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Abstract

In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of
structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests
that brain networks constructed in this manner are inherently more clustered than random networks of the same size and
degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world
parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world
parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three
types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the
distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of
randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-
world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at
higher network densities, the choice of null network influences the direction of group differences in network measures. Our
data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world
parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of
small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be
carefully considered with respect to obtained network measures.
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Introduction

In recent years, coordinated variations in brain morphology

(e.g. volume, thickness, surface area) have been employed as a

measure of structural association between brain regions to infer

large-scale structural correlation networks [1–20]. Alterations in

the arrangements of these large-scale structural correlation

networks have been associated with normal aging [3,9,10],

multiple sclerosis [6], Alzheimer’s disease [4,12], schizophrenia

[8] and epilepsy [2,15].

Structural correlation networks constructed in this manner are

usually represented by a set of nodes that correspond to brain

regions and a set of edges (connections) that correspond to

statistical correlations in morphometric values between regions,

across individuals [5,11]. These networks have been shown to

follow small-world architecture in healthy individuals [2–4,6,8,17];

an architecture that provides optimal balance between local and

global information processing in the network [21–24] and has

been observed in biological and social networks [25,26].

The small-worldness of a network is often characterized by two

key metrics: the clustering coefficient C and the characteristic path

length L of the network. The clustering coefficient of a node is a

measure of the number of edges that exist between its nearest

neighbors (nodes that are directly connected) [21,27]. The

clustering coefficient of a network is thus the average of clustering

coefficients across nodes and is a measure of network segregation

[28]. The characteristic path length of a network is the average

shortest path length between all pairs of nodes in the network and

is the most commonly used measure of network integration

[28,29]. To evaluate the small-world topology of the brain

networks, these topological parameters must be benchmarked

against corresponding mean values of a null random graph [30–

33]. Thus, the small-worldness index of a network is obtained as

SW= [C/Cnull]/[L/Lnull] where Cnull and Lnull are the mean

clustering coefficient and the characteristic path length of the m

null random networks, respectively [22]. In a small-world network,

the clustering coefficient is significantly higher than that of random

networks (C/Cnull ratio greater than 1) while the characteristic path

length is comparable to random networks (L/Lnull ratio close to 1)

resulting in a small world index of SW .1. Obviously, the small-

world index of a network is largely affected by the choice of null

network [32,33].

In the present study, we investigated the effects of choice of null

networks on small-world properties of structural correlation

networks. The null networks are usually constructed using rewiring

algorithms that preserve the topology of the graphs; i.e. random

graphs with the same number of nodes, total edges and degree

distribution as the network of interest [30,31]. However, recent

evidence suggests that networks constructed from correlations are

inherently more clustered than random networks of the same size
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and degree and correlation transitivity induces an additive small-

world organization to the network [33]. The correlation transitiv-

ity effect suggests that the existence of a strong positive correlation

between regions A and B as well as B and C would result in a

strong positive correlation between regions A and C. This effect

induces an inflated clustering in correlation networks. Thus,

constructing networks from correlation of a set of random vectors

would also lead to a network with small-world characteristic rather

than a random network. Therefore, topology randomization

overestimates the small-worldness of correlation networks by

annihilating the transitive structure induced by correlation

transitivity. To overcome this limitation, Zalesky and colleagues

[33] proposed generating null covariance matrices that are

matched to the distributional properties of the observed covari-

ance matrix using the Hirschberger-Qi-Steuer (HQS) algorithm

[34]. The suggested null network is believed to solely annihilate

intrinsic structure in the empirical network and does not affect the

transitive structure (i.e. structure induced by correlation transitiv-

ity). Thus, it gives a more conservative estimate of normalized

clustering coefficient of correlation networks relative to random

graphs. However, compared to topology-preserving methods, the

HQS method underestimates the relative characteristic path

length of the network [33]. There is still no evidence on how the

choice of null networks affects the small-world parameters of

empirical structural correlation networks.

In this report, we investigated the influence of choice of null

network on small-world index of gray matter correlation networks

in healthy individuals and survivors of acute lymphoblastic

leukemia (ALL), a population that we previously demonstrated

to have altered large-scale brain networks [19]. We studied three

types of null networks: 1) networks constructed by topology

randomization (TOP) [30,31], 2) networks matched to the

distributional properties of the observed covariance matrix using

Hirschberger-Qi-Steuer algorithm (HQS) [33,34], and 3) networks

generated from correlation of randomized input data (COR). The

latter is an intuitive way of generating null networks for

benchmarking correlation networks by applying the same network

construction procedure on the randomized input data. We studied

the influence of choice of null networks on the small-world

parameters of the networks at group-level as well as on the

significance of between-group differences in small-world param-

eters. In addition, we investigated whether differences between

null networks are affected by the regime of binarization threshold.

We discussed the pros and cons of different null networks and

qualitatively discuss potential solutions that need to be formulated

and validated in future studies.

Materials and Methods

Participants
The detailed procedures of participants, data acquisition and

preprocessing are published elsewhere [35]. In summary, 28

children and adolescents with a history of ALL (age 5.0–19.8 years

old) who had completed all anti-cancer treatments for at least 6

months as well as 31 healthy controls (HC) (age 4.1–18.4 years

old), matched for age, gender, maternal education level and

minority status, were recruited.

Ethics Statement
The study was approved by the Stanford University Institutional

Review Board and the Stanford Cancer Institute’s Scientific

Review Board and written informed consent was obtained from

adult participants or from the parent/legal guardian of minor

participants and assent was obtained from participants age 8 years

and older per Stanford University’s regulations. We could not

make this data available to public because of privacy issues (i.e.

participants were not consented for inclusion in a public database).

MRI Data Acquisition and Preprocessing
High resolution, 3D spoiled gradient recall MR images were

obtained using a 3 Tesla GE Signa whole body scanner (GE

Medical Systems, Milwaukee, WI) with the following parameters:

repetition time= 6.436 ms, echo time= 2.064 ms, flip angle = 15u,
number of excitation = 3, matrix size = 2566256 voxels, field of

view= 220, slice thickness = 1.5 mm, 124 contiguous slices. To

extract individual gray matter volumes, voxel-based morphometry

analysis was conducted in Statistical Parametric Mapping (SPM8)

[36] using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/

vbm). We utilized the optimized VBM process [37] which

included 1) segmentation and extraction of the brain in native

space, 2) normalization of the images to a standard space using a

customized pediatric template, created via Template-O-Matic

software [38] using images from all subjects, 3) segmentation and

extraction of the normalized brain (extraction is repeated to ensure

that no non-brain tissues remain), 4) modulation of the normalized

images to correct for tissue volume differences due to the

normalization procedure, and 5) inspection of the resulting gray

matter images by expert raters, blinded to group assignment for

quality, guided by boxplots and covariance matrices output by the

VBM8 toolbox.

Anatomical Parcellation
We generated 90 cortical and subcortical regions of interest

(ROIs), excluding the cerebellum, from the Automated Anatom-

ical Labeling (AAL) atlas using the WFU PickAtlas Toolbox [39].

The ROIs were identical to those used in previous graph analysis

studies of structural and functional correlation networks

[9,17,19,20,40–50]. These AAL ROIs were resliced to the same

dimension as that of tissue segmented images obtained from the

VBM preprocessing step. The ROIs were subsequently used to

mask the individual modulated, normalized GM images and

extract the average volume within each ROI using the REX

toolbox (http://web.mit.edu/swg/software.htm). A linear regres-

sion analysis was performed at every ROI to remove the effects of

age, gender and total brain volume. The residuals of this

regression were then substituted for the raw ROI volume values

[2,5,17,19,20] and are referred to as corrected regional gray

matter volumes (RGV), hereafter.

Network Construction
For each group, a 90690 association matrix was generated by

performing Pearson correlation coefficient between the corrected

RGV across subjects [1–6,17,19,20]. Thresholding the association

matrices of different groups at an absolute threshold results in

networks with a different number of nodes (and degrees) that

might influence the network measures and reduce interpretation of

between group results [32]. Therefore, binary networks are usually

compared by thresholding the association matrices at fixed

network densities (number of existing edges to the number of

possible edges in the network). We derived binary adjacency

matrices by thresholding the association matrices at a range of

network densities (Dmin: 0.02:0.5). The lower bound of the range is

determined as the minimum density in which the networks of both

groups are not fragmented (Dmin = 0.22 (see Results section)). For

densities above 0.5 the graphs become increasingly random (small-

world index close to 1). Additionally, for anatomical networks,

connections above this density are less likely biological [51]. Each

Null Models for Benchmarking Correlation Networks
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of the derived binary adjacency matrices represents a network with

a specific density.

Null Networks
In order to estimate the small-world parameters of the

constructed networks, three different choices of null networks

were generated: 1) Null networks with the same number of nodes,

total edges, and degree distribution as the network of interest

(TOP) [30,31]. This method preserves the degree distribution of

the original network while randomizing its topology. There are

several algorithms for generating random graphs with prescribed

degree distribution [52–54]. These algorithms differ in terms of

the type of output network (connected vs. disconnected, simple vs.

complex) as well as the implemented method (e.g. matching vs.

switching) [52]. The null networks generated for benchmarking

correlation networks should be simple (no loops or parallel edges)

and connected. We used the algorithm implemented in Brain

Connectivity Toolbox (BCT) [28] that generates connected simple

random graphs with prescribed degree sequence by directly

searching for rewirable edge pairs in the original network. 2) Null

networks corresponding to null covariance matrices that are

matched to the distributional properties of the observed covari-

ance matrix using Hirschberger-Qi-Steuer algorithm (HQS)

[33,34]. Null networks generated in this way preserve the

transitive structure of the original network. Since the empirical

correlation values might not follow a normal distribution, the

density of the generated null networks were matched the density of

the network of interest. 3) Null networks generated from the

correlation of randomized corrected RGV data (COR). This

method is an intuitive way of generating null networks for

benchmarking correlation networks by applying the same network

construction procedure on the randomized corrected GMV data.

This procedure involved randomizing the original corrected RGV

data for each subject separately and then obtaining a null

correlation matrix by performing Pearson’s correlation analysis

between the randomized RGV data across subjects. It should be

noted that this procedure is different from correlating a group of

random vectors. Finally, a binary null network is extracted by

thresholding the generated null correlation matrix at a correlation

level that matches the density of the resultant binary null network

to the density of the network of interest. While the implemented

TOP algorithm ensures that the generated null networks maintain

connectedness (no fragmentation in the network), there is no

guarantee that the null networks generated from COR and HQS

method would be connected.

Network Metrics
We investigated the influence of choice of null network on

small-world parameters including clustering coefficient (CC),

characteristic path length (CPL), and small-world index (SW).

These network measures were extracted using the codes developed

in the Brain Connectivity Toolbox (BCT) based on the formula-

tion described in [28]. The network and statistical analyses were

performed using our in-house software, graph analysis toolbox

(GAT) [19].

Influence of Null Networks on Small-world Parameters
In order to investigate the influence of null networks on small-

world parameters of a network, we quantified the small-world

parameters for the HC network and compared them among

different choices of null networks. Normalized clustering coeffi-

cient CHC/Cnull, normalized path length [LHC/Lnull, and small-

world index SWHC= [CHC/Cnull]/[LHC/Lnull] were quantified for

each type of null networks, namely TOP, HQS and COR,

separately. These metrics were quantified at each density step for

the specified range of densities [0.22:0.02:0.5]. We also quantified

the small-world parameters for the ALL network to examine if the

patient network follows a small-world organization across different

null models.

Since the algorithms used for generation of null networks are

stochastic by nature, the generated null networks would be

different when applied many times to the same network.

Therefore, Cnull and Lnull were considered as the mean clustering

coefficient and the characteristic path length of 20 null random

networks [19]. For comparison purposes, we examined whether

the replicability of the null networks would differ between different

null models. We generated 50 sets of null networks each consisting

of 20 null networks for the HC network thresholded at Dmin using

different null models. We then performed a one-way analysis of

variance (ANOVA) to compare the mean network parameters

(Cnull and Lnull) between these sets for each null model. In

addition, we compared differences in the dispersion of Cnull and

Lnull among different null models using Levene’s test of variance

for 20 null networks.

In addition, to analyze the influence of null networks on

between-group differences in small-world parameters, we quanti-

fied the small-world parameters of the ALL network employing

different null networks and then compared the results with those

obtained for the HC network. In addition, we compared the

original clustering coefficient and characteristic path length

between HC and ALL networks. This comparison allowed us to

investigate the similarity between the results of group differences in

original network metrics and differences in the normalized metrics.

Finally, for the purpose of comparison only, we also computed

the small-world parameters for networks thresholded at a range of

correlation values (rather than network density). The resultant

network parameters are regarded as absolute network metrics [6]

and will be used to examine if the results are compatible with those

obtained by thresholding networks at a range sparsity thresholds.

Statistical Analysis
Each network metric extracted across the specified density

range [0.22:0.02:0.5] is represented by a curve that depicts the

changes in network metric as a function of network density

(threshold). In order to compare these curves between groups (or

among choice of null networks), functional data analysis (FDA) was

performed [40,55]. In summary, each network measure curve was

treated as a function (y = f(x)) where y represents the graph metric

value and x represents the connection density. In order to compare

two network metric curves (between groups or null models), the

area A, between the two curves (y2 vs. y1) was computed by

summing the differences between y-values of the two groups (or the

two null models) at each value of x: A=Si |y2 (xi) – y1 (xi)| [40].

The obtained A value will be regarded as the difference in FDA

between two network metric curves, hereafter. While there are

several methods for comparing curves using FDA [55], we

employed a non-parametric permutation test as described below.

The FDA analysis was performed using our in-house GAT

software [19].

In order to test the statistical significance of the differences in

small-world parameter curves (SWHC), between different null

networks, a non-parametric permutation test for dependent

samples was performed as described in [16]. In summary, 1) 300

bootstrap samples of the association matrix of HC group were

acquired by randomly selecting subjects’ corrected RGV data

from HC group, with replacement, and computing the Pearson’s

correlation coefficients. 2) The graph metric curves were

quantified for each of the bootstrap samples and for each null

Null Models for Benchmarking Correlation Networks
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network type. 3) The obtained curves were randomly shuffled

between different null networks in each bootstrap sample across all

samples. 4) The differences in FDA of the shuffled graph metric

curves (i.e. the area between the two curves) among different null

networks were calculated. 5) Steps 3–4 were repeated 5000 times

and histograms of the between-null network differences in mean

were constructed. 6) The observed actual between-null network

differences in FDA were then placed on the constructed

histograms and a p-value was calculated based on its percentile

position. The permutation procedure was performed separately for

each pair of null networks. It should be noted that sampling with

replacement introduces an inflated correlation into the bootstrap

correlation matrices. Thus, the mean of the network measures for

bootstrap networks might not conform to those for original

networks (Figure S1). However, this difference would not influence

our results since we are comparing the null models across the same

bootstrap networks (networks constructed from the same set of

subjects). In addition, the obtained small-world parameters for

bootstrap networks were consistent with previous reports (Figures 1

and 2).

To test the statistical significance of the differences in small-

world parameters between groups, a non-parametric permutation

test for independent samples with 1000 repetitions was used

[2,4,8,19,20]. In each repetition, the corrected RGV data of each

participant were randomly reassigned to one of the two groups so

that each randomized group had the same number of subjects as

in the original group. Then, an association matrix was obtained for

each randomized group by performing Pearson’s correlation

analysis. The binary adjacency matrices were then estimated by

applying the same thresholding procedure as described above. The

network metric curves were then calculated for all the constructed

randomized networks. The differences in FDA of the network

metric curves between randomized groups were then calculated

resulting in a permutation distribution of difference under the null

hypothesis. The actual between-group difference in FDA of the

network metric curves was then placed in the corresponding

permutation distribution and a p-value was calculated based on its

percentile position.

We applied FDA on a cumulative threshold (cumulative FDA)

over the full range of density [0.22:0.02:0.5] to investigate the

influence of null network type on small-world properties of the

correlation networks. In addition, we used a windowed thresh-

olding procedure (windowed FDA) [40] to investigate the influence

of different density regimes on small-world parameters quantified

using different null networks. To this purpose, the specified density

range [0.22:0.02:0.5] was divided into four threshold ranges

[0.22:0.02:0.3], [0.3:0.02:0.38], [0.38:0.02:0.46] and

[0.46:0.02:0.5] and the binary graphs were constructed by

retaining connections that fell in each of these density ranges. It

should be noted that in the windowed analysis, the connections

within a lower-density window (e.g. [0.22:0.02:0.3]) would also

present in higher-density windows (e.g. [0.3:0.02:0.38]). This

procedure enables us to examine how adding lower-strength

connections (i.e. less stable connections) to the network would

affect the benchmarking results. The network metric curves were

then compared across groups (and across choices of null networks)

at each window, separately.

Finally, we examined whether the observed differences in

network parameters between different null models are influenced

by differences in the skewness of degree distributions of the

networks. To this purpose, we performed a correlation analysis

between skewness of the degree distribution of bootstrap networks

across groups and differences in the obtained network metrics

from different null models. We also performed correlation analysis

Figure 1. Changes in small-world properties of the HC
bootstrap networks as a function of network density. A)
normalized clustering, B) normalized path length and C) small-world
index for different choices of null networks across the density range
[0.22:0.02:0.5]. The dashed lines represent the 95% confidence interval
for the mean network parameter of 300 bootstrap networks. All the
benchmarking methods revealed a small-world organization for the HC
networks.
doi:10.1371/journal.pone.0067354.g001

Null Models for Benchmarking Correlation Networks
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between skewness of the degree distribution of bootstrap networks

and the parameters of the corresponding null networks. These

analyses were done on networks thresholded at Dmin = 0.22.

Results

Influence of Null Networks on Small-world Parameters
Changes in small-world properties of the HC bootstrap

networks as a function of network density [0.22:0.02:0.5] for

different choices of null networks are shown in Figure 1. For all the

null networks, the estimated normalized clustering coefficients of

the HC structural correlation networks (CCTOP, CCHQS, CCCOR)

were greater than 1, the normalized path lengths (CPLTOP,

CPLHQS, CPLCOR) were close to 1, resulting in small-world

indices (SWTOP, SWHQS, SWCOR) that were greater than 1. The

small-world indices were also greater than 1 in ALL bootstrap

networks for different null models (Figure 2).

We also quantified the small-world parameters for the HC and

ALL networks thresholded at a range of correlation values (Figures

S2 and S3). The small-world indices quantified using different null

models revealed a small-world architecture in both networks and

confirms the results obtained by thresholding the networks at a

range of sparsity thresholds.

The results of cumulative FDA analysis in the density range

[0.22:0.02:0.5] and nonparametric permutation test for dependent

samples showed that the cumulative FDA of normalized clustering

coefficient, normalized path length, and small-world index in HC

network are significantly different between all three choices of null

networks (p,0.01) after correction for multiple comparisons

(Bonferroni correction). The windowed FDA analysis also showed

a significant difference in normalized clustering, normalized path

length and small-world index of the HC network between all three

null networks and for all the thresholding windows (p,0.01).

The correlation analysis revealed a significant correlation

between the skewness of degree distribution of bootstrap networks

(across both groups) and the observed differences in normalized

clustering between TOP and HQS (r=20.44, p,0.01) as well as

TOP and COR null models (r =20.39, p,0.01) (Figure 3).

Similar correlation results were observed between skewness and

differences in small-worldness between TOP and HQS (r=20.45,

p,0.01) as well as TOP and COR models (r=20.41, p,0.01). In

addition, a significant positive correlation was found between the

skewness of degree distribution of bootstrap networks and the

clustering coefficient of corresponding TOP null networks

(r=0.41, p,0.01) (Figure 3C).

Comparing the replicability of null network parameters revealed

no significant difference in the mean Cnull and Lnull between

different sets (p.0.2). However, the dispersions of Cnull and Lnull

were significantly higher for HQS and COR compared with TOP

null networks (p,0.05). Changes in the mean Cnull and Lnull as a

function of number of generated null networks for different null

models are shown in Figure S4.

Influence of Null Networks on between-group
Differences in Small-world Parameters
We also investigated the influence of null networks on the results

of between-group differences in small-world parameters. Between-

group differences (HC vs. ALL) in normalized clustering

(DCCTOP, DCCHQS, DCCCOR), normalized path length

(DCPLTOP, DCPLHQS, DCPLCOR) and small-world index

(DSWTOP, DSWQS, DSWCOR) as a function of network density

are shown in Figure 4. The detailed results of nonparametric

permutation test for independent samples on cumulative FDA and

windowed thresholding data are given in Table 1. In summary, the

Figure 2. Changes in small-world properties of the ALL
bootstrap networks as a function of network density. A)
normalized clustering, B) normalized path length and C) small-world
index for different choices of null networks across the density range
[0.22:0.02:0.5]. The dashed lines represent the 95% confidence interval
for the mean network parameter of 300 bootstrap networks. All the
benchmarking methods revealed a small-world organization for the ALL
networks.
doi:10.1371/journal.pone.0067354.g002

Null Models for Benchmarking Correlation Networks
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cumulative FDA analysis over the density range [0.22:0.02:0.5]

revealed that only normalized clustering quantified by the TOP

method (DCCTOP) was significantly different between groups

(p,0.05). The small-world indices derived from TOP methods

(DSWTOP) were also marginally significant between groups

(p = 0.056). The windowed thresholding procedure revealed that

in lower densities (stronger correlation) [0.22:0.02:0.3], the small-

world indices DSWHQS was significantly different between groups

(p,0.05) while DSWTOP and DCCTOP were only marginally

significant (p = .058 and 0.05, respectively). On the other hand, in

higher densities [0.38:0.02:0.46] and [0.46:0.02:0.5], only

DCCTOP was significantly different between groups (p,0.05).

Additionally, we compared group differences in original

network measures, i.e. clustering coefficient (DCCORG) and path

length (DCPLORG), between HC and ALL networks (Figure 5)

(Table 1). Neither cumulative FDA nor windowed thresholding

data reflected significant differences in original clustering and path

length between groups.

Discussion

Recent evidence suggests that brain networks constructed from

correlations are inherently more clustered than random networks

of the same size and degree. Thus, null networks constructed by

randomizing topology are not a good choice for benchmarking

small-world parameters of correlation networks. In the present

report, we investigated the influence of choice of null networks on

small-world parameters of gray matter correlation networks in

healthy individuals (HC) and survivors of acute lymphoblastic

leukemia (ALL). The results revealed that the choice of null

network not only influences the estimated small-world parameters,

it also influences the results of between-group differences in small-

world parameters. Our data suggest that the choice of null network

is quite crucial for interpretation of group differences in small-

world parameters of structural correlation networks.

Figure 3. Relationship between skewness and normalized
clustering. A significant negative correlation was found between the
skewness of degree distribution of bootstrap networks (across both HC
and ALL networks) and differences in normalized clustering between A)
TOP and COR and B) TOP and HQS methods. C) the skewness of degree
distribution of TOP null networks showed a significant positive
correlation with mean clustering of corresponding networks.
doi:10.1371/journal.pone.0067354.g003

Table 1. Significance of between-group differences in small-
world parameters across different benchmarking methods.

cumulative w1 w2 w3 w4

Clustering coefficient (HC.ALL)

COR 0.371 0.259 0.368 0.450* 0.401

HQS 0.151 0.089 0.152 0.255 0.262

TOP 0.046 0.050 0.052 0.043 0.035

Original 0.164 0.086 0.174 0.251 0.214

Path length (HC.ALL)

COR 0.280* 0.251* 0.300* 0.366* 0453

HQS 0.284* 0.226* 0.284* 0424* 0.501

TOP 0.478* 0.404* 0.491 0.418 0.421

Original 0.357* 0.299* 0.373* 0.473* 0.447

Small-world index (HC.ALL)

COR 0.247 0.127 0.247 0.481 0.415

HQS 0.076 0.047 0.082 0.272 0.223

TOP 0.056 0.058 0.063 0.063 0.058

The p-value of the permutation tests for Cumulative: [0.22:0.02:0.5], w1:
[0.22:0.02:0.3], w2:[0.3:0.02:0.38], w3: [0.38:0.02:0.46] and w4:[0.46:0.02:0.5]
density ranges.
*indicates that the network measure is greater in ALL than in HC.
doi:10.1371/journal.pone.0067354.t001

Null Models for Benchmarking Correlation Networks
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Influence of Null Networks on Small-world Parameters
For all three choices of null models, the HC network showed a

small-world architecture, i.e. the estimated normalized clustering

coefficients of the network were greater than 1 and the normalized

path lengths were close to 1 resulting in small-world indices of

greater than 1 (Figure 1). However, the estimated small-world

parameters were significantly different among the choices of null

networks. As was expected, both the cumulative and windowed

FDA results showed that CCHQS and CCCOR were significantly

lower than CCTOP. This is because the TOP method compared

with HQS and COR, does not cancel out the effect of transitive

structure induced by correlation transitivity. Thus, the HQS and

COR methods give more conservative estimates of normalized

clustering coefficient. On the other hand, CPLHQS was signifi-

cantly lower than CPLTOP and CPLCOR. This implies that the

HQS method, compared with TOP and COR, underestimates the

normalized path length of the network resulting in overestimation

of network global efficiency [28,53,57]. Consequently, the HQS

method gives a more conservative estimate of small-world index

(SWHQS ,1.2) compared with TOP and COR methods. The

same pattern was observed for small-world parameters in ALL

network (Figure 2) as well as for networks thresholded at a range of

correlation thresholds (Figures S2 and S3). Note that the rate of

decrease in SWHQS and SWCOR was much slower than the rate

for SWTOP for both ALL and HC networks. This is mainly

influenced by the slower rate of decrease in normalized clustering

in HQS and COR compared with TOP method. We speculate

that correlation transitivity is mainly influenced by strong

correlations and thus the amount of transitive clustering that

cancels out at lower densities (strong connections) in HQS and

COR methods is much higher compared with TOP method.

However, as the lower strength connections are added (higher

densities), less transitive structure is added to the network and thus

the HQS and COR estimates of normalized clustering (and small-

worldness) decrease at a slow rate.

Correlation analysis revealed that the skewness of degree

distribution predicts the observed differences in normalized

clustering and small-worldness between TOP and HQS and

between TOP and COR models. Specifically, the skewness toward

high-degree nodes reduced the differences in normalized network

Figure 4. Between-group differences (HC vs. ALL) in small-world parameters. The 95% confidence intervals and between-group differences
in A) normalized clustering (DCCTOP, DCCHQS, DCCCOR), B) normalized path length (DCPLTOP, DCPLHQS, DCPLCOR) and C) small-world index (DSWTOP,
DSWQS, DSWCOR) as a function of network density for different benchmarking methods. The red circles show the difference between HC vs. ALL
networks; the circles falling out of the confidence intervals (blue dashed lines) indicate the densities in which the difference is significant. The positive
values indicate HC.ALL and negative values indicate HC,ALL.
doi:10.1371/journal.pone.0067354.g004
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parameters between Top and other null models. We speculated

that this difference might be driven by the influence of skewness on

parameters of TOP null network. The results were confirmatory

and the clustering coefficient of the TOP null network was higher

for networks with skewness toward high-degree nodes. Since we

did not observe such an effect for parameters of COR and HQS

null networks, the differences in clustering coefficient between

TOP and HQS as well as TOP and COR decreased for networks

with skewness toward high-degree nodes. However, the mecha-

nism underlying the observed positive correlation between

skewness of original networks and clustering coefficient of

corresponding TOP null networks remains unclear. The results

suggest that networks with high skewness are less sensitive to

correlation transitivity effect and the corresponding TOP null

networks would be closer to HQS and COR null networks in

terms of clustering.

Figure 5. Between-group differences (HC vs. ALL) in original network parameters. The 95% confidence intervals and between-group
differences in A) original network clustering (DCCORG) and B) normalized path length (DCPLORG) as a function of network density. The red circles show
the difference between HC vs. ALL networks; the circles falling out of the confidence intervals (blue dashed lines) indicate the densities in which the
difference is significant. The positive values indicate HC.ALL and negative values indicate HC,ALL.
doi:10.1371/journal.pone.0067354.g005
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While the replicability of null network parameters for 20 null

networks were not significantly different within each null model,

the dispersion of Cnull and Lnull for HQS and COR models was

significantly higher than that for COR model. The observed

difference in the dispersion remained significant even for 100

iterations of null networks. These data suggest that the mean Cnull

and Lnull of 20 random networks gives a reliable estimate of small-

world parameters for replicating the results for different null

models. However, the network parameters in HQS and COR

models would be more variable compared with those in TOP

model.

Influence of Null Networks on between-group
Differences in Small-world Parameters

Cumulative FDA. The cumulative FDA results showed that

normalized clustering is greater in the HC network than in ALL

and normalized path length is greater in the ALL network than in

HC, resulting in a small-world index that is greater in HC

network. These results were consistent across all benchmarking

methods. However, the choice of null network did influence the

statistics of between-group differences in small-world parameters.

The cumulative FDA analysis showed that DCCTOP was

statistically significant between groups while DCCHQS and

DCCCOR did not show significant difference between groups.

This implies that the TOP method overestimates the differences in

network clustering between groups compared with the HQS and

COR methods. The estimated normalized clustering in HQS and

COR methods as well as the statistics for DCCHQS and DCCCOR

were comparable suggesting that both HQS and COR methods

are consistent for computing normalized clustering coefficient of

structural correlation networks. Conversely, the TOP method gave

the most conservative estimate of between-group differences in

normalized path length among other methods while HQS method

was the least conservative among them. The results of between-

group differences in small-world index were more consistent

between TOP and HQS methods than COR method. The COR

method gave the most conservative estimate of between-group

differences in small-world index among three methods. Together,

the cumulative FDA result suggests that while the choice of null

network influences the statistics of between group differences in

small-world parameters, the direction of difference is preserved

across all methods.

Windowed FDA. Consistent with cumulative FDA results, the

windowed FDA results showed that the normalized clustering and

small-world index were greater in the HC than in ALL network

across all benchmarking methods and all windows. Normalized

path length was greater in ALL than in HC network at lower

densities (strong correlations) while it was smaller in ALL network

at higher densities (weak correlations). This pattern was consistent

across all methods except that the flip occurred in lower densities

in TOP measures compared with HQS and COR measures. The

observed flip in the direction of between-group differences in

normalized path length at higher densities (weak correlations) can

be attributed to increased randomized structure in both networks

by introducing more weak densities. Perhaps, the TOP method is

more susceptible to this random structure and therefore the flip

occurs at lower densities when using this method.

In line with cumulative FDA results, the windowed FDA results

suggest that the choice of null network influences the statistics of

between-group differences in small-world parameters. For lower

densities (strong correlations), the observed between-group differ-

ence in normalized clustering was the largest in TOP method

among others. Conversely, the observed group difference in

normalized path length was the smallest in TOP method. These

results were consistent with cumulative FDA results. However, at

higher densities where the network behavior becomes more

random, the observed consistency was violated.

The pattern of group-differences in small-world index for

windowed FDA was consistent with those obtained from

cumulative FDA at higher densities [0.3 to 0.5]. At lower densities

[0.22 to 0.3], the small-world index was significantly lower in the

ALL network than in HC network for HQS method while it was

nonsignificantly lower in ALL for TOP and COR methods. This

suggests that the TOP and COR methods, compared with HQS,

gives a less conservative estimate of between-group differences in

small-world index for strong correlations. Together, the windowed

FDA result confirms the cumulative FDA results by showing that

the choice of null network influences the statistics of between

group differences in small-world parameters. In addition, it

showed that the choice of null network influences the direction

of difference in normalized path length between groups.

Small-world parameter is a relative measure and one may argue

that the drawbacks/advantages of each null model may affect the

networks of both groups equally. However, our data showed that

the choice of null model influences the direction of group

differences in network measures. This is especially problematic

since, for some null models, the network measures are higher in

one group but are lower in the same group using a different null

model. Therefore, our data emphasize the importance of a

universal null model for benchmarking correlation networks.

Which Null Network is More Suitable?
So far, we investigated how the choice of null network affects

the small-world parameters of correlation networks at within-

group and between-group levels using cumulative and windowed

FDA. However, the critical question remains: which of the above

mentioned null networks is more suitable for the purpose of

benchmarking structural correlation networks?

Recently, Zalesky and colleagues [33] suggest that HQS method

is more suitable for estimation of normalized clustering coefficient

of correlation networks compared with TOP method. Unlike TOP

method that annihilates the transitive structure of correlation

networks, the HQS method does not affect the transitive structure

and thus gives a more conservative estimate of normalized

clustering for correlation networks. Using empirical data, our

results confirmed that TOP method, compared with HQS, gives a

higher estimate of the clustering coefficient of structural correla-

tion networks. Thus, compared to TOP, HQS method is more

appropriate for estimation of normalized clustering coefficient of

correlation networks. However, the degree distribution of null

networks generated using HQS method does not match the degree

distribution of original network [33]. Thus, HQS method is less

appropriate for estimation of normalized path length compared

with TOP.

Intuitively, the COR method should be a suitable method for

normalization of clustering and path length since it applies the

same network construction procedure on the randomized input

data. However, careful examination of the correlation matrices

generated using COR method reveals that the correlation

distribution of the COR null network does not match the

correlation distribution of the original network (Figure 6). This

mismatch in correlation strength influences the correlation

transitivity in the null models and further affects the clustering

coefficient of the null networks [33]. Thus, the COR null networks

also do not give an appropriate estimate of small-world parameters

for correlation networks.

Apart from differences in the estimation of small-world

parameters, the examined null models differ in terms of
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connectedness of the generated null networks. Unlike the TOP

null networks, there is no guarantee that the outputs from HQS

and COR methods would be connected. The connectedness of the

null network is very crucial since the small-world parameters

depend on the network size [32]. Therefore, fragmentation in the

generated null networks would affect the normalized network

metrics. However, this problem is slightly alleviated by averaging

null network parameters across a number of null networks. In

addition, disconnection of null networks at higher density

thresholds is less probable. At lower densities, it is possible to

discard null networks that are fragmented and only use the

connected outputs for normalizing network parameters. Nonethe-

less, this process would increase the computational time and might

not be feasible for all networks.

Together, our results suggest a lack of gold-standard null model

for benchmarking correlation networks. Future research is needed

to model gold-standard null networks that maintain both

correlation distribution and degree distribution of the original

correlation networks for appropriate normalization of clustering

coefficient and characteristic path length of correlation networks,

respectively. One potential solution is to use rewiring algorithms

that work on weighted networks and preserve the degree (or

strength) distribution of the original weighted network. These

algorithms can be applied directly to correlation matrices.

However, the available rewiring models for weighted networks

only preserve the out-degree (or in-degree) distribution and thus

not perfect for benchmarking correlation networks. Some attempts

have been made to resolve this deficiency but the proposed models

either fail to maintain the correlation distribution or fail to

preserve the symmetry of the network [58,59].

Conclusions
We investigated the influence of choice of null networks on

small-world properties of structural correlation networks. As was

expected, the results revealed that the choice of null network

significantly influences the estimates of small-world parameters of

the networks, within group. In addition, the statistics of between

group results were affected by the choice of null network. While

the direction of the between-group differences in network

parameters was not affected by the choice of null network at

lower network density ranges (strong correlations), it was

influenced at higher densities where the networks become more

random. Finally, our data suggests that none of the available null

models can be regarded as a gold-standard for benchmarking

correlation networks and the relative strengths and weaknesses of

the selected model should be carefully considered with respect to

obtained network measures. Future studies need to examine new

rewiring algorithms that work on weighted networks and preserve

the degree (or strength) distribution of the original weighted

network. Alternatively, hybrid models that employ correlation

distribution from HQS method and apply the correlation values to

the structure obtained from COR method are also promising.

Although we demonstrated the effects of null models on

benchmarking small-world parameters for structural correlation

networks, the results can be generalized to various kinds of

correlation networks including networks constructed from gene

expression and proteomics data [31,60].

Supporting Information

Figure S1 Changes in the original clustering and path
length of HC network as a function of network density.
A) clustering and B) path length for the original HC network (+) as
well as the corresponding mean (SD) values for the HC bootstrap

networks (squares). The mean network parameters for bootstrap

networks were slightly deviated from those of the original network.

Sampling with replacement results in having a number of similar

subjects within the bootstrap samples that leads to obtaining

inflated correlations and thus the results would deviate from those

for original network.

(TIF)

Figure S2 Changes in small-world properties of the HC
network as a function of correlation threshold. A)

normalized clustering, B) normalized path length and C) small-

world index for different choices of null networks as a function of

correlation threshold. All the benchmarking methods revealed a

small-world organization for the HC network. The pattern of

differences in small-world parameters between null models is

similar to the pattern observed for networks thresholded at a range

of sparsity thresholds.

(TIF)

Figure S3 Changes in small-world properties of the ALL
network as a function of correlation threshold. A)

normalized clustering, B) normalized path length and C) small-

world index for different choices of null networks as a function of

correlation threshold. All the benchmarking methods revealed a

small-world organization for the ALL network. The pattern of

differences in small-world parameters between null models is

similar to the pattern observed for networks thresholded at a range

of sparsity thresholds.

(TIF)

Figure S4 Changes in the mean Cnull and Lnull as a
function of number of null networks generated. A)

Changes in the mean Cnull for COR (top panel), TOP (middle

panel) and HQS (bottom panel) null networks as a function of

number of null networks generated. B) Changes in the mean Lnull

for COR (top panel), TOP (middle panel) and HQS (bottom

panel) null networks as a function of number of null networks

generated. No significant difference in the mean Cnull and Lnull

Figure 6. Cumulative distribution of correlation values. The
correlation distribution of HC network (green), ten HQS null networks
(red) and ten COR null networks (black). The cumulative distribution of
correlation values in HQS model is very close to the original distribution
while the distribution in COR model does not fit the original
distribution. We did not show the correlation distribution for TOP
model because the TOP model works on thresholded binarized
networks.
doi:10.1371/journal.pone.0067354.g006
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were observed between different sets (p.0.2). However, the

dispersions of Cnull and Lnull were significantly higher for HQS

and COR compared with TOP null networks (p,0.05).

(TIF)
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