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Abstract

Along with computational approaches, NGS led technologies have caused a major impact upon the discoveries made in the
area of miRNA biology, including novel miRNAs identification. However, to this date all microRNA discovery tools
compulsorily depend upon the availability of reference or genomic sequences. Here, for the first time a novel approach,
miReader, has been introduced which could discover novel miRNAs without any dependence upon genomic/reference
sequences. The approach used NGS read data to build highly accurate miRNA models, molded through a Multi-boosting
algorithm with Best-First Tree as its base classifier. It was comprehensively tested over large amount of experimental data
from wide range of species including human, plants, nematode, zebrafish and fruit fly, performing consistently with .90%
accuracy. Using the same tool over Illumina read data for Miscanthus, a plant whose genome is not sequenced; the study
reported 21 novel mature miRNA duplex candidates. Considering the fact that miRNA discovery requires handling of high
throughput data, the entire approach has been implemented in a standalone parallel architecture. This work is expected to
cause a positive impact over the area of miRNA discovery in majority of species, where genomic sequence availability would
not be a compulsion any more.
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Introduction

miRNAs are ultra-short RNA molecules with an average length

of ,21 bases [1,2]. Mature miRNAs are formed through a series

of post-transcriptional processing steps [3,4]. The canonical

pathway of miRNA biogenesis involves cleaving of pri-miRNA

by a nuclear RNAse III enzyme complex, Drosha-DGCR8, into a

shorter precursor form, pre-miRNA. This processing step removes

the unpaired terminal tails. The pre-miRNA is transferred to the

cytoplasm, where it is cleaved by Dicer RNAse III enzyme,

releasing an ultra-short double stranded fragment [5]. One of

these strands acts as a mature miRNA, while the complementary/

partially complementary partner strand is called as star (*) strand.

However, there have been several instances where the star strand

has been found acting as a mature miRNA, targeting mRNAs. It is

expected that miRNAs regulate more than 1/3rd of genes [6] and

exist as a prime component of eukaryotic regulatory systems.

Presently, miRBase [7] has a total of 21,264 reported miRNAs

which belong to a total of 1,133 different families and 193 different

species. Still, a lot of miRNAs are to be identified and

characterized. Initially, experimental methods like those based

on PCR and blotting approaches were used extensively to identify

mature miRNAs [1,8]. Computationally, majority of these

miRNAs have been characterized using some set of rules to

identify precursors, relying largely upon existence of hairpin-loop

structure, homology and thermodynamics. Recently, some ma-

chine learning based approaches claimed good success in

identifying precursor miRNAs [9–12]. However, there is a limited

number for tools to identify mature miRNAs. Tools like

MatureBayes [13], MaturePred [14], MirPara [9] and miRRim

[15] belong to this genre, and all of them essentially require a

precursor/genomic sequence to identify mature miRNA regions.

Some tools and algorithms use NGS read data for more accurate

miRNA discovery. Such tools are miR-BAG [12], miRDeep [16],

miRTrap [17], miRNAKey [18] and miRExpress [19]. The

underlying principle of all these tools has been based on mapping

of reads obtained from small RNA-seq sequencing to the genomic

sequences of the concerned species. The mapped genomic regions

are expanded further to accommodate a possible precursor

miRNA region, which in turn is evaluated for its potentiality for

being a precursor miRNAs through precursor identification

algorithms.

Regardless of the way, whether the miRNAs are characterized

using NGS read data or independent of it, there lays a uniform

clause with all of them: All currently available miRNA discovery

tools essentially require a reference/genomic sequence to identify

a novel miRNA. Also, most of them are dependent upon

identification of miRNA precursors. In such condition, non-

availability of genomic sequences becomes a big limiting factor in

the area of miRNA biology based research activities, including

miRNA discovery. This has resulted into a sort of knowledge skew

where most of the miRNAs have been reported only for those

species whose genomic sequences are available or homologous

sequences are known. Only 16% of total reported miRNAs in
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miRBase are from species whose genome is not sequenced. Also,

the majority of these 16% miRNAs has been identified using

homology search and exhibit a very few species specific miRNAs.

Thus, barring a few model organisms, there is almost negligible

miRNA information for most of the species (Supporting
Material S1). Recently, a group suggested an approach to look

for novel mature miRNAs from NGS read data, using some set of

rules [20]. The authors considered only those reads as miRNA

candidate which could form duplex, maximum four mismatches

existed, 39 overhangs were observed, high agreement existed

across all reads for 59 end, and duplex length stayed within the

range of 18–24 bp. However, such rules have limitations and

require validation over large amount of datasets. Based on PCR

experiments over total 24 instances, the authors reported ,40%

false discovery rate. Validation could be obtained for only 13

instances. Also, the study did not report any comprehensive testing

against known instances datasets in order to establish their

approach.

Therefore, there is an immediate requirement to fill in such void

which has an impeding impact over the area of miRNA biology in

absence of any tool to identify miRNAs independent of availability

of genomic sequences. Considering this, in the present work a

novel approach and software has been introduced to identify

mature miRNAs directly from NGS read data without any

dependence upon genomic sequences or homologous references.

Also, with this, cheaper runs of small RNA sequencing on NGS

platforms like Illumina would be sufficient for mature miRNA

discovery, facilitating miRNA biology and regulatory system

understanding of most of non-model organisms whose genomic

sequences are still not available.

Methods

Reads Assembling, Encoding and Representation as
Instances

In the present system, the objective was to develop an approach

which could identify mature miRNAs directly from the read data

without depending upon genomic or homologous sequences. In

this direction, the primary step was to develop a protocol for short

small RNA read de-novo assembling, which could look across the

connected reads, merge them together to form a single unique

continuous stretch (contig). Since mature miRNAs usually exist in

a duplex form with an inexactly pairing complementary star (*)

strand, it becomes imperative to look for complementary contigs to

develop the duplexes. Such duplexes form the training and testing

instances or queries for the tool presented here.

The step of reads assembling was done considering two different

conditions: (A) For model building (training and developing the

classification system) and (B) For testing and de novo identification

from small RNA sequencing read data. In case of model building

and developing a classification system, the reads mapping to a

particular miRNA (positive instance) or non-miRNAs (negative

instances) were merged together for overlapping regions, yielding

assembled sequences from the reads. However, in case of de novo

identification, references are not available and the reads need to be

searched among themselves for overlaps. Using Knuth-Morris-

Pratt (KMP) algorithm, the reads were searched for terminal

overlap with at least 5 bp overlap and without any mismatch. All

such overlapping reads were merged to get the corresponding

contig. The effectiveness of this assembling approach was tested

for known miRNAs and their associated reads. All reads combined

perfectly with right partners, suggesting a rare chance of mis-

assembly.

Duplex formation and encoding. Next to the assembly step

was identification of most suitable complementary partners. An in-

house developed global alignment script with gap opening penalty

of 25, gap extension penalty of 22 and with G:U pairing

consideration was run to align the assembled contig sequences to

each other for highest possible complementarity. Considering

existence of terminal overhangs in mature miRNA duplexes,

global alignment between the contigs was performed with scope

for 39 overhangs with two to zero nucleotide(s). The highest

scoring pairs were considered as duplexes. All such duplexes were

encoded into single sequence representation for four states: match,

mismatch, insertion and deletion. The encoded duplexes made the

final input instances to the classification system. Before going for

classification or model building, every such encoded instance was

transformed into a long range discontinuous single order transition

probability vector. Sets of encoded pattern mature miRNA single

order transition matrix profiles were formed for every possible

positional pairings. The encoded patterns of miRNAs with same

length were considered into a single common cluster, where

encoded patterns were multiple aligned to form encoded pattern

profile matrices. Every such matrix had five different sub-matrices,

representing five possible pairing conditions’ transition probabil-

ities for different positions in any given duplex. These matrices

were used exclusively to derive the corresponding match states

probabilistic representation of the encoded query sequence for

classification. More details are given below.

Duplex Transition Matrix for Features and Training
It has been reported that in a given precursor sequence, the

mature miRNA region exhibits a high degree of conservation

where interaction between the nucleotides of this region could be

important [1,21,22]. A few recent works have reported binding

sites for transcription factors and RNA binding proteins in the

mature miRNA region of precursors. Presence of such sites might

be causing regulation of miRNA transcription as well as post-

transcriptional fates of miRNAs [23–27]. Such functionally

important regions are usually conserved. Considering this, it was

assumed that some sort of structural conservation existed for this

region in miRNAs. Using mature miRNAs and their correspond-

ing star (*) miRNA sequences from opposite strands, complemen-

tary alignments were formed, which were converted into single

sequence representation for the four states of pairing: Match (M),

mismatch (m), Insertion (I) and Deletion (D). By doing so, the

structural states of miRNA regions were encoded, irrespective of

nucleotide sequence underlying them. In this manner, the encoded

structural patterns for all known miRNAs were developed for the

target species in the present work. These patterns were clustered

according to their length. For each of these clusters, their

corresponding matching state transition profile matrices were

built, having five different subprofiles: 1) profile for co-occurrence

of mismatches 2) profile representing co-occurrence of mismatch

and insertion 3) profile representing occurrence of mismatch and

relative occurrence of deletion 4) profile representing co-occur-

rence of insertions, and 5) profiles representing co-occurrence of

deletions. All profiles contained single order transition probability

values for long distance transitions of states. The length of the

matrix was the limiting size for the maximum possible distance.

Each microRNA was scored against these matrices. Same was

done for negative instances coming from the small RNA

sequencing read data. The profile which returned the highest

cumulative score for every transitional position score was

considered as the representative profile, and the encoded pattern

was transformed into an array of probabilistic scores, which acted

as an n-features based input for classification steps. The n-features

miReader: Finding miRNAs without Genome
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are the position specific transition probability values for the

observed match states in the query. The Best-First Tree (BF-Tree)

algorithm [28] was used as the base classifier, which primarily

encounters the n-features inputs.

The number of such input attributes varied across the clusters

due to variation in the length of matrices. In the present study, the

single order transition between the various match states of miRNA

duplex defined the attribute nodes (the n-features). The leaf nodes

define the binary classes, i.e. instances are classified as a mature

miRNA or else. A BF-Tree is an advanced form of decision tree,

where multiple trees are considered to build a final tree. While

building a BF-Tree, the best attributes are considered as the

decision nodes in preference, performing binary split at every node

for purity gain. The purity employs the degree to which instances

of a particular class accumulate at a given decision node. A purity

value of ‘‘1’’ indicates that no more decision nodes are required for

extension, and the leaf node containing the class is attached to the

specific node, reaching the purity threshold. Gini index was used

as a measure of node purity. In the present study, post pruning was

used with 5-fold cross validation. Preferential selection of best

nodes and multiple hypotheses paths searches followed by cross-

validation pruning to get the shortest tree, ensured reduction of

over fitting and errors.

MultiBoosting Implementation
In the present work, a highly reliable ensemble machine

learning protocol, Multi-boosting, has been implemented. Multi-

boosting [29] is Boosting with Wagging (a form of bagging), where

for a given training data pool, random selection with replacement

is done for training the base classifier. Every test instance is labeled

with respect to the classifier for accuracy, based on which relative

weighting of classifiers and instances is done. Every next step is

dependent upon the previous step of learning, which also updates

the weights in a manner where the most difficult instances to learn

are weighted the most. Based on instance weighting, continuous

sampling of learning data is done to train the newer classifiers.

Unlike bagging, boosting does not give equal weights to all

instances and classifiers but weights them according to their

difficulty level and overall accuracy performance. Multi-boosting

combines boosting and wagging by repeatedly running boosting

for short sequences of training, then resetting the instance weights

using wagging. The result is a committee of classifiers that consists

of several subcommittees, each formed by boosting a wagged

sample of the data. While designing any machine learning

approach, bias and variance are two major factors to determine

the performance ability of any classification system. It was found

that compared to bagging based ensemble approach, boosting

based ensemble approaches provide both: control of bias and

variance. However, compared to boosting, bagging has better

variance reduction. Therefore, Multi-boosting brings the strengths

of bagging and boosting together, by avoiding over-fitting and

providing the best bias and variance reduction. Boosting provides

increment in error minimization with enhanced accuracy while

wagging reduces the fluctuations and brings consistency. It has

been found that compared to any single classifier algorithm, such

ensemble algorithm performs better and stays stable even for

largely variable input instances. In Multi-boosting, the subcom-

mittees are formed by boosting. Output votes of subcommittees

are returned to the set classifier and the final classifier for the given

training set is built with weighting system. The same is repeated for

‘‘K’’-number of iterations and classifiers, which together build an

ensemble classification system of high accuracy and stability. The

class which obtains the highest additive weights for any given

instance is finally assigned as the class to which the instance is

classified finally. A prominent property of Multi-boosting is due to

wagging, where unlike bagging, the training data is repeatedly

sampled from master data pool through a continuous Poisson

distribution. The details of the Multi-boosting algorithm are given

below:

The Multi-boosting Algorithm
Input:

D, a set of d class labeled training tuples.

K, the number of iterations//each generating one classifier.

BL, base learning algorithm//BF-Tree here.

Ii, Vector of integers specifying the iterations at which each subcommittee i

. = 1 should terminate.

1 Set i = 1;

2 for t = 1 to K do//for each classifier.

3 Ii = t, then

4 reset D9 to random weights from continuous Poisson

distribution

5 normalize D9 to n

6 increment i.

7 Ct~BL D0ð Þ
8 Compute model error e(Ct), the error rate for training sample

D9, where

e Ctð Þ~
Xd

j

wj|error xj

� �

9 if model error e(Ct) .0.5:

10 reset D9 to random weights drawn from continuous

Poisson distribution

11 normalize D9 to n

12 increment i

13 got to step 7

14 Otherwise, if e(Ct) = 0:

15 Weight of the classifier in voting, Wt Ctð Þ~10
{10

16 reset D9

17 increment i

18 Otherwise:

19 Wt Ctð Þ~log 1 Ctð Þð Þ=e Ctð Þ½ �
20 for each training instance Xj M D9

21 Multiply each misclassified training instance

weight Wj by 1/2e(Ct)

22 otherwise,

23 multiply Wj by 1/2(1-e(Ct)

Output:

C � xð Þ~
P

t:C tð Þ~dð Þ
Wt Ctð Þ

//assign the class which obtains the

highest total weight.

The base classifier is the basic learning algorithm on which

boosting works to refine the performance further by handling the

hard to learn instances. In the present study, the above mentioned

BF-Tree was implemented as the base learner. As mentioned

above, the size of input attribute list to this tree varies according

the profile selected to model the miRNA candidate. The

maximum number of iterations steps taken was 100 while

minimum 30 iterations were taken.

Overview of miReader Working Algorithm
1 Set of reads obtained from small RNA sequencing,

R = {r1,r2,….,rn}.

miReader: Finding miRNAs without Genome
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2 Initialize the set of pairing states based transition matrices, M,

represented in l65 dimensions, where, l is the length bound of the

corresponding matrix.

3 For each read ri MR:

4 if (any suffix substring A of read ri i.e. ri[1:x] matches

another read’s prefix sub-string B, i.e., rj[y,l] OR rj[y,l]

matches some read rj[1,x], where all matching substrings

have length equal or higher than 5):

5 Report match, and merge A and B to form

merged string Si*(intermediate).

6 update contig string Ci = Si*.

7 repeat the same till the nth read.

8 populate the set of assembled contigs C = {C1,C2,…Cn}.

9 Search for complementarity between the contigs of set C:

10 Complementarity contig pair

i j Di = max

Alignment score ci,c1ð Þ
Alignment score ci,c2ð Þ

� � �
Alignment score ci,cnð Þ

��������
.

11 Convert duplex Di into encoded pattern, pi, composed from

alphabet of four match states |A| = {M,X,I,D}.

//where, M = complementary match, X = mismatch, I = insertion

D = deletion.

12 Scan pi against the set of 5-state transition matrices, M, to

obtain the highest scoring matrix:

13 for each position ‘‘j’’ in pattern pi:

14 determine match state, Stj, using alphabet |A|.

15 if (Stj ! = ‘M’):

16 Identify all other !M states (Stj), for all

previous positions, from i = 1 to j-1.

17 Score for jth position, Scorej = max(Sti R
Stj), where i,j.

18 Score a given matrix scan n, MatrixScoren~

log(
P
i~l

i~1
Scorei

) , for length l.

19 Representative Score, Rscore = max(MatrixScoren), for all

matrices of set M.

20 Transform pattern pi into a vector of transition scores, Vi,

for each position j, using Scorej.

21 Input Vi to the Multiboost ensemble classifier C*.
22 Class, C = max(C*(Vi))//return the class obtaining the

highest composite weight from the ensemble system.

A thorough illustration of entire algorithm has been given in

Figure 1.

Reads Data and Datasets Generation
Small RNA reads data which could map to known mature

miRNAs were required to develop suitable models and training

sets as well as testing sets. Small RNA reads data were downloaded

from NCBI’s Gene Expression Ominbus (GEO) for seven different

species viz. C. elegans (GEO ID: GSE18634; Total reads:

151,017,180), Drosophila(GEO ID: GSE7448; total reads:

2,075,098), Arabidopsis(GEO ID: GSE26356; total reads:

12,756,632), Oryza sativa(GSE38480; total reads: 17,913,317),

human (GEO ID: GSE21722 with total reads: 425,505;

GSE19812 with total reads 19,759,390), Zebrafish(GEO ID:

GSE:27722; total reads: 29,963,921) and Miscanthus giganteus(GEO

ID: GSE28755, total reads: 12,400,937).

In case of human, one set of small RNA read data was

downloaded from GEO experiment series GSE21722. This

contained small RNA reads derived from Roche 454 sequencing.

Previously, a total of 221 human miRNAs were previously

identified from this data, making it a suitable data source for

training and testing set building. A total of 425,505 reads were

pooled together and mapped on humam pre-miRNA sequences

reported in miRBase version 19 [7]. This returned a total of

75,256 reads mapping across 919 human pre-miRNA sequences

(out of 1,600 pre-miRNAs). A total of 644 pre-miRNAs were

found with two or more reads mapping on them. Only such

miRNAs and associated reads were considered for further studies.

All such reads mapping to known pre-miRNAs were considered as

positive instance components. A positive instance component is a

read which maps to a known miRNA. Assembling of all such

positive instances common to some miRNA leads to formation of a

single stranded contig. Across the pool of contigs, the comple-

mentary contig pairs are searched to form potential miRNA

duplexes using above mentioned protocol. Every such duplex

representing a mature miRNA duplex has been considered as a

positive instance, to which all corresponding component reads are

linked and called positive instance components. Similarly, the

small RNA reads mapping to non-miRNAs were considered as

negative instance components. Detailed description about entire

process of reads assembly and instance (encoded duplex) formation

has already been elaborated in the above sections. In case of

human, there were a total of 1,000 positive instances, a number

higher than the total mapped pre-miRNAs (644). It was found that

there were many pre-miRNAs for which two or more different

duplexes formed, suggesting possibility for more than single

mature miRNAs resulting from any single precursor. Around 500

assembled miRNA duplexes were taken as positives instances

(miRNA duplexes obtained after read mapping and assembling) to

build the training set. The remaining 500 positive instances were

included in the testing set. For negative set creation, the reads were

mapped on other classes of non-coding RNAs (i.e. tRNA, snRNA,

snoRNA, rRNA), resulting into a total of 178,536 reads mapping

across 3,966 non-miRNA non-coding RNAs. For 1,892 non-

coding RNA sequences, two or more reads were found mapping.

After assembling, the resultant negative set contigs were searched

for complementary sequences to form duplexes which formed the

final negative instances.

Another set of human small RNA reads were taken from an

Illumina sequencing based experiment (GSE19812). The reads

from Roche platform could map to only 644 miRNAs while more

than 1,600 mature miRNAs have been reported in miRBase

v19.0. Therefore, this was done to enrich the existing data and get

a better representation of existing human miRNAs. A total of

1,265,903 reads mapped across 1,027 human pre-miRNAs

reported in miRBase v19.0. After assembling, these reads

produced a total of 7,893 unique assembled and non-overlapping

sequence contigs. After complementary search, duplex could be

formed for a total of 2,000 contigs, yielding a 1,000 positive

instances (miRNA duplex candidates). The positive instances were

distributed equally across the training and testing sets. A total of

69,335 unique reads (representing a total of 2,161,550 reads)

mapped to other ncRNAs. A total of 7,193 unique assembled

sequences resulting from the reads mapping to other non-coding

RNAs were considered as negative instances. Similarly, the

assembled contigs from reads mapping to miRNAs were

considered as positive instances.

Similar protocol was followed for all target species considered in

the present study for model generation viz. Human, Drosophila, C

elegans, zebrafish, Oryza sativa and Arabidopsis. Table 1 presents the

detailed description on dataset generation for all species. The non-

coding reference sequences were downloaded from Ensembl

(www.ensembl.org). MiRNAs for all species were downloaded

from miRBase version 19.0.

Expression based analyses were performed using mapped reads

count based approach, utilizing the below mentioned equation:

miReader: Finding miRNAs without Genome
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miRNA abundance (RPKM) = No. of reads mapped to the

assembled sequences * 1029/(total reads in the experiment).

Weka package was used to develop the classifiers. The entire

software package, named as miReader, has been developed in

standalone versions for Linux and Windows OS, using Java, Qt

C++ GUI library and PERL.

Results and Discussion

As already described above, most of the existing tools to identify

miRNAs are mainly pre-miRNA identification tools, which

essentially require genomic sequences. Compared to them, very

few tools exist to identify the mature miRNA duplexes. Ironically,

all these tools also depend upon the availability of genomic

sequences, as they require derivation of precursor miRNA

Figure 1. Work flow of miReader algorithm.
doi:10.1371/journal.pone.0066857.g001
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secondary structure as their first step. Tools like MatureBayes [13]

and MaturePred [14] find the mature miRNA duplexes in a given

pre-miRNA hairpin-loop structure. Both the tools fold the

candidate genomic sequence into secondary pre-miRNA structure

and index all nucleotides alongwith their corresponding pairing

states (Match and Mismatch), considering a total of eight

combinations of nucleotides and pairing states. Values for these

combinations are estimated for the probable miRNA duplex

region as well its flanking regions. It also considers the relative

distance from the terminal loop of the precursor, duplex free

energy as well as distribution of triplet structures for the duplex

region. The last property was introduced by Xue et al [10] for

identification of pre-miRNAs. Earlier, authors of MatureBayes

had also reported pairing state and triplet structure conservation

for some positions in miRNA duplexes. While MatureBayes

employed Naive Bayes classifier, MaturePred used Support Vector

Machine for the same purpose. Similarly, another tool, MiRMat

[30], identifies mature miRNA duplexes in folded pre-miRNA

hairpin-loop structure. However, it also considers Drosha

processing site conservation as well as secondary structure free

energy distribution in the duplex region of the pre-miRNA to

identify mature miRNA duplexes. This tool is based on Random

Forest classifier. The remaining tools to identify mature miRNA

duplexes require read mapping to the genomic sequences and

derived precursors structure, as already described above.

Unlike the above mentioned tools, the tool presented in this

work, miReader, neither requires genomic sequences nor it is

dependent upon pre-miRNA secondary structure and associated

thermodynamic features. Of late, it is being argued that de novo

secondary structure based properties may not provide the desired

accuracy as they are poor discriminator [12,31]. The present

approach identifies the strength of small RNA sequencing reads

information, which has in fact much lesser noise than the genomic

sequences. The genome scanning based existing tools are

subjected to a large number of pseudo-hairpins in genomic

sequences, which could be generally low in the small RNA read

data. Such read data contain only transcribed portions of genome.

Also, the chances of finding a potential miRNA duplex is more in

such data, as miRNAs are formed after processing of both arms of

precursors. A recent pioneer wok on human miRNA profiling

based on deep sequencing also concluded that in a pool of small

RNA read data, a large fraction of reads belongs to miRNAs [32].

The working principle of the presented approach is also based

on the fact that mature miRNA regions exhibit comparative

higher degree of conservation which could be due to presence of

functionally important sites in it, and interaction patterns (pairing

states of nucleotides in duplex) within a mature miRNA duplex

could be important for miRNA identification

[1,12,13,21,22,33,34]. A simple test was conducted to estimate

the extent to which a mature miRNA duplex could be

distinguished from non-miRNA duplex, based on duplex pairing

state patterns in position specific manner. The first discriminating

marker was the length distribution for the assemblies or reads

mapping to mature miRNAs, which were considerably different

from the length distributions for assemblies for reads mapping to

the non-miRNAs (Figure 2). Based on their length, the mature

miRNA and non-miRNA duplexes were clustered into different

length groups and their profiles of duplex pairing states were

developed. Comparisons between the profiles for mature miRNAs

and non-miRNAs suggested that barring of match, for all

remaining pairing states (insertion, deletion, mismatch] the profiles

of non-miRNAs differed from those for miRNAs (Supporting
Material S2). Also, the difference between miRNA and non-

miRNA profiles was not very prominent in terms of distribution of

nucleotides instead of the four pairing states of duplex. Based on

the above mentioned observations, it was envisaged that pairing

states based properties of miRNAs could be used to identify the

mature miRNAs independent of genomic sequences. Small RNA

sequencing reads might be assembled in a systematic manner to

discover duplexes from short read data, on which mature miRNA

duplex pairing pattern could be identified. Within a mature

miRNA duplex, position specific co-existence of different pairing

states could work as a strong signature to identify mature miRNA

duplex without any need to rely upon genomic sequences and

precursor structure determination. As described, scores were

obtained for all mature miRNA and non-miRNA duplexes on the

basis of the 5-state transition profiles. A series of Mann-Whitney

test was performed between miRNA duplexes and non-miRNA

Table 1. Read data, training and testing set information for each species.

C elegans Drosophila
Homo sapiens
(Illumina)

Homo sapiens
(Roche) Arabidopsis Oryza Danio rerio

Total reads 151,017,180 20,75,098 19,759,390 425,505 12,756,632 17,913,317 29,963,921

Total reads mapped on
pre-miRNA sequences

48,991,955 929,257 1,265,903 75,256 896,956 2,110,263 872,363

Total unique reads mapped
on pre-miRNAs

6,280 5,728 62,447 13,207 6,391 2,605 6,210

Total reads mapped
on other ncRNAs

18,353,834 756,982 2,161,550 178,536 1,192,612 3,555,853 7,587,329

Total unique reads
mapped on ncRNAs

63,599 67,183 69,209 18,362 13,836 28,559 14,579

Number of unique encoded
positive duplexes (training)

97 100 500 500 100 250 143

Number of unique encoded
positive duplexes (testing)

97 99 500 500 100 250 142

Number of unique encoded
negative duplexes (training)

97 100 500 500 100 250 143

Number of unique encoded
negative duplexes (testing)

97 99 500 500 100 250 142

doi:10.1371/journal.pone.0066857.t001
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duplexes for the obtained scores. The p-values for all six species

considered in this study attained highly significant values (human,

Arabidopsis, Oryza and Drosohila (2.2 e-16); zebra fish (4.32 e-14) and

C. elegans (2.34 e-14)), suggesting that co-existence of different

pairing states in a mature miRNA duplex may work as a

significant discriminatory property. So far, no significant approach

had been developed to exploit the observations made in the

present study for small RNA reads data, which limits miRNA

information for species whose genome is yet to be sequenced. The

approach presented in the current work was developed and tested

for wide range of model species and delivered highly accurate

results.

Highly Reliable Performance in Absence of Genomic
Sequences

The developed approach was tested for its performance over six

different species viz. Arabidopsis thaliana (representing dicots), Oryza

sativa (representing monocots), human (representing vertebrates

system), C. elegans (representing nematodes), zebra fish (represent-

ing fish) and D. melanogaster (representing insects).

An in-house developed script was used to pick sequences

randomly, and total 500 miRNAs duplexes from the positive set

and 500 non-miRNAs duplexes from the negative set were drawn

from the data sources for human. These duplexes were used to

build the training sets. Equal amount of positive and negative

instances were taken to build the test set. The associated reads for

every instance were retrieved using their corresponding index.

Training was done with different values of iterations going

maximum up to 100 iterations for Multi-boost classifier building.

For human, the developed classification system attained 90.2%

accuracy with 90.4% sensitivity and 92.4% specificity for Illumina

read data model. The mentioned approach attained accuracy of

92.7%, sensitivity of 92% and 93.4% specificity for human model,

using read data from Roche platform. The values for Area Under

the Curve (AUC) for an ROC plot and Mathew’s Correlation

Coefficient (MCC) are considered among the most suitable

indicators of a classifier’s performance and robustness. The

observed MCC and AUC values for human were 0.8941 and

0.9753, respectively, for the training and testing sets generated

from Illumina. Values for MCC and AUC were 0.912 and 0.9820,

respectively, for the training and testing data generated from

Roche 454 sequencing platform. Same procedure was followed for

other target species with suitable input sizes, depending upon the

availability of total known miRNAs. For all the target species

studied here, the accuracy was always above 90% with equally

high values for sensitivity, specificity, MCC and AUC. Table 2
provides the performance details of the classification system for all

target species studied here. The ROC plots for all six target species

is given in Figure 3, which clearly suggests a reliable performance

of the developed approach for wide range of data and species. For

most of the target species under study, when the classifiers were

tested for performance without implementing Multi-boosting,

there was a significant drop in the performance of the classifiers.

However, sometimes the performance of some classification

system models becomes limited and localized towards training

dataset used. Such classifiers usually end up scoring high over a

given test set, but perform poorly over new test sets. An ideal

hypothesis should consistently work well for wide range of possible

datasets. For verifying consistency in the observed performance for

variable datasets for training and testing, total 50 pairs of random

training and testing sets were generated, maintaining almost the

same number of training and testing instances. The performance

measured for every pair of test and training sets for these 50 tests

was found to be consistent and at similar level, scoring overall

accuracy of .90%. This observation was consistent for all five

target species studied here. Figure 4 shows the plots representing

performance for all six target species for 50 randomized sets of

training and testing dataset pairs. Also, a good amount of similarity

exists between the mature miRNA regions belonging to same

miRNA family. Considering this, the training and testing instances

were built in a manner that no miRNA pair existed across the

training and testing sets with common family. By doing so, any

possibility of bias arising from similarity was curtailed. The above

mentioned tests suggest a high degree of reliability of the proposed

approach to identify novel miRNAs without any reference. The

designed system emerged as a highly stable and consistently

Figure 2. Length distribution for reads assemblies for miRNAs and non-miRNAs (ncRNAs). The assemblies from reads mapping to
miRNAs had different length distributions than those observed for assemblies from reads mapping to other non-coding RNAs.
doi:10.1371/journal.pone.0066857.g002
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accurate classification system for wide range of data and species.

Apart from these tests, one more test was performed to assess the

degree of precision for the developed approach. A total of 126

human pre-miRNAs were taken, which could yield a non-miRNA

duplex out of their stem in non overlapping manner, along with

the mature miRNA duplex. In this manner, total 126 non-miRNA

duplexes and 126 miRNA duplexes were obtained from these pre-

miRNAs. It was ensured that none of the 126 non-miRNA

duplexes overlapped with any existing miRNA duplex, as there

could be more than single miRNA being formed by a given pre-

miRNA sequence. The developed tool correctly identified 120

miRNA duplexes and 116 non-miRNA duplexes, suggesting a

substantial precision over a highly confusing data where negative

and positive duplexes co-existed in vicinity of each other. Since the

developed approach works for duplex miRNAs, it may not work

for conditions where complementary partner strand is not found.

Recently, it has been reported that a large number miRNA

variants result due to post-transcriptional processing like trimming,

addition and editing. Such miRNAs are called Iso-miRs [32]. Iso-

miRs have been found to act like their miRNAs and also

complement them [35]. For many, it would be a matter of interest

to look for iso-miRs. Though the prime objective of this work has

been to identify miRNA duplexes directly from the NGS read

data, the tool has been designed in such a way that it could also be

useful to identify the miRNA variants. In order to assess its

performance over iso-miRs, it was tested over a read data which

represented a total of 19,845 iso-miRs for ,703 human miRNAs

[35]. In order to identify potential iso-miRs, the presented tool

applies a few observations made by Morin et al [32] as well as the

data statistics observed for iso-miRs. It was observed that any

group of similar reads having around 3.5% of total reads or more,

mapping to any given reference miRNA could form an iso-miR

group, while considering length as well as substitution/editing

based grouping. Also it was observed that substitutions occurred at

maximum two positions. MiReader identified 98.4% of these iso-

miRs correctly. Using the above mentioned strategy, it could

Table 2. Performance measurement.

C elegans Drosophila Homo sapiens (Illumina) Homo sapiens (Roche) Arabidopsis Oryza Danio rerio

Sensitivity% 97.64 93.25 90.2 92.0 100 100 97.18

Specificity% 97.64 92.13 92.4 93.4 100 100 97.93

Accuracy% 97.64 92.69 91.3 92.7 100 100 97.56

AUC 0.9868 0.9558 0.9753 0.9821 1.0 1.0 0.9916

MCC 0.8971 0.8511 0.8941 0.9120 1.0 1.0 0.9332

The presented data clearly suggests that miReader approach performed consistently with high accuracy for wide range of species.
doi:10.1371/journal.pone.0066857.t002

Figure 3. ROC plot with area under the curve values for all the six target species considered in this study. The plot suggests better and
stable performance of the classifiers with multiboosting.
doi:10.1371/journal.pone.0066857.g003
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Figure 4. Accuracy on random datasets. Different randomly selected instances were used to build the training and testing sets every time. For all
such variable tests and for all species considered, the developed models performed consistently with high accuracy.
doi:10.1371/journal.pone.0066857.g004
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correctly assign the miRNA family and Iso-miR groupings for

96.8% (681 out of 703) groups. The result folder of miReader

generates an iso-miR information sheet which also contains reads

counts based expression measurement of miRNAs (Iso-miRs), an

approach recommended by Morin et al [32].

Application: Identification of Novel Mature miRNAs
without Genome

Encouraged by its performance over experimentally validated

data for wide range of species, the presented approach was applied

for identification of novel miRNAs in Miscanthus (Miscanthus x

giganteus), a monocot grass species of family Poaceae. Miscanthus has

been an important species for fuel based studies whose genome is

yet not sequenced. At present there is no miRNA reported in

miRBase for this species. The small RNA NGS data was made

freely available for the community by the authors (GSE28755).

Using miReader, the reads were assembled and screened for

possible mature miRNAs. A total of 12,400,937 reads were

reported from three tissues of Miscanthus x giganteus out of which

2,050,157 unique small RNA sequencing reads yielded 125,315

assembled candidates for processing. Perfect and imperfect

complementary contigs were searched across the assembled

sequences using the above mentioned approach. In this way, a

total for 10,386 duplexes were found as the potential candidates,

whose encoded patterns were derived and mapped into the

miRNA modeling system of miReader. For the given reads data, a

total of 21 duplexes qualified as novel mature miRNAs candidates

in Miscanthus x giganteus, which also scored very high (using cut-off

score of 0.9 or above) (Supporting Material S3). Also, prior to

the assembly step and de novo discovery of totally novel mature

miRNA candidates, the reads were screened against Miscanthus

transcriptome sequences, non-coding RNA sequences from Rfam

and miRNAs reported at miRBase v19. Figure 5 shows the entire

work flow to report the novel miRNAs in Miscanthus. A large

number of reads mapped to known miRNAs in miRBase,

Figure 5. Workflow representation for novel miRNA identification in Miscanthus.
doi:10.1371/journal.pone.0066857.g005
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suggesting presence of several homologous miRNA families in

Miscanthus. Total of 53 different known miRNA families with 76

different known miRNAs reported in miRBase were found in

Miscanthus. Related detail is given in Supporting Material S4.

While performing this part of study, one more test was carried out

to re-evaluate the performance of miReader over the read data

from Miscanthus, whose data was never used to build the models of

present tool. It was run against the reads data without applying

any screening step against known miRNAs and non-miRNA

databases. It correctly identified ,92% of reads belonging to the

known miRNAs mentioned above and correctly identified 73 out

of 76 known miRNAs. Similarly, it correctly identified ,90% of

reads belonging to the non-miRNA elements mentioned above.

This test supported again the reliability of miReader.

Since the mentioned read data was from three different

experimental condition, it was also possible to measure the

normalized expressions of the identified novel miRNAs and gather

further support. Figure 6 provides the heatmap representation of

identified miRNAs abundance as well as their expression based

clustering, for the three experimental conditions. This also

provides the first hand information about the identified miRNAs’

co-expression pattern, suggesting concerted functioning in the

developmental processes by some of the identified miRNA

clusters. Further, using these 21 mature miRNA candidate

duplexes (yielding 42 possible mature miRNAs), whole transcrip-

tome sequences of Miscanthus giganteus were scanned for miRNA

targets. A reliable plant miRNA target identification system, p-

TAREF [36], was applied for this part of the study which also

generated confidence score of identified targets. A total of 36

target instances scored with maximum two mismatches, out of

which 26 target instances had SVR score above 1.00, suggesting

high possibility of the identified targets (Supporting Material
S5).

The miRNA expression profiles vary with stage and type of

tissue considered in any given study. Therefore, more the

reporting of small RNA reads data is done, higher would be the

ability to identify novel miRNAs. The miRNAs and targets

instances reported in this study had high scores, and they have

been supported with read data. Further experimental studies with

the reported instances would be helpful for understanding the

biology of Miscanthus and its regulatory systems. Application of the

developed approach over the reads data from Miscanthus also

clearly demonstrated the way it could be used to unravel the

miRNAs of species whose genome is not sequenced.

Parallel Implementation and Availability
The entire algorithm has been implemented as a concurrently

coded tool, miReader, available for Linux as well as Windows

systems in standalone GUI form. The entire implementation has

been done in Java and Qt C++ library. Since any high throughput

analysis demands a large amount of computing, and thus

execution speed becomes a concern in most of the genome wide

studies. Therefore, it becomes a pragmatic choice to develop

applications with parallel architecture. In the present work,

parallel coding was done using Java multi-threading library. On

a given dataset, it was observed that parallel coded version

drastically reduced the execution time (Figure 7). miReader is

capable of running on multiple processors simultaneously. It

utilizes Java concurrent library (JCL) to distribute multiple

sequences across a given number of processors. The parallelism

of miReader was implemented at two stages: A) During assembling

the overlapping reads to produce assemblies and B) During

complementarity search and duplex formation. To assemble the

overlapping reads, miReader uses KMP algorithm which takes a

linear time to search the string O(m+n) where ‘m’ and ‘n’ are the

Figure 6. Heatmap based expression representation and
clustering of identified miRNAs in Miscanthus.
doi:10.1371/journal.pone.0066857.g006

Figure 7. Impact of concurrency. The plot clearly shows that with
concurrency the rate of execution could be enhanced several times.
doi:10.1371/journal.pone.0066857.g007
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lengths of related strings. In miReader, this algorithm has been

modified to search multiple strings concurrently. Using the parallel

version of KMP algorithm, the time taken for assembling reduced

proportionally to the number of processors provided. The process

to search the most suitable duplex required global alignment of

complementary sequences, which is another time consuming step

with quadratic operation time. Implementation of parallelism at

this step also contributed to sharp reduction in computation time.

Supporting Material S6 contains instructions to use miReader.

miReader along with its documentation is freely available at:

http://scbb.ihbt.res.in/2810-12/miReader.php as well as at an

open access portal, Sourceforge (http://sourceforge.net/projects/

mireader/).

Conclusion
miRNAs have emerged among the central components of

regulatory systems. Several computational approaches have been

developed to identify precursors of miRNAs as well as locate

mature miRNAs within them. However, all these methods rely

upon the availability of genomic reference sequences to detect

miRNAs, restricting miRNA information to only those species

whose genomic sequences are available. In the present work, for

the first time, an approach and a tool has been presented which

could detect the mature miRNAs directly from next generation

sequencing read data, without any need of reference/genomic

sequences. The approach was tested over wide range of species,

and the presented approach achieved high accuracy for all the

target species. Using the same approach, 21 novel mature miRNA

duplex candidates were identified for a plant species whose

genome has not been sequenced yet and there is negligible miRNA

data reported for this species in miRBase. This has clearly

demonstrated clearly that in spite of unavailability of genomic

sequences, the presented tool, miReader, could accurately identify

the mature miRNAs directly from small RNA sequencing data. As

already shown in this work that due to unavailability of genomic

sequences, the current miRNA information got skewed towards

the organisms with sequenced genome. It is expected that with this

tool such information skew would be offset to a large extent and

miRNA biology of several new species would now be possible even

without availability of their genomic sequences.
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