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Abstract

In a pulse-chase assay, the in vivo degradation of a protein is measured through a brief labeling of cells with, for example, a
radioactive amino acid, followed by cessation of labeling and analysis of cell extracts prepared at different times afterward
(‘‘chase’’), using immunoprecipitation, electrophoresis and autoradiography of a labeled protein of interest. A conventional
pulse-chase assay is fraught with sources of data scatter, as the efficacy of labeling and immunoprecipitation can vary, and
sample volumes can vary as well. The ubiquitin reference technique (URT), introduced in 1996, addresses these problems. In
eukaryotes, a DNA-encoded linear fusion of ubiquitin to another protein is cleaved by deubiquitylases at the ubiquitin-
protein junction. A URT assay uses a fusion in which the ubiquitin moiety is located between a downstream polypeptide
(test protein) and an upstream polypeptide (a long-lived reference protein). The cotranslational cleavage of a URT fusion by
deubiquitylases after the last residue of ubiquitin produces, at the initially equimolar ratio, a test protein with a desired N-
terminal residue and a reference protein containing C-terminal ubiquitin moiety. In addition to being more accurate than
pulse-chases without a reference, URT makes it possible to detect and measure the degradation of a test protein during the
pulse (before the chase). Because prokaryotes, including Gram-negative bacteria such as, for example, Escherichia coli and
Vibrio vulnificus, lack the ubiquitin system, the use of URT in such cells requires ectopic expression of a deubiquitylase. We
describe designs and applications of plasmid vectors that coexpress, in bacteria, both a URT-type fusion and Ubp1, a
deubiquitylase of the yeast Saccharomyces cerevisiae. This single-plasmid approach extends the accuracy-enhancing URT
assay to studies of protein degradation in prokaryotes.
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Introduction

Ubiquitin (Ub) is a 76-residue eukaryotic protein that exists in

cells either free or covalently linked to many different proteins,

often in the form of poly-Ub chains. Ub-protein conjugation can

signal either degradation of a ubiquitylated protein by the

proteasome or other metabolic fates [1–3]. Natural Ub genes

encode linear fusions of Ub either to itself (poly-Ub genes) or to

other proteins. Such fusions are cotranslationally cleaved by

deubiquitylases (DUBs), yielding mature Ub [1,4–6].

A method based on properties of DUBs and termed the Ub

fusion technique was introduced in 1986 [7–9]. In this approach, a

segment of DNA encoding Ub is joined, in-frame, to DNA

encoding a protein of interest, resulting in a Ub-X-protein fusion,

with the amino acid X being a junctional residue that can be

varied by site-directed mutagenesis. Expression of such a fusion in

eukaryotes results in its cotranslational cleavage by DUBs at the

Ub-X junction. A eukaryotic cell contains multiple DUBs that

share the ability to recognize the Ub moiety and to cleave

immediately after its C-terminal Gly76 residue [1,10].

Because most DUBs can cleave a linear Ub fusion regardless of

the identity of a junctional residue X (the sole exception is proline

at this position), the Ub fusion technique makes it possible to

generate, cotranslationally, nearly any desired N-terminal residue

at the N-terminus of a protein of interest. In 1986, this approach

led to the discovery of the N-end rule pathway and the first

degradation signals (degrons) in short-lived proteins [7,11,12]. The

Ub fusion technique remains the method of choice for generating,

in vivo, predetermined N-terminal residues in specific intracellular

proteins. The requirement for a ‘‘technique’’ in this setting stems

from a constraint imposed by the genetic code. Nascent proteins

bear N-terminal Met (formyl-Met in bacteria). The known Met-

aminopeptidases (MetAPs) cotranslationally remove N-terminal

Met if a residue at position 2, to be made N-terminal by the

cleavage, is Ala, Ser, Thr or another small residue [12,13]. Larger

residues at position 2, for example, bulky hydrophobic ones such

as Leu or basic residues such as Arg, cannot be made N-terminal

by MetAPs, a problem that can be bypassed through the Ub fusion

technique.

Since 1986, several otherwise unrelated methods were invented

that had in common the use of Ub fusions as a component of

design [6,9,14–17]. One of them was the Ub Reference Technique

(URT), which addressed the problem of data scatter in conven-

tional pulse-chase degradation assays [14]. A URT assay is based

on a fusion in which the Ub moiety is located between a

downstream polypeptide (test protein) and an upstream polypep-

tide (a long-lived reference protein). The cotranslational cleavage

of a URT fusion by DUBs after the last residue of Ub produces, at

the initially equimolar ratio, a test protein with a desired N-

terminal residue and a reference protein that contains the C-
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terminal Ub moiety. A reference protein can be, for example,
3fDHFR-UbR48, a triple flag-tagged derivative of the mouse

dihydrofolate reductase (Figure 1A). If both the reference protein

and the test protein are immunoprecipitated and analyzed in a

pulse-chase assay, the relative levels of the test protein can be

calibrated against the long-lived reference protein in the same

sample [6,18,19]. As a result, the URT assay can compensate for

the scatter of labeling efficiency, immunoprecipitation yields,

sample volumes and other sources of sample-to-sample variation.

In addition to being more accurate than pulse-chases without a

reference, URT makes it possible to detect and measure the

degradation of a test protein during the pulse (before the chase).

The latter capability of URT allows one to detect and measure the

degradation of a protein that occurs either cotranslationally, i.e.,

before the completion of the protein’s polypeptide chain, or shortly

after its completion. With some proteins (including test proteins of

the present work; see below), the rates of their ‘‘early’’ in vivo

degradation can be much higher than the rates of their subsequent

degradation, in part because of protein folding and association

with other proteins.

One application of URT are measurements of protein

degradation by the N-end rule pathway [6,18,20,21]. This

multifunctional proteolytic system recognizes proteins containing

N-terminal degradation signals called N-degrons, polyubiquity-

lates these proteins and thereby causes their degradation by the

proteasome [11,12,20–27]. The main determinant of an N-degron

is a destabilizing N-terminal residue of a protein. Recognition

components of the N-end rule pathway are called N-recognins. In

eukaryotes, N-recognins are E3 Ub ligases that can target N-

degrons. Prokaryotes (bacteria and archaea) lack the bona fide Ub

system. Nevertheless, all examined bacteria, including Gram-

negative Escherichia coli and Vibrio vulnificus, were found to contain

the N-end rule pathway, Ub-independent versions of it. Bacterial

N-end rule substrates are recognized, in particular, by the ClpS N-

recognin, a small protein that appears to share ancestry with much

larger eukaryotic N-recognins that act as Ub ligases. ClpS binds to

bulky hydrophobic N-terminal residues and delivers targeted N-

end rule substrates to the proteasome-like protease ClpAP

(Figure 1B, C) [12,22,23,28–31].

Because a Ub fusion is not cleaved at the Ub moiety in a

prokaryotic cell, previous uses of the Ub fusion technique in

bacteria involved an ectopic expression of a eukaryotic DUB such

as the Saccharomyces cerevisiae Ubp1 [28–30]. However, neither

URT nor single-plasmid designs for performing URT assays have

been extended to prokaryotes so far. Here, we describe URT-

based assays of the N-end rule pathway with E. coli and V. vulnificus

that employ a convenient single-plasmid design, thereby extending

the advantages of URT to studies of protein degradation in

prokaryotes.

Materials and Methods

Miscellaneous Reagents
Anti-FLAG M2 Magnetic Beads (M8823) were from Sigma (St.

Louis, MO, USA). Complete EDTA-free Protease Inhibitor

Cocktail Tablets were from Roche (San Francisco, CA, USA).

Express [35S] Protein Labeling Mix (1.175 Ci/mmol) was from

Perkin-Elmer (Waltham, MA, USA). Methionine/Cysteine-free

Synthetic Complete (0Hopkins0) Supplement Mixture (SC) was

from Sunrise Science Products (San Diego, CA, USA). Difco

TCBS agar was from Becton-Dickinson (Franklin Lakes, NJ,

USA).

Construction of pKP55-X and pKP77 Plasmids
E. coli DH5a (Invitrogen, Carlsbad, CA, USA)) and E. coli

KPS18 [30] (Table S1) were used for cloning and maintaining

plasmids. Phusion High-Fidelity DNA polymerase (New England

Biolabs, Ipswich, MA, USA) was used for polymerase chain

reaction (PCR). Constructs were generated using standard

techniques and verified by DNA sequencing. The S. cerevisiae

PGAL1 promoter (fragment 1) was amplified by PCR using pUB23

(Table S1) [7] as a template and primers 159–162 (Table S2).

DNA fragment encoding 3fDHFR-UbR48 (fragment 2) was

assembled using pcDNA3-fDHFR-UbR48-M-cMos (Table S1)

[19] as a template and primers 163–170, 172 (Table S2). DNA

fragment encoding a modified E. coli X-b-galactosidase (X-bgal)

(fragment 3) was amplified by PCR using pUB23 as a template

and primers 171, 173–175. DNA fragment encoding the C-

terminal triple flag fragment (fragment 4) was assembled by

annealing/elongation of primers 176–180 (Table S2). DNA

fragment for producing 3fDHFR-UbR48-cc (cloning cassette)-bgal3f

(Figure 1A) was assembled by PCR using primers 159, 180 and

PCR-generated fragments 1–4 as a template. DNA sequence of

the cloning cassette (cc) contained two inverted Eco3lI cleavage sites,

as depicted in Figure 1D for the subsequently constructed pKP77

plasmid. The resulting fragment was cut with XmaI/BglII and

subcloned into XmaI/BamHI-cut pJT70 (Table S1) [28], yielding

pEco31I. The latter plasmid was cut with XbaI/PstI and the

fragment encoding both Ubp1 and the URT fusion was subcloned

into NsiI/NheI-cut pJRD215 (Table S1) [32], yielding pKP54.

Primers 187, 188 (Table S2) were annealed in ligation buffer [33]

and cloned into Eco31I-cut pKP54. The resulting pKP55-X

family of plasmids, encoding both S. cerevisiae Ubp1 and a set of
3fDHFR-UbR48-X-bgal3f fusions (with varying identities of the

junctional residue X) was transformed into E. coli KPS18 (D(lac)X74

aat::minitet DclpA) and plated on LB agar supplemented with

kanamycin (50 mg/ml) and XGal (40 mg/ml). Blue colonies were

isolated and sequenced to determine the identity of the junctional

amino acid residue X in each member of the pKP55-X family

(Table S3).

To construct pKP77, the DNA fragment of pKP54 encoding
3fDHFR-UbR48 and followed by a DNA segment containing two

inverted Eco31I sites was amplified by PCR using primers 160 and

208 (Table S2). The resulting 1.3 kb fragment was cut with NsiI/

BspEI and subcloned into NsiI/BspEI-cut pKP54, yielding pKP77

(Figure 1D).

Bacterial Strains and Transfer of Plasmids by Conjugation
E. coli was grown at 37uC on Luria-Bertani (LB) medium. For

propagating the dap- strain BW29427, LB was supplemented with

diaminopimelic acid (Sigma) to the final concentration of 100 mg/

ml. V. vulnificus was grown at 37uC on LB or TCBS Agar (Becton-

Dickinson). When used for selection, antibiotics were added to the

following final concentrations: kanamycin (Km): 50 mg/ml;

ampicillin (Amp) 100 mg/ml. E. coli KPS18, a null clpA mutant,

was constructed using a previously described gene disruption

strategy [30]. The conjugation-mediated transfer of mobilizable

pKP55-X plasmids from E. coli into V. vulnificus was carried out as

follows. E. coli donor cells (BW29427) containing a desired plasmid

were grown overnight at 37uC in LB medium supplemented with

diaminopimelic acid (100 mg/ml) and kanamycin (50 mg/ml).

0.1 ml of E. coli suspension was added to equal volume of an

overnight culture of V. vulnificus, cells were harvested by

centrifugation, washed twice with LB to remove residual

antibiotics, spread on LB agar plates without selection, and

incubated for 12 h at 30uC. Cells were resuspended in 1 ml of LB

and aliquots of serial 10-fold dilutions were plated on TCBS agar
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Figure 1. Ubiquitin reference technique (URT) and bacterial N-end rule pathways. A. The Ub reference technique (URT), derived from the
Ub fusion technique [9,18,20]. Cotranslational cleavage of a URT-based fusion by deubiquitylases (DUBs) produces, at the initially equimolar ratio, a
test protein (in the present work, the C-terminally triple flag-tagged and otherwise modified E. coli X-b-galactosidase (X-bgal)) with a desired N-
terminal residue and a ‘‘reference’’ protein such as 3fDHFR-UbR48, a triple flag-tagged derivative of the mouse dihydrofolate reductase. In URT-based
pulse-chase assays, the pulse-labeled test protein is quantified by measuring its levels relative to the levels of a stable reference at the same time
point. In addition to being more accurate than pulse-chases without a reference, URT assays make it possible to detect and measure the degradation
of a test protein during the pulse, i.e., before the chase [9,20]. B. The E. coli N-end rule pathway [12]. N-terminal residues are indicated by single-letter
abbreviations for amino acids. Yellow ovals denote the rest of a protein substrate. ‘‘Primary’’ and ‘‘secondary’’ denote mechanistically distinct subsets
of destabilizing N-terminal residues. The Aat L/FR,K-transferase conjugates largely Leu (or, to a minor extent, Phe) to N-terminal Arg or Lys. N-end rule
substrates bearing the indicated primary (bulky hydrophobic) destabilizing N-terminal residues are recognized by the ClpS N-recognin and are
delivered for their processive degradation to the ClpAP protease [12,22,23,28–31]. C. The N-end rule pathway in another Gram-negative bacterium, V.
vulnificus, which contains both the Aat L/FR,K-transferase and the Bpt LD,E-transferase. As a result, N-terminal Asp and Glu, which are stabilizing

Ubiquitin Reference Technique
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supplemented with kanamycin (50 mg/ml) for selection of

exconjugants. The resulting colonies of V. vulnificus were grown

in LB under selective conditions and analyzed for the presence of

desired plasmids either by PCR or by isolating and characterizing

plasmid DNA.

URT Pulse-Chase Assays and Immunoprecipitation
E. coli and V. vulnificus cells containing URT-based reporter

plasmids were grown in LB supplemented with Km (50 mg/ml) at

37uC overnight. Cultures were diluted 1:200 in fresh LB and

grown until A600 of ,0.7. 15 ml of the resulting culture were

centrifuged at 5000g for 5 min at room temperature, washed three

times with 1 ml samples of pre-warmed Pulse Medium (PM: M9

medium, pH 7.0, 0.5% glycerol, 0.5% glucose, 0.1 mM CaCl2,

2 mM MgSO4 and Methionine/Cysteine-free Synthetic Complete

(SC) Mixture (Sunrise Science Products)), and resuspended in

135 ml of PM, followed by incubation at 37uC for 10 min. Proteins

were then pulse-labeled with 15 ml of Express [35S] Protein

Labeling Mix (1.175 Ci/mmol, Perkin Elmer) for 3 min at 37uC.

The labeling was quenched by the addition of 0.5 ml of Chase-

Medium (CM: PM supplemented with Met and Cys at 0.5 mg/ml

each). The chase was carried out at 37uC. Samples (0.1 ml) were

withdrawn at indicated times of chase and mixed with an equal

volume of TDS buffer (1% SDS, 5 mM dithiothreitol (DTT),

50 mM Tris-HCl, pH 7.4, containing ‘‘complete protease-inhib-

itor mixture’’ (Roche)), followed by immediate freezing in liquid

nitrogen. Frozen samples were directly heated at 95uC for 10 min,

diluted with 10 volumes of TNN buffer (0.5% NP40, 0.25 M

NaCl, 5 mM EDTA, 50 mM Tris-HCl, pH 7.4, containing

‘‘complete protease-inhibitor mixture’’ (Roche)) and thereafter

added to 10 ml of magnetic beads linked to anti-flag antibody M2

(Sigma). The samples were incubated with rocking at 4uC for

3 hrs, followed by four washes in TNN buffer, resuspension in

20 ml of SDS-sample buffer, and incubation at 95uC for 5 min.

The resulting samples were fractionated by SDS-PAGE using

NuPAGE 4–12% Bis-Tris gradient gels (Invitrogen), followed by

autoradiography. Quantification of autoradiograms was per-

formed using PhosphorImager (Molecular Dynamics, Sunnyvale,

CA).

Results and Discussion

Bacterial URT Plasmids and Protein Fusions
Figure 1A shows a diagram of the URT-based fusion protein

reporter used in the present work. The cotranslational in vivo

cleavage of this protein by DUBs produces, at initially equimolar

amounts, the C-terminally triple flag-tagged test protein X-b-

galactosidase3f (X-bgal3f) with a desired (varying) N-terminal

residue X, as well as the long-lived, triple flag-tagged reference

protein 3fDHFR-UbR48 (see Introduction and Figure 1A). To

extend the use of URT from eukaryotes to prokaryotes and to

validate this method in bacteria using model N-end rule substrates,

we constructed pKP55-X plasmids that expressed both the S.

cerevisiae Ubp1 DUB [29] and one of the otherwise identical URT

fusions 3fDHFR-UbR48-X-bgal3f that differed by the identity of

their junctional residue X (Figure 2E and Table S3). Although the

E. coli ElaD protease exhibits DUB activity in vitro [34], its in vivo

DUB activity vis-á-vis URT fusions was negligible. When

expressed in E. coli, the yeast Ubp1 DUB efficiently cleaved Ub-

X-bgal fusions both in E. coli extract and in vivo [28,29]. The use of

one plasmid (rather than two) to express both a DUB enzyme and

a URT fusion simplifies the final setup and bypasses complications

of plasmid incompatibility.

The pKP55-X plasmids were derived from the broad-range,

low copy plasmid pJRD215 (E. coli compatibility group Q (IncQ)).

pJRD215 was derived, in turn, from the plasmid RSF1010 [32].

Plasmids of the IncQ group have been shown to replicate in a wide

variety of Gram-negative bacteria, including Agrobacterium, Alcalig-

enes, Bacillus, Pseudomonas, Rhizobium, Rhodobacter, Staphylococcus, and

Vibrio [35,36]. These plasmids can be efficiently transferred

between species through conjugation in the presence of a

conjugation-proficient plasmid such as RP4 [37]. In addition,

IncQ plasmids are compatible with other broad-range replicons of

the IncP, IncW, and pBHR-pBBR groups [38].

A URT-based protein fusion encoded by a pKP55-X plasmid

comprised the following elements, starting from the N-terminus: (i)

The triple-flag tag (DYKDDDDKG)3, with the Ser-Gly-Ser (SGS)

linker sequences flanking the middle flag repeat, and with the first

flag repeat preceded by N-terminal Met. (ii) The 21 kDa mouse

DHFR moiety. (iii) UbR48, a modified Ub moiety in which Lys48

of Ub had been replaced by Arg, thereby precluding ubiquityla-

tion of the Ub moiety at position 48. This modification of Ub was

irrelevant to its use in Ub-lacking prokaryotic settings but may be

helpful for applications of these URT fusions in eukaryotes, by

decreasing the probability of the 3fDHFR-UbR48 moiety acting as

a substrate of Ub-conjugating enzymes. (iv) A varying (through

site-directed mutagenesis) residue X after the last residue of UbR48.

(v) The 116-kDa modified E. coli bgal moiety lacking the first 6

residues of wild-type bgal and bearing a 45-residue N-terminal

sequence derived from E. coli Lac repressor [7–9,18] (see Materials

and Methods). (vi) C-terminal triple flag tag (Figures 1A and 2E).

The yeast Ubp1 DUB was expressed from the native S. cerevisiae

PUBP1 promoter, which is active in examined bacteria [29]. URT-

based 3fDHFR-UbR48-X-bgal3f fusions were expressed from the S.

cerevisiae PGAL10 promoter, which acts as a weak constitutive

promoter in examined bacteria [29,30].

URT-Based N-End rule Reporters in E. coli and V. vulnificus
Vibrio vulnificus is a Gram-negative human pathogen naturally

found in marine environments, including shellfish [30]. We used

the URT reporter (Figure 1A) to examine the previously

characterized N-end rule pathway in E. coli and V. vulnificus. In

the first set of URT assays, the pKP55-X plasmids were

transformed into E. coli. Cells expressing both yeast Ubp1 and
3fDHFR-UbR48-X-bgal3f (X = Val, Leu, Arg, Asp) were labeled

with 35S-Met/Cys for 3 min at 37uC, followed by chase,

immunoprecipitation with anti-flag antibody, SDS-PAGE, auto-

radiography and quantification (Figure 2A, B, E).

The logic of these assays involves a comparison between the

degradation rates of a protein bearing a destabilizing N-terminal

residue and an otherwise identical protein with an N-terminal

residue such as Val, which is not recognized by the N-end rule

(nondestabilizing) residues in E. coli, are secondary destabilizing residues in the V. vulnificus N-end rule pathway [12,30]. D. The broad host-range URT
vector pKP77. It encodes the S. cerevisiae Ubp1 deubiquitylase (DUB) as well the 3fDHFR-UbR48 reference protein, followed by a DNA sequence
containing a cloning cassette (cc) as well as a sequence encoding the triple flag tag. The cloning cassette contains two inverted BsaI sites (yellow
rectangles). Digestion of pKP77 with BsaI generates unique cohesive ends (indicated by red lines) that allow precise, unidirectional insertion of a
sequence of interest while preventing self-ligation of the cut plasmid (see Materials and Methods). Other notations on the map denote specific
bacterial genes of the parental pJRD215 plasmid (GenBank accession number JX181778).
doi:10.1371/journal.pone.0067952.g001
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pathway [12]. Both Leu-bgal, whose N-terminal Leu is a primary

destabilizing residue (see the legend to Figure 1 for N-end rule

terminology) and Arg-bgal, whose N-terminal Arg is a secondary

destabilizing residue in bacteria, were approximately equally

short-lived in E. coli, with the posttranslational t1/2 of ,3 min

(Figure 2A, B). Strikingly, more than 90% of pulse-labeled Leu-

bgal and Arg-bgal were degraded during the 3-min pulse (i.e.,

before the chase), in comparison to the otherwise identical Val-

bgal and Asp-bgal, which were stable under the same conditions

(Figure 2A, B). Unmodified N-terminal Val is not recognized as a

destabilizing residue by the N-end rule pathway [12]. In contrast,

N-terminal Asp is a stabilizing residue in E. coli but a secondary

Figure 2. URT pulse-chase assays with model N-end rule substrates in E. coli and V. vulnificus. The set of URT-based 3fDHFR-UbR48-X-bgal3f

fusions (X = Val, Leu, Arg, Asp) was assayed for the in vivo degradation of the released (by the yeast Ubp1 DUB) X-bgal proteins in E. coli (A, B) and in
V. vulnificus (C, D) using 35S-pulse-chases (A, C) and their quantification (B, D), as described in Materials and Methods. The bands of the 110 kDa X-
bgal test proteins and the 33 kDa 3fDHFR-UbR48 reference protein are indicated on the left. Designations in B and D: squares, Val-bgal; rhombs, Leu-
bgal; triangles, Arg-bgal; crosses, Asp-bgal. E. pKP55-X, encoding the S. cerevisiae Ubp1 DUB and 3fDHFR-UbR48-X-bgal3f URT-based fusions. Other
notations on the map denote specific bacterial genes. The nucleotide sequences of pKP77 and pKP55-X are available in GenBank (JX181779 and
JX181780). In addition, Table S3 contains the nucleotide sequence of pKP55-X.
doi:10.1371/journal.pone.0067952.g002
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destabilizing residue in V. vulnificus, as described below. A

stabilizing N-terminal residue is defined as a residue that is not

recognized, in a stated in vivo setting, as a destabilizing residue.

BW29427 E. coli was used as a donor strain to transfer pKP55-

X plasmids from E. coli to V. vulnificus. Exconjugants bearing

desired pKP55-X plasmids (X = Val, Leu, Arg, Asp) were selected

as described in Materials and Methods. URT-based 35S-pulse-

chase assays with V. vulnificus were carried out and quantified as

described above for E. coli (Figure 2C, D). Both Leu-bgal and Arg-

bgal were rapidly degraded by the V. vulnificus N-end rule pathway,

in contrast to Val-bgal (Figure 2C, D). Asp-bgal was long-lived in

E. coli (Figure 2A, B) but relatively short-lived in V. vulnificus, owing

to the presence, in the latter bacterium, of the previously identified

and characterized Leu-tRNA-protein transferase (LD,E-transferase)

(Figure 2C, D. This enzyme, present in some bacteria and absent

from examined eukaryotes, is encoded by the bpt gene and utilizes

Leu-tRNA to conjugate Leu to N-terminal Asp, Glu and (possibly)

oxidized Cys, thereby making these residues destabilizing in the V.

vulnificus N-end rule pathway (Figure 1, B, C) [30].

URT Vector
To facilitate the use of URT assays in bacteria, we also

constructed pKP77, a generally applicable URT expression vector

(Figure 1D). Through the use of this plasmid, any test protein or its

fragment can be expressed in a bacterium as a part of a 3fDHFR-

UbR48-X-protein3f fusion and examined in URT-based pulse-

chase assays. The pKP77 plasmid contains DNA segments

encoding yeast Ubp1 as well as the 3fDHFR-UbR48 part of a
3fDHFR-UbR48-X-protein3f fusion, with ‘‘protein’’ being any

desired polypeptide, and with X being a varying residue. Given

strict constraints on distances between Ub-proximal elements of a

final multipartite fusion, subcloning into a URT vector can be

technically cumbersome. To facilitate the cloning, pKP77 was

designed to contain two (appropriately arranged) inverted BsaI

sites [GGTCTC(1/5)] (Figure 1D) [39]. Digestion of pKP77 with

BsaI generates unique cohesive ends that allow a precise,

unidirectional insertion of a DNA sequence of interest while

preventing self-ligation of the vector. If a DNA sequence to be

inserted has internal BsaI sites, other endonucleases of the same

kind can be used to generate required cohesive ends, for example,

BbsI [GAAGAC (2/6)], BsmBI [CGTCTC (1/5)], or BspMI

[ACCTGC (4/8)] [39].

pKP77 and pKPP55-X are diagrammed in Figures 1D and 2E,

respectively. The corresponding nucleotide sequences are avail-

able under the GenBank accession numbers JX181779 and

JX181780. The entire sequence of pKPP55-X is shown in Table

S3. Specific URT designs of the present work and their

demonstrated utility (Figures 1 and 2) should facilitate the

extension of URT-based technologies to studies of protein

degradation in prokaryotes.
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