemia could not

be addressed in this study due to the lack of cryopreserved isolates,

an issue that will need to be assessed in the future.

In conclusion, the present work shows that the sequence

segmentation method [38] applied to genetic association studies

provides a useful tool to identify specific polymorphisms of highly

variable DBL proteins that may contribute to phenotypic

diversity. In particular, we provide evidence of P. falciparum

parasites expressing specific VAR2CSA variants that have the

potential to reach a high parasitemia in the placenta and

eventually increase the risk of poor pregnancy outcomes. The

motifs in VAR2CSA associated with high placental parasitemia

in this study may be of relevance to understand the molecular

mechanisms mediating parasite sequestration to host tissues, as

well as for the development of new preventive tools against

placental malaria.

Materials and Methods

Ethics statement
The study protocol was approved by the National Ethics

Review Committee of Mozambique and the Hospital Clinic of

Barcelona Ethics Review Committee. All samples were collected

only after written informed consent was given by the patient.

Study area, participants and samples
The recruitment of participants and sample collection was

carried out between March 2004 and November 2005 at the

Manhiça District Hospital (MDH, Manhiça, Mozambique). P.

falciparum transmission was perennial with some seasonality and

the estimated entomological inoculation rate was 38 infective

bites/person/year [50]. At the time of the recruitment, intermit-

tent preventive treatment during pregnancy was not yet imple-

mented and malaria control during pregnancy relied exclusively

upon case management.

P. falciparum placental isolates from 20 women delivering at the

MDH were included in this study. After obtaining written

informed consent, the placenta was collected and processed at

the Centro de Investigação em Saúde de Manhiça (CISM). Several

one-centimetre incisions were made in the endometrial side of

placentas. Four ml of blood were withdrawn into EDTA tubes and

centrifuged. IE were snap frozen in ethanol and dry ice and stored

at 280uC. Giemsa-stained thick and thin blood smears were used

to calculate parasite density. Briefly, P. falciparum asexual stages

and leukocytes were counted until 500 parasites or leukocytes were

reached, and parasite density was estimated using an assumed

leukocyte count of 8000 leucocytes/ml of blood. Two 50 ml blood

drops were spotted onto filter paper (Schleicher and Schuell; no.

903TM). Women were treated according to Mozambican national

guidelines.

msp genotyping
Parasite genomic DNA (gDNA) was isolated from blood drops

onto filter papers (QIAamp DNA Blood kit, Qiagen). msp-1 and

msp-2 genes were amplified by nested PCR [51], electrophoresed

in a 2.5% agarose gel and multiplicity of infection was estimated as

the highest number of msp-1 or msp-2 alleles detected in each

sample.

RNA extraction and cDNA synthesis
RNA was extracted from snap frozen IE resuspended in 20

volumes of Trizol, using PureLink Micro-to-Midi RNA Purifica-

tion Kit (Invitrogen). Quantity and integrity of RNA were assessed

in Nanodrop spectrophotometer (Thermo Scientific) and 2100

Bioanalyzer (Agilent). Reverse transcription of RNA was per-

formed as previously described [52]. Briefly, RNA was treated

with DNAse-I (Invitrogen) for 1 h at 37uC, and complementary

DNA (cDNA) was synthesized using Superscript III First Strand

Synthesis System (Invitrogen). Controls without reverse transcrip-

tase were processed in parallel.

Cloning and sequencing
Two regions of DBL2X and DBL3X covering A4 var2csa

(AY372123) [53] nucleotide positions 2004–2502 (498 bp) and

3819–4365 (546 bp, Figure 1), respectively, were amplified from

cDNA with Platinum High-Fidelity Taq Polymerase (Invitrogen).

For DBL2X, primers 2XF (59-CTAATACAATAGGTT-

TACCCCCAAGAAC-3) and 2XR (5-GGGACCAAATATA-

TAAGAGGTATTCC-3) were used for the primary reaction,

and B51 [54] and 2XR for the second amplification. Cycling

conditions for both reactions were 94uC for 5 min, 40 cycles of

94uC for 30 s, 50uC for 30 s, 68uC for 1 min and final extension

for 5 min at 68uC. DBL3X was amplified using primers 3XF (5-

CCAGGTAAAGGAGGCGAGAAA-3) and 3XR (5-

CTGCGAGTGATTTATTGAAAGAAAA-3) for the primary

PCR. Conditions were set at 94uC for 5 min, 40 cycles of 94uC
for 30 s, 45uC for 30 s, 68uC for 1 min, final extension 68uC for

5 min. Primers D3F and D3R1 [42] were used in the nested

reaction at an annealing temperature of 50uC. RT negative

controls were also processed to discard gDNA contamination.

Final products were electrophoresed, purified using Wizard SV

Gel and PCR CleanUp system (Promega), ligated into pCR2.1-

TOPO vector and transformed into competent One Shot Cells

using TOPO-TA cloning Kit (Invitrogen). All colonies with

plasmids containing DBL2X and DBL3X inserts were purified

and amplified with Platinum High-Fidelity Taq Polymerase using

universal primers M13F/M13R. After isopropanol:ethanol pre-

cipitation, DNA was sequenced in both senses at Macrogen Inc

(Seoul, Korea).
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Sequence analysis
The quality of all chromatograms was revised by eye and

sequences were assembled using SeqMan 6.0 (DNASTAR).

Mutations were accepted only if they were confirmed in more

than one sequence. Nucleotide sequences differing in at least one

nucleotide (Genbank accession numbers JQ439999-JQ440365,

JQ779990-JQ780047) were entered to BioEdit 7.0.9, translated to

amino acids and aligned using ClustalW with default parameters,

followed by manual corrections. Multiple alignment of DNA

sequences was created in RevTrans 1.4 [55], providing the

multiple alignment of amino acid sequences as a template.

Identical sequences at nucleotide or amino-acid level were

identified using BLASTclust (http://toolkit.tuebingen.mpg.de/

blastclust). Shannon entropy at each position of the alignment

was calculated in BioEdit and plotted using GraphPad Prism

version 5.0. B cell linear epitopes were predicted in BepiPred using

a threshold score of 0.9, which has been reported to have a

specificity of 91% for epitope prediction [56].

The segmentation analysis was performed as previously

described [38], allowing a maximum of 5 sequence types per

segment and a maximum segment length of 10 amino acids, since

higher maximum lengths (15 or 25 amino acids) did not simplify

the segmentation. Sequence types present in #2 women were

assigned another sequence type if both types diverged in only 1

amino acid (n = 17 out of 17216 total sequence type assignments),

or excluded from the analysis if all other types within the segment

diverged by 2 or more amino acids (n = 17 out of 17216 sequence

type assignments). Likelihood of amino acid substitutions among

the most frequent sequences for each sequence type was quantified

using the log odd scores from amino acid substitution matrices for

extracellular proteins [39].

The difference in the numbers of dS and dN per site was

estimated among positions with more than 95% site coverage,

using the Nei-Gojobori method with Jukes and Cantor correction

[57]. Variance of the difference was calculated using the bootstrap

method (500 replicates) and rates of dS and dN were compared by

the Z-test of selection using MEGA5 [58]. Tajima’s D sliding

window analysis and Fu and Li’s test were performed in DnaSP

5.0 [59].

3D models
The 3D-structure of DBL2X was calculated by submitting the

3D7 sequence (with domain limits defined by Gill et al. [60]) to the

HHPred server (http://toolkit.tuebingen.mpg.de/hhpred). The

structure with highest HHPred score, corresponding to the

DBL1a domain of the VarO strain (Protein Data Bank [PDB]

2XU0 [61]), was selected for homology modelling in MODEL-

LER based on the default alignment. The 3D crystal structures of

DBL3X were obtained from PDB (3BQK and 3BQI [19]).

Molecular graphics were generated in UCSF Chimera version

1.5.3 [62].

Plasma and peptide ELISA
One hundred plasma samples from pregnant women delivering

at the MDH between 2004 to 2005 (collected after obtaining

written informed consent) were randomly selected among those

who were not infected by P. falciparum at the time of delivery [63],

to avoid unspecific antibody boosting by placental infection [11].

A pool of plasma samples from hyper-immune Mozambican MG

as well as 8 plasmas from non-exposed European pregnant women

was included as positive and negative control, respectively. For

segments with more than 2 sequence types (S2B, S2C, S3A and

S3C) the motif with the highest rate ratio in the association

analysis and the reference motif were tested (Table 2). The most

frequent sequence in the Mozambican population was selected as

representative of each motif for peptide synthesis. Peptides of

DBL2X (EYTKDLE, DFTKDLE, EQRQAKVNA,

KQRQEKVNA, ECKNKC, ECEKKC) and DBL3X

(NLWDKSYG, ELWDKRYG, QNDKKEK, RNPMKEG-

GEDGKGKQKEGG, NKKQKKNGT, KKQNNKCT) were

synthesized at 70% purity by Genscript (Piscataway, USA).

Peptide recognition by plasma was tested by enzyme-linked

immunosorbent assay (ELISA). High-binding 96-well microplates

(Nunc Maxisorp) were coated overnight at 4uC with 500 ng per

well of peptide diluted in carbonate-bicarbonate buffer. Blocking

was done with 3% bovine serum albumin (BSA) for 2 h at 37uC
and 100 ml of plasma diluted at 1/50 were tested in duplicate.

After incubation with peroxidase-conjugated goat anti-human IgG

antibodies (Sigma) at a 1/20,000 dilution, the reaction was

developed for 15 min with H2O2 and o-phenylenediamine.

Specific reactivity of plasmas was obtained as optical density

(OD) values measured at 492 nm (Multiskan EX, Labsystems) and

normalized by dividing OD of each sample by the OD of the

positive control run in each plate.

Sequences from public databases
VAR2CSA sequences from other geographical areas were

obtained from gDNA and cDNA data deposited at Genbank

containing the DBL2X or DBL3X regions analysed in the present

study. The origin, number of sequences and Genbank accession

numbers were: DBL2X: Senegal, n = 34, GQ358100-GQ358116,

GQ358118-GQ358131, GQ358133- GQ358135 [41]; DBL3X:

Malawi, n = 20, DQ286630, DQ286631, DQ306266-DQ306298,

AY461586-AY461592, AY461594 [42]; Kenya, n = 76,

JN615483-JN615491, JN615493-JN615506, JN615508-

JN615513, JN615515-JN615561 [35]; Senegal, n = 39,

DQ995590-DQ995606, DQ995609-DQ995630 [34]; Papua

New Guinea, n = 48, GQ465375- GQ465385, GQ465387-

GQ465390, GQ465393-GQ465396, GQ465398-GQ465425,

GQ465427 [43]. The presence and frequency of HDS and LDS

was evaluated by searching each HDS and LDS different sequence

found in Mozambique (Datasets S1 and S2) in these population

sets. Sequences without a perfect match with those from

Mozambique were not counted.

Definitions and statistical methods
Pregnant women were classified as PG (first pregnancy) or MG

(at least one previous pregnancy). LBW was defined as newborn’s

weight at birth ,2500 g. Segments in DBL2X and DBL3X were

defined as variable if they contained residues with entropy values

higher than the median of all positive entropy values for each

domain. The number of different DBL2X and DBL3X sequences

in each infection was normalized to the number of sequenced

clones ([number of different sequences/number of sequenced

clones] x [median number of sequenced clones in all samples]) to

allow for comparisons between isolates. IgG recognition of

peptides tested by ELISA was considered positive if OD in test

plasma was higher than mean plus 3 standard deviations of OD in

negative controls.

Associations between clinical and parasitological characteristics

of pregnant women were evaluated by Mann-Whitney (continuous

variables) or Fisher’s exact (categorical variables) tests. The

association between placental parasite density (dependent variable)

and sequence types in a variable segment (independent variable)

was evaluated by binomial negative regression including the

sequence reads from all clones and a robust variance estimator to

account for the effect of repeated measurements within subjects

(i.e. each isolate had multiple sequence reads associated to a single

VAR2CSA Signatures of High Parasitemia

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e69753



parasite density value). For each segment, the sequence type

associated with the lowest parasite density value was set as

reference. The associations between sequences in each segment

and LBW were evaluated by logistic regression and Fisher’s exact

test, while the associations with parity were analyzed by

multinomial logistic regression with parity as independent

variable. The global significance in segments with more than

two sequence types was estimated by the Wald test. False discovery

rate was controlled by Bonferroni correction of the regressions

performed for the DBL2X and DBL3X variable segments.

McNemar’s test was used to compare the antibody recognition

between peptides associated with high and low placental P.

falciparum density. Statistical analyses were conducted in STATA

11.0 (StataCorp).

Supporting Information

Figure S1 Tajima’s D for DBL2X (A) and DBL3X (B)
nucleotide sequence alignments. Sliding window plot was

computed with window lengths of 10 sites and a step size of 5 sites.

The location of segments containing signatures of high parasite

density is indicated.

(PDF)

Table S1 Number of isolates and most frequent amino acid

sequences in segments associated with P. falciparum density in the

placenta. Results of association between sequence types, parity and

low birth weight (LBW) are listed.

(DOCX)

Dataset S1 Multiple alignment of DBL2X sequences.
Alignment of 176 unique amino acid sequences transcribed by 20

P. falciparum placental isolates. Segments containing signatures of

high parasite density are colored.

(XLSX)

Dataset S2 Multiple alignment of DBL3X sequences.
Alignment of 191 unique amino acid sequences transcribed by 20

P. falciparum placental isolates. Segments containing signatures of

high parasite density are colored.

(XLSX)
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