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Abstract

Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly
temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We
establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger
(Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate
weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival
and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated
with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for
residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history
parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to
be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That
variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist,
wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation.
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Introduction

The difficulties of determining future climatic conditions present

a major issue for both human societies and natural systems [1],

prompting ecologists to consider how environmental variability

might shape important patterns and processes in nature [2–4].

Our ability to predict the consequences of climate change requires

that we fully understand how species may, or may not, be able to

adapt to changing conditions over a range of temporal and spatial

scales [5]. Individual fitness is linked to an optimal range of

environmental conditions such that a species’ climatic niche (see

[6]) is a defining element in its evolution [7,8]. For instance, there

is imposed selection for a bounded range of temperature and

humidity to which a species’ physiology is adapted and its

behaviour optimised [9] – where optimal weather conditions

define a ‘Goldilocks zone’ [10,11] outside of which more extreme

conditions (e.g., too hot/cold; dry/wet) stress life-history optimal-

ity.

In the face of environmental change, such as more frequent

episodes of extreme weather, species will attempt to adapt

behaviourally, or evolve new physiological tolerances to cope with

altered conditions, while vagile species may also move spatially to

maintain existing physiological associations with the particular

climates that define each species’ climatic niche [12,13]. Weather

exceeding the tolerance limits of these conservative climatic niches

[14], however, can destabilise the underlying selection pressures to

which a species is exposed [15,16], overwhelming evolutionary

adaptation rates and behavioural flexibility [17]. Changes in

climate averages, resulting from recent acceleration in climate

change [18,19] and departure from established regional weather

patterns [20,21], generate changes in selective pressures [20,22],

with detrimental impacts on both optimal phenotype [23] and

biodiversity [24]. As a consequence, a major challenge is to better

understand how population demographic parameters interact with

weather patterns, in order to establish how species may respond to

changes in climate averages [18] as well as changes in climate

variability [20,25].

Previously, we established the detailed metrics of European

badger (Meles meles; Linnaeus 1758) population dynamics [26], and

evidenced that these interact with climate according to long-term

trends and seasonally sensitive periods [27,28]. Johnson et al. [29]

found that the annual difference in maximum and minimum

temperature, recorded at 32 study sites across Europe, correlated

consistently with both badger and sett (e.g., burrow system)

densities, in both single-variable and multiple regressions; they

concluded that regional badger densities are associated with
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seasonal amplitude (e.g., annual temperature range), or variables

that covary with seasonality.

Our objective in this study was therefore to explore the effects of

inter-annual variability from ‘typical’ mean conditions on key

demographics. While this is of specific interest to badger ecology,

as a temperate generalist carnivore the badger also exemplifies

how a species with a broad range of bioclimatic niche tolerance [9]

can be impinged by an under-investigated facet climate change,

namely variability [25].

In the United Kingdom, badgers have no contemporary

predators, thus, aside from disease [30,31], there are few factors

that could result in ‘‘top-down’’ population regulation (sensu [32]).

Badgers also exhibit high spatial fidelity, invested in their setts, and

are fundamentally contractionist, being slow to colonize vacant

habitats [33].

We use data from our ongoing long-term population study of

badgers at Wytham Woods, Oxfordshire, UK [26–28] – a Climate

Change Network Long Term Environmental Research site

(ILTER, www.ilternet.edu; [34]). We use a decomposition of

yearly climatic conditions into annual mean temperature and

rainfall, and also within-year amplitude and variability around the

seasonal cycle. We then quantify the effects of variation in these

different climatic components on juvenile and adult survival rates

and recruitment [35], using capture-mark-recapture and multi-

model inference procedures. This approach allowed us to test the

hypothesis that a range of optimal climatic influences might be in

operation – specifically that demographic rates may respond to

non-linear (quadratic) components of climate (range extremes),

and that the consequences of these interactions may be age-class

dependent.

Materials and Methods

Study site and population
Wytham Woods is a 424 ha mixed semi-natural woodland site,

5 km north west of Oxford, UK (GPS ref: 51:46:26N; 1:19:19W;

Mean annual temperature 10.1uC; mean annual precipitation

644.8 mm; for details see [27,34].

The resident badger population is discrete geographically with a

stable range (see [26]). Studied continuously since the 1970 s [36],

these badgers have been live-trapped and marked systematically

three to four times per annum (each season) since 1987 with a high

trapping efficiency (despite no pre-baiting, thus ensuring that all

badgers receive non-influential levels of supplementary food).

Excluding 1987 (1st study year), trapping efficiency for this

population remained relatively constant throughout with a mean

of 83.69% (SE = 1.32%) badgers caught yearly (for details see [27]).

Climate data: Means, Amplitudes and Standard
Deviations

All demographic analyses were limited to 1987–2008. Temper-

ature and rainfall figures were provided by the Radcliffe Meteoro-

logical Station, School of Geography, University of Oxford, within

6 km of the Wytham Woods research site. We used daily

temperatures available from 1881 to 2008 inclusive and daily

rainfalls from 1987 to 2008 inclusive. Although only ‘post 1986’

temperatures were used as a covariate in the demographic analyses,

we use the full temperature dataset to establish long-term trends.

This was the highest resolution of climatic variables that these data

permitted, and the measure most pertinent to the badgers’ micro-

climate-related foraging success [37] and thermo-regulatory bud-

gets while outside of subterranean burrow system [38].

For biological life-history relevance, we defined ‘year’, hereafter,

to start from 1st March, which corresponds approximately with the

peak date of parturition. As mean climatic trends are composed of

simultaneous effects on the frequency and amplitude of variation

[39], we derived metrics that reflected proximate climatic

conditions for each year.

Temperature. As daily temperatures, 1881–2008, showed an

oscillating, seasonal, pattern, as expected from the changing angle

of incidence of the sun at the latitude of the study area (Figure 1a),

and given the sinusoidal nature of the variation of annual

temperatures, we characterized yearly temperature with a

trigonometric (cosine) function, to include 3 metrics: i) Mean

(average) temperature for that year: mT ; ii) Amplitude of seasonal

temperature changes: aT – representing the maximum temper-

ature deviation (in summer or winter) from the average yearly

temperature; and iii) Residual standard deviation around the daily

predicted temperature values, sT - providing a measure of the

yearly temperature variability.

In our model, the temperature T on day d of year y is thus

characterized as:

Td,y~mT ,yzaT ,y cos dcð Þzed,y

where: ed,yrepresents the residual associated with year ‘y’ and day

‘d’, and each ed,y value is assumed to follow a normal distribution

with mean 0 and standard deviation sT ,y , and c is a constant

(2p=365 ) such that the cycle has a period of one year.

We estimated mT ,y , and aT ,y , for each year, for the period 1881

to 2008, using a regression procedure (function ‘regress’ from Matlab,

The MathWorks). The sum of squared residuals over each year

allowed us to derive the yearly temperature variance, s2
T ,y and thus

sT ,y ; effectively similar to employing a ‘sinusoidal model’ [25,40].

Rainfall. No within-year seasonal trends were evident

(Figure 1b). This permitted rainfall, within any given year, to be

characterised simply by the daily mean rainfall, mR , and the

coefficient of variation cvR . These two indices were calculated

from 1987 to 2008.We used the coefficient of variation in rainfall

rather than standard deviation, as the latter is highly correlated

with the mean rainfall. This approach is consistent with numerous

climatic studies (e.g., [41,42]).

Influence of Weather Metrics on Survival and
Recruitment

Throughout our study we use a demographic history file

documenting the capture events of 1125 individual badgers,

caught between 1 and 33 times, between 1987 and 2008. We have

established previously that badger population dynamics can be

modelled successfully using stage-classified matrix models [26],

where the survival of sexually mature and immature individuals

(juveniles [cubs to ,1 year old] and adults [$1]: Qj and Qa), and

fecundity (F), are parameterised. We estimated survival and

recruitment sequentially, using the mark-recapture framework

(implemented in the MARK program, ([43], version 6.0). We used

the Pradel method to estimate recruitment, but not survival rates,

as this method would not have allowed survival to be age-

dependent. The sequential method we present allowed us to

explore potential differences in juvenile, compared to adult,

survival rate responses to climate. Variation in capture rates was

modelled as time and age-class (i.e., juvenile and adult) dependent

in all models [44], such that capture probabilities varied between

trapping sessions, years and age classes.

Survival rate. Estimates of juvenile and adult survival rates,

using the ‘Cormack-Jolly-Seber ’ (CJS) model [45,46], were used to

construct a primary model of survival rates, q y,gð Þ (survival, q ,

depends upon year, y, and age class, g). This model was checked

Climatic Niche Tolerance in Badgers
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for goodness of fit using bootstrap methods, allowing approxima-

tion of a corrected variance inflation factor (̂cc ). As intervals

between trapping sessions (between two and seven months) were

not constant throughout the study, we defined the time intervals

between trapping events manually to derive yearly survival values.

In all models presented we employed a logit transformation for the

estimation of survival rates (being probabilities).

We then re-estimated survival rates, allowing the logit of survival

estimates to follow a linear relationship with the standardized

weather metrics (within the MARK progam). We stress that the

survival rates, and their relationship with weather metrics, were re-

evaluated simultaneously for each model. Predictor variables were

standardised to enable direct comparison of the parameter

estimates (i.e. we computed the Z-scores), where the notation

m�T refers to the standardized value of mT . Models varied in term

of which weather metrics they included, as predictors and were

compared using a multi-model inference procedure [47].

From a biological standpoint, there was no a priori basis to

assume linearity between the logit of survival rates and weather

metrics (i.e, more plausibly we conceive of an optimal temperature

associated with a peak survival rate; see [48]). Consequently, in all

models presented, a quadratic term was used as well as a linear

term. The significances of the estimates of each coefficient were

assessed from 95% confidence intervals, with reference to any

overlap with zero. Weather conditions might also affect juvenile

and adult survival differently [28]. To account for this, we

Figure 1. Representative plot of (a) Daily temperature in the Oxford study area over one year from 1st March 2000; demonstrating a
clear sinusoidal seasonal trend. The solid line represents the effect of yearly mean temperature, mT , combined with temperature amplitude, aT ,
in 2000. Some variance around the predicted temperatures (the solid line) is evident, defined as sT (b) Daily rainfallover the Oxford study area over
one year from 1st March 2000. No seasonal trends were apparent. The year 2000 was taken as an example and while there is inter-annual variation,
other years followed the same general temperature and rainfall patterns.
doi:10.1371/journal.pone.0068116.g001

Figure 2. Survival rate estimates, for juveniles and adults, and recruitment rate as a function of climate metrics, with 95%
confidence intervals (error bars, based on model averaging). The solid curve represents the statistically significant link between life-history
parameters and climate metrics, for which we indicate whether the linear or quadratic (or both) component(s) was (were) significant. Importantly, a
significant linear component does not imply a straight line in the representation shown, as the relationship is defined as linear within a logistic
transformation (for survival rates), or within a log transformation (for recruitment).
doi:10.1371/journal.pone.0068116.g002
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constructed models with and also without interaction terms

(accounting for differential and similar relationships between age-

classes’ survival and weather metrics).

In multi-model inference, when Akaike predictor weights are

compared, it is important that all variables are represented equally

in the analysis. Given that five standardized weather metrics were

derived for each year (Temperature: mean, amplitude and residual

standard deviation; Rainfall: mean and residual standard devia-

tion), we were able to construct 32 models without interaction i.e.,

1 model with no climatic covariate, 5 models with one climatic

covariate, and 10 models with two, 10 models with three, 5 models

with four, and 1 model with five climatic covariates). Additionally,

31 models (each model with weather metric(s)) were constructed

including an interaction term(s). We therefore evaluated 63

models, where juvenile and adult survival rates were estimated

allowing, in 62 instances, the logit of these rates to be similarly, or

differentially, linked to weather metrics by a linear and a quadratic

component.

For each model, we derived the QAICc (AIC corrected for small

sample size and adjusted for over-dispersion), which we used to

rank the support for each model (a lower value indicating stronger

model support); and also the Akaike weight for each model [47].

Each provided a different estimation of the coefficient(s) h (’s),

linking the five weather metrics (and their squared values) to the

logit of survival rate.

We applied model averaging to derive estimates of the h ’s

associated with each model and their confidence intervals. Model

averaging takes account of uncertainty in model selection by

calculating the mean value for a coefficient of interest through

averaging its value over all models in the candidate model set

containing the coefficient of interest, weighted by normalised AIC

weights [47]. Confidence intervals were based on estimated

unconditional variance [47], accounting for two variance compo-

nents: the conditional sampling variance associated with each –

per model, and the variation associated with model selection

uncertainty.

The ‘Relative Influence’ of a weather metric was defined as the

sum of Akaike weights for all models including the predictor

variable [47]. The predictor variable with the largest sum was

inferred to be the most influential; the variable with the smallest

sum was inferred to be the least influential predictor.

Recruitment. We performed separate analyses for survival

and recruitment rates. Recruitment was estimated as a gross

measure of the number of offspring entering the population

records each year per individual (including juveniles), using the

Pradel method in MARK (i.e., ‘Pradel survival and recruitment’

option) and a log link function.

We constructed 32 models predicting recruitment, f, as a

function of standardized climate variables in the preceding year.

Table 1. Model averaging for the parameters that link the survival rate of juvenile and adult badgers to standardized weather
metrics within the logistic model.

Weather metric
Relative
Influence Juvenile Survival Adult survival

h 95% CI h 95% CI

m*
T 0.299 20.035 20.111, 0.041 20.052 20.121, 0.018

m*
T

2 20.010 20.041, 0.020 20.001 20.027, 0.025

a*
T 0.131 20.035* 20.063, 20.007 0.006 20.005, 0.017

a*
T

2 0.005 20.009, 0.019 20.002 20.009, 0.005

s*
T 0.277 20.019 20.059, 0.022 0.005 20.019, 0.030

s*
T

2 20.049* 20.096, 20.001 20.029* 20.057, 20.002

m*
R 0.934 0.162* 0.061, 0.263 0.115* 0.043, 0.187

m*
R

2 20.369* 20.525, 20.213 20.067 20.165, 0.030

cv*
R 0.155 0.019 20.007, 0.046 20.007 20.019, 0.005

cv*
R

2 0.019 20.006, 0.044 20.004 20.015, 0.007

The Relative Influence of each metric (based on Akaike weights) is presented along with the model2averaged estimated values of their coefficients, h ’s, with
confidence intervals, based on estimated unconditional variances. An ‘*’ was added where the estimated coefficient differs statistically from zero (based on 95%
confidence intervals).
doi:10.1371/journal.pone.0068116.t001

Table 2. Model averaging for the parameters that link
recruitment to standardized climate metrics with log
transformation.

Weather metric
Relative
Influence Recruitment

h 95% CI

m*
T 0.376 20.013 20.084, 0.058

m*
T

2 20.007 20.042, 0.029

a*
T 0.922 20.070 20.149, 0.009

a*
T

2 20.161* 20.218, 20.104

s*
T 0.869 0.030 20.024, 0.084

s*
T

2 0.118* 0.060, 0.175

m*
R 1.000 20.454* 20.544, 20.364

m*
R

2 20.201* 20.288, 20.114

cv*
R 0.510 20.023 20.071, 0.025

cv*
R

2 0.060* 0.011, 0.109

The Relative Influence of each metric (based on Akaike weights) is presented
along with the model-averaged estimated values of their coefficients, h’s, with
confidence intervals, based on estimated unconditional variances. An ‘*’ was
added where the estimated coefficients that differ statistically from zero (based
on 95% confidence intervals not overlapping 0).
doi:10.1371/journal.pone.0068116.t002
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Recruitment was constrained to a non-zero value only for the first

trapping per annum following March, approximating the time

when offspring (cubs) are born. Values for survival rates and

capture probabilities were fixed to predetermined values, estimat-

ed using a CJS model with survival rates constant between age

classes, but dependent upon year and annual capture rates [44].

Results

Weather metrics
Temperature. Mean temperature, mT , increased with year

(b = 0.01 with F126 = 30.5, p,0.001, R2 = 0.20), equivalent to a rise

of 2uC since 1881 (see Text S1). No significant long-term trends

were detected in seasonal amplitude, (aT ), (b = 0.001 with

F126 = 0.36, p = 0.56, R2 = 0.003) (see Text S1), nor in yearly

residual standard deviation, sT (b = 24 1023 with F126 = 3.10,

p = 0.09, R2 = 0.02). An analysis of the correlations between

temperature metrics is presented in Text S1.

Rainfall. Annual mean rainfall, mR , increased with time

(b = 0.07 with F20 = 4.6, p,0.04, R2 = 0.20), but no significant

long-term trend in the coefficient of variation of rainfall, cvR , was

found (b = 0.01 with F20 = 0.18, p = 0.68, R2 = 0.01). We present an

analysis of the correlations between rainfall metrics in Text S1.

Influence of weather metrics on life-history parameters
Mean adult survival rate (0.81, SE 0.01) was higher than mean

juvenile survival rate (0.67, SE 0.03), which concurs with previous

studies [26,28]. These estimates were derived from a model where

survival rates were constants across years, irrespective of climatic

conditions. In a similar constant model, recruitment across the

study period averaged 0.76 (SE 0.01).

Survival rate. All 63 models were ranked according to their

relative statistical support (see Table S1). Models that included

interaction terms with age ranked highest (Table S1). The Relative

Influence (sum of Akaike weights) of models with interactions was

0.66, compared to a Relative Influence of 0.33 for models without

interaction, evidencing that weather conditions affected adult and

cub survival differently. The Delta Akaike of the model including

no weather metrics was around 9 (see Table S1), indicating

weather metrics had a major influence on badger survival rate.

Mean daily rainfall was the most influential predictor; its

Relative Influence was more than three times higher than that of

any other predictor (Table 1). For adults (Figure 2 and Table 1),

the association of h with m�R was significant and positive, but the

relationship with m�R2 was not significant (the 95% CI overlapped

with 0). Over the range of mean daily rainfall observed during the

study period, adult survival was therefore lowest in the driest years.

For juveniles (Figure 2 and Table 1), the association of h ’s with

m�R was significant and positive, but significant and negative for

m�R2 . The strong influence of this m�R2 effect (Figure 2, Table 1)

indicated that for juveniles an optimum survival rate was

associated with intermediate rainfall.

The amplitude and variability of daily temperature had much

less influence (Table 1 and Figure 2). For both adults and juveniles

(Figure 2 and Table 1) the associations of h ’s with s�T 2 were

negative, however confidence intervals bordered 0, indicating an

effect bordering significance. Thus both adult and juvenile survival

rates were overall greater when variability in temperature was

closer to its mean value over the study period. For Juveniles

(Figure 2 and Table 1), the association ofh with a�T was negative,

but confidence intervals again bordered 0 indicating only weak

significance. Nevertheless, this gives limited support for juvenile

survival being greater during years with lower amplitude of

temperature change between winter-summer.

Recruitment. Again, all 32 models were compared and

ranked according to their statistical support (see Table S2)

revealing that mean rainfall (m�R ) was the most influential

covariate predicting recruitment (Table 2). Broadly, the Relative

Influences of all weather metrics were high, and the most

supported models contained many climatic covariates. We infer

that recruitment is linked with weather more intricately than

survival rates. The Delta Akaike of the model including no

weather metrics was around 37 (see Table S2) demonstrating the

importance of considering weather metrics when analysing badger

recruitment.

An optimal range of mean rainfall (m�R ), the most influential

covariate, was apparent beyond which wetter conditions and, to a

lesser extent, also drier conditions appeared to be detrimental for

recruitment (Figure 2and Table 2); the association of hwith m�R was

strongly negative. In addition, but to a lesser extent, the association

of h with m�Rwas also negative. The association of h with m�R2 was

also negative (Figure 2and Table 2), although not to the extent

observed for m�R2 . Any evidence, however, that there could be an

association between optimal recruitment and intermediate ampli-

tude of seasonal change (a�T ) was less convincing.

The associations of h ’s with s�T 2 and cv�R2 (Figure 2 and

Table 2) were both positive, but with confidence intervals

bordering 0, showing marginal evidence that was lowest for

intermediate values of the standard deviation in temperature (s�T )

and of the coefficient of variation in rainfall (cv�R ).

Discussion

By examining the influence of weather variability on survival

and recruitment rates, our study contributes to a growing

understanding of how mammals in general, and badgers in

particular, respond to climatic conditions through looking at

stressors of their climatic niche. In order to describe associations of

climate with population dynamics, it is thus necessary to consider

not just trends, or seasonal interactions, but also to quantify

responses to (increasing) variability around long-term normative

values (i.e., description of variability as well as mean trends). Our

approach highlights the importance of considering the multiple

facets of climate, and describes an effective way to decompose

weather patterns for temperature and rainfall, which is both

intuitive and easy to perform.

Our analyses highlight that juvenile and adult survival rates

differed in their association with climate. Significant quadratic

effects also lead us to conclude propose, more generally, that

relationships between demographic parameters and climate may

often not be linear. Indeed, we observed interactions that are both

multi-component and differ with age class, highlighting some of

the major challenges when attempting to link population dynamics

and climate. Not least, this analysis serves to highlight the

importance of long-term studies, and the value of detailed

environmental data recording in order to conceive of effective

responses to the challenges climate change poses on biodiversity.

Mean rainfall proved by far the most influential predictor, for

badgers in this Oxfordshire study area, and was associated with

different adult and juvenile survival rate responses. Juvenile

survival and recruitment rates were highest at intermediate levels

of mean rainfall (i.e., juveniles did poorly if it was not only too dry,

but also if it was too wet – suggesting a ‘comfort zone’ or

‘Goldilocks zone’), whereas low adult survival was associated with

only the driest, and not the wettest, years.

These findings enabled us to clarify the interaction between

different, formerly paradoxical, facets of weather effects influenc-

ing badger population dynamics. In previous work, dry weather in

Climatic Niche Tolerance in Badgers
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spring/early summer has been linked to negative consequences for

badger foraging success [27], believed to be caused by the highly

weather dependent availability of earthworms [37], the predom-

inant food resource for badgers in our study area [36,28]. Thus,

food deprivation due to dry spring conditions has been associated

with restricted cub growth and lower survival rates [27,49].

Simultaneously, dry spring weather has been established to

ameliorate the otherwise deleterious consequences of disease and

exposure to thermo-regulatory stress for badgers. Previous analyses

have confirmed a link between high rainfall in spring, high levels of

endo-parasitic infection, and reduced cub survival and recruitment

[28, see also 50]. Badger cubs are highly susceptible to a coccidian,

Eimeria melis, which has a 100% prevalence when cubs are first

trapped in late May/early June [31]. Coccidiosis causes malab-

sorption of nutrients, diarrhoea, steatorrhoea, with subsequent

fluid loss and electrolyte imbalance [51] – leading to morbidity

and mortality. Weather front systems bringing wet conditions in

the spring compound the stresses on vulnerable cubs by exposing

them to additional hypothermic stress [52].

The pattern we observed in the present analyses affirmed both

these positive and negative impacts of rainfall in a comprehensive

manner. Adult survival, cub survival and recruitment were all

lower during the driest years. Cub survival, and recruitment rate

(the latter measure reflecting pre-trapping mortality in cubs, as an

unknown proportion of cubs will inevitably die before we are able

to trap them; see [27]), however, were both lower during the

wettest years.

In response to variation from the long-term yearly temperature

mean, the climatic niche sensitivity of both cubs and adults

appears likely due to there being a range of tolerance for residual

standard deviation around daily predicted temperature values, sT

(Figure 2), although less so than for rainfall, as this effect bordered

significance. We infer that predictable conditions seem to be

important for optimal survival dynamics, allowing individual

badgers to prospect risk most effectively [53] and optimise their

annual routines [9].

The effect of mean rainfall was consistent for survival and

recruitment rates. Similarly, the effect of standard deviation in

temperature on survival rate was consistent for both juvenile and

adults. The effects of the amplitude of seasonal change in

temperature, and the effect of variability in temperature and

rainfall on recruitment, however, had less support and caution

should be used in interpretations. While an optimum in

recruitment with intermediate temperature amplitude is conceiv-

able, it is difficult to comprehend how intermediate variability in

temperature and rainfall would lead to a minimum in recruitment.

More data and analyses would be required to explore these

relatively weaker interactions further.

As life-history strategies are shaped by environmental pressures,

changes in the stability of optimal weather conditions expose the

tolerance of populations to climatic stress and have fitness

consequences [10,54]. In terms of natural selection, species and

clades tend to retain ecological traits over time through niche

conservatism [55]. As a consequence, the adaptability of extant

species is restricted by the physiological and behavioural repertoire

inherited from their ancestors [15], limiting future possibilities

through genetic limitations [14], or alternatively precipitating

evolutionary change [56].

At the population level, however, not all the impacts of

increased environmental variability appear to be negative [57].

Variability, rather than constancy, should be the focus of studies

concerned with ecological resilience to changing conditions

[13,58]. Our multi-model inference procedures, linked with a

quantitative decomposition of yearly climatic conditions, proved

highly probative in this regard (see also [35]).

Interestingly, while we observed that mean temperature had risen

significantly (2uC since 1881) at our study location, as had rainfall,

we detected no long-term changes in seasonal amplitude or residual

standard deviation for temperature or with respect to variation in

rainfall patterns. This leads us to predict that while both juvenile and

adult survival rates exhibited sensitivity to residual standard

deviation in temperature, this component of climatic variability

does not seem to impose any immediate threat to population

viability. By contrast, absolute levels of mean rainfall proved critical

(see also [28]) where crucially – although drought conditions are

known to limit badger food supply – current trends toward wetter

conditions would also compromise the population’s tolerance.

The non-linear nature of the effects of these climatic compo-

nents on population dynamics highlights the imperative of

developing a better understanding of how projected increases in

weather variability will operate [20,59]. While rare species occupy

a central place in biodiversity concerns, because they are the most

prone to extinction [60], species that encounter a broader array of

climatic conditions across their range are expected to have broader

tolerances to climate change than restricted species [61]. Our

evidence here that variation in weather conditions proved

influential on the vital rates of a generalist, wide ranging and K-

selected medium-sized carnivore, thus has major implications for

the evolution of life-histories [4] and for conservation management

in the face of uncertainty [62].
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