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Abstract

Independent component analysis (ICA) can identify covarying functional networks in the resting brain. Despite its relatively
widespread use, the potential of the temporal information (unlike spatial information) obtained by ICA from resting state
fMRI (RS-fMRI) data is not always fully utilized. In this study, we systematically investigated which features in ICA of resting-
state fMRI relate to behaviour, with stop signal reaction time (SSRT) in a stop-signal task taken as a test case. We did this by
correlating SSRT with the following three kinds of measure obtained from RS-fMRI data: (1) the amplitude of each resting
state network (RSN) (evaluated by the standard deviation of the RSN timeseries), (2) the temporal correlation between every
pair of RSN timeseries, and (3) the spatial map of each RSN. For multiple networks, we found significant correlations not only
between SSRT and spatial maps, but also between SSRT and network activity amplitude. Most of these correlations are of
functional interpretability. The temporal correlations between RSN pairs were of functional significance, but these
correlations did not appear to be very sensitive to finding SSRT correlations. In addition, we also investigated the effects of
the decomposition dimension, spatial smoothing and Z-transformation of the spatial maps, as well as the techniques for
evaluating the temporal correlation between RSN timeseries. Overall, the temporal information acquired by ICA enabled us
to investigate brain function from a complementary perspective to the information provided by spatial maps.
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Introduction

Functional network analysis based on resting state fMRI (RS-

fMRI) is rapidly emerging as a powerful tool for in vivo mapping

of neural circuitry in the human brain [1]. Among various

approaches for identifying and characterising resting state

networks (RSNs), seed-based correlation is the most widely used.

This method identifies resting state networks by detecting voxels

whose time series significantly correlate with that of a pre-defined

region of interest (ROI). In addition to generating highly

repeatable network patterns [2,3], seed-based correlation analysis

has also been widely used to investigate the pathologies of various

diseases [4] as well as the neural basis of individual differences in

behaviour [5,6] and personality traits [7–9].

Though seed-based correlation has proven to be a powerful and

effective tool in identifying and characterising RSNs, the networks

obtained from seed-based correlation are dependent upon the way

the seed regions are defined [10]. Moreover, seed-based correla-

tion only evaluates the relationship between the brain and the

seed, one seed at a time, and hence overlapping functional

networks are not well modelled. Independent component analysis

(ICA) can be a powerful alternative for exploring RSNs [11,12].

ICA aims to separate independent patterns by maximizing the

mutual spatial independence among components. To date, ICA

has been adopted not only to characterize brain function of

normal subjects [13,14], but to depict the development of

functional networks at different life stages [15–17] and to

investigate the pathologies of various diseases such as Alzheimer’s

disease [18–20], schizophrenia [21,22], depression [23] and

multiple sclerosis [24].

Despite its relatively widespread use, the potential of ICA in RS-

fMRI data analysis is not always realized. In most applications, the

spatial patterns of the acquired RSNs are the primary focus, and

the differences in the spatial pattern of one or more RSNs between

different subject groups are then identified [18–20,22–24]. One

exception is Garrity et al. [21], who analyzed not only the

abnormalities in the spatial maps, but the frequency distribution of

the time series of the default mode component in schizophrenia.

The pioneering study by Garrity et al. indicated the potential use

of the timeseries of separate RSNs acquired by ICA in evaluating

brain functions [21]. Other investigations of the temporal charac-

teristics of RSNs uniformly derived the RSN timeseries from
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predefined ROIs rather than ICA [25–27]. In these studies, the

temporal correlation matrix (between ROIs or RSNs) was the

measure of interest and was used to discriminate between disease

state, brain state and age, respectively. Such studies indicated that

both the temporal features of separate RSNs and the temporal

correlation between RSNs can provide additional information

besides those provided by spatial maps.

The aim of the study was to systematically investigate which

features in ICA of resting-state fMRI relate to behaviour, with stop

signal reaction time (SSRT) in a stop signal task taken as a test

case. The stop-signal task has been shown to be a valuable tool for

the study of response inhibition, a key component of executive

control, and the SSRT measures subjects’ ability to inhibit a

prepotent response. The study was carried out as follows: (1)

Temporal-concatenation group-ICA was performed on the RS-

fMRI data of 34 subjects to acquire the group independent

component maps. The dataset has formerly been used in a study

investigating the relationship between the regional homogeneity of

RS-fMRI signals and individual performance in response inhibi-

tion, as evaluated by SSRT [28]. Dual regression was then

performed to find subject-specific versions of the group maps,

along with associated timeseries (for each RSN, of each subject); (2)

RSN-SSRT relationships were analyzed from three perspectives.

First, the standard deviation of each RSN timeseries was used to

represent the strength (amplitude) of the RSN, and correlation

between this amplitude and SSRT across subjects was performed

for each RSN. Second, temporal correlations between two RSN

timeseries were calculated, for every pair of RSNs and for every

subject; these correlations were then correlated with SSRT across

subjects. Finally, as has been done in most previous ICA-based

analyses, SSRT was correlated with each spatial map in a voxel-

wise way to evaluate the relationship between the RSN spatial

maps and SSRT.

The influences of certain processing steps (on the final RSN-

SSRT correlation results) were also evaluated in this study, and

these included: (1) the influence of ICA decomposition dimension

on the RSN-SSRT correlation results - all analyses were based on

group-ICA decompositions at two dimensionalities, namely, 27

dimensions (the optimal dimensionality chosen by the ICA

algorithm) and 70 dimensions [14]; (2) the influence of different

correlation-matrix estimation techniques, including full (normal)

correlation and partial correlation [29]; (3) the influence of z-

transformation and spatial smoothing of the spatial maps.

Materials and Methods

Ethics Statement
Written informed consent was obtained from each participant,

and the study was approved by the Institutional Review Board of

the State Key Laboratory for Cognitive Neuroscience and

Learning, Beijing Normal University.

Subjects
Thirty-four healthy male subjects (23.763.8 years) participated

in the present study. All were right-handed and had no history of

neurological or psychiatric disorders. For each subject, we

acquired both MRI data and performance data in the stop-signal

task. Each subject was required to perform stop-signal tasks

outside the scanner immediately after scanning.

Behavioral Data Acquisition
Each subject performed a stop-signal task including 240 Go

trials and 60 Stop trials. For the Go trials, subjects were instructed

to respond as quickly as possible without sacrificing accuracy by

clicking the mouse button according to the Go signal that

appeared on the centre of the computer screen. For the Stop trials,

subjects were instructed to stop their response on seeing a stop

signal. By dynamically adjusting the time interval between the

Stop and Go signals (stop-signal delay, SSD) of each Stop trial,

approximately 50% successful response inhibition was yielded.

Each subject’s ability in response inhibition, as measured by the

stop-signal reaction time (SSRT), was estimated by subtracting

SSD from the mean value of reaction time (RT) of Go trials

[30,31]. More details can be found in the paper by Tian et al. [28].

MRI Data Acquisition
MRI data were obtained using a 3.0 Tesla Siemens Trio

scanner at the Imaging Center for Brain Research, Beijing Normal

University. Since the RS-fMRI signal can be sensitive to preceding

events [32], each subject underwent an 8-min fMRI scan during a

conscious resting state immediately after the acquisition of the

localizer images. Functional images were collected axially using an

echo-planar imaging sequence sensitive to blood oxygen level

dependent (BOLD) contrast with the following parameters: 33

slices, 2,000/30 ms (TR/TE), 3.5/0.7 mm (thickness/gap),

2206220 mm (FOV), 64664 (resolution), 90o (flip angle). During

the resting state, the subjects were instructed to remain still, awake

with their eyes closed, as motionless as possible and to think of

nothing in particular (none of the subjects fell asleep during

scanning, according to a simple questionnaire administered

immediately after the scan). Whole brain 3D T1-weighted images

were then obtained sagittally with the following parameters: 128

slices, 2,530/3.39 ms (TR/TE), 1.33/0 mm (thickness/gap),

2566256 (resolution), 2406240 mm (FOV), 7o (flip angle).

RS-fMRI Data Preprocessing
RS-fMRI data preprocessing was performed using the FMRIB

Software Library (FSL) [33,34]. The following processing steps

were applied to the RS-fMRI data of each subject: (1) Removal of

the first 10 volumes; (2) Correction for head motion with Motion

Correction using FMRIB’s Linear Image Registration Tool

(MCFLIRT) [35]; (3) Removal of non-brain tissues with Brain

Extraction Tool (BET) [36]; (4) Spatial smoothing using a

Gaussian kernel of full width at half maximum (FWHM) 5 mm;

(5) Removal of slow drift by high-pass temporal filtering (cutoff

period = 100.0 s); (6) Registration of the subject’s RS-fMRI data to

their high-resolution structural image and then to MNI152

standard space using FMRIB’s Linear Image Registration Tool

(FLIRT) and FMRIB’s Nonlinear Image Registration Tool

(FNIRT) [35,37], and resampling of the subject’s registered RS-

fMRI data in MNI152 space to 26262 mm resolution. Given that

effects associated with head motion and other artifactual sources

are ameliorated through the use of ICA and multiple-regression

within the dual-regression, and artefactual ICA components later

removed, no denoising was performed here.

Group-ICA and Dual-Regression
Temporal-concatenation group-ICA was carried out using

Multivariate Exploratory Linear Optimized Decomposition into

Independent Components (MELODIC) tool in FSL [38]. ICA was

performed at two dimensionalities d: one was estimated automat-

ically by the MELODIC software (giving d = 27), and another was

set to d = 70. All following analyses were based on the group-ICA

results from both dimensionalities.

Dual regression was then applied to each subject’s preprocessed

RS-fMRI data to build subject-level versions of the group-ICA

maps, and associated timeseries [39,40]. Specifically, for each subject

(separately): (1) the formerly obtained d group-ICA spatial maps

Spatial vs. Temporal Features in ICA
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(RSN SspatialMap Groupv|d , with v indicating the number of

voxels in a spatial map, and here v = 916109691) were used as

spatial regressors against the subject’s 4D RS-fMRI data

(fMRI Datav|t, with t indicating the number of volumes, and

here t = 230), to estimate the RSN timeseries

(RSN Timeseriesd|t) based on:

fMRI Datav|t~RSN SspatialMap Groupv|d

|RSN Timeseriesd|t

ð1Þ

Before being fed into the model, each component map was

demeaned and normalized. The equation is solved by pre-

multiplying both sides by the pseudo-inverse of the group maps

matrix. (2) The resulting d RSN timeseries were then used as

temporal regressors against each subject’s preprocessed 4D RS-

fMRI data, to estimate the d individual-subject-level spatial maps

(RSN SspatialMap Subjectd|v) based on:

fMRI Datat|v~RSN Timeseriest|d

|RSN SspatialMap Subjectd|v

ð2Þ

Again, each RSN timeseries was demeaned and normalized

before entering into the regression model.

Among the d RSNs, some are functionally interpretable and

some were judged to be associated with artifactual sources, such as

head motion, cerebral spinal fluid pulsation, white matter or large

blood vessels. Therefore, before evaluating the relationship

between SSRT and components, d’ functionally interpretable

components were selected by visual inspection. The analyses of the

RSN-SSRT relationships were only based on these d’ functionally

interpretable components.

RSN-SSRT Relationship Analyses
We analyzed RSN-SSRT correlations from three perspectives.

First, the RSN timeseries standard deviation (calculated before it

was normalized for use as the regressor in the second dual

regression stage) was estimated, to represent the strength

(amplitude) of each component in each subject. We then evaluated

the amplitude-vs-SSRT correlation, for each functionally inter-

pretable component. The amplitude-vs-SSRT correlation results

were thresholded at p,0.05 (FDR corrected, using fdr command

in FSL).

Secondly, we estimated correlations between all pairs of the d’

RSN timeseries (forming a network matrix of correlations). We

then estimated the correlation between these values and SSRT,

across subjects. The d’6d’ ‘‘network matrices’’ (of correlations)

were estimated in three ways, namely, the full correlation

(CORR), the regularized normalized inverse of the covariance

matrix (ICOV) [29,41–44], using a lambda of 10 (Fig. S1, ICOV

matrices evaluated based on lambdas of 5, 10 and 20 are generally

larger in magnitude and less sparse than those based on 50, 100,

and 200, and here we chose the middle, lambda = 10), and the

inverse covariance (group-level covariance modeling) (gICOV)

[45]. CORR evaluates the similarity between two timeseries

directly, and reflects both direct and indirect functional connections

[46]. Both ICOV and gICOV evaluate the similarity between two

timeseries after regressing out the influences from all other

timeseries, and are regularized (mathematically better conditioned)

versions of partial correlation; these measures should emphasize

direct functional connections, rather than indirect [29]. Whereas

ICOV only regularizes the partial correlation matrix within subject

(shrinking small/noisy estimates towards zero), gICOV addition-

ally regularizes the matrices across subjects, to further ameliorate

estimability problems. To diminish the influence of artifacts, the

timeseries of the artifactual components were included in the

ICOV and gICOV analyses (but matrix elements involving those

were discarded at the point of investigating correlations against

SSRT). The correlation/network matrices evaluated by the three

methods were transformed into z-scores using the Fisher transform

to improve normality, and the z-transformed correlations were

then fed into SSRT correlation analyses. As almost no SSRT

correlations survived a corrected threshold of p,0.05 (FDR

corrected), to provide more qualitative results, we also report

SSRT correlations at a more liberal threshold of p,0.01

(uncorrected).

Finally, voxel-wise correlation was performed between SSRT

and the spatial-maps of the RSNs (the outputs of the dual

regression). For each of the d’ functionally interpretable RSNs, the

individual-subject-level spatial map was first collected across

subjects into a 4D file (the fourth dimension was subject number),

and 5,000 permutations were performed on this 4D file to test for

significant spatial-map-vs-SSRT correlations. The results were

thresholded at p,0.05 (using threshold-free cluster enhancement

(TFCE) in FSL [47], FWE corrected). Here, the effects of two

processing steps were evaluated. One was the effect of the z-

transformation of the spatial maps by dividing the relevant

component weight by the standard deviation of the background

noise (the residuals from the multiple-regression that forms the

second stage of the dual regression). The distinction is equivalent

to the difference between parameter estimates (betas or contrasts

of betas), in general linear modeling, and Z-statistic maps of

statistical significance. We performed SSRT correlations on both

the spatial maps produced directly by dual-regression, and the z-

transformed version of these spatial maps. Another factor

evaluated was the effect of spatial smoothness, and here we

evaluated SSRT correlations based both on the ‘‘unsmoothed’’

(i.e., only the 5-mm FWHM smoothing at the preprocessing stage)

spatial maps and on the spatial maps additionally smoothed with a

Gaussian kernel of FWHM 10 mm.

Results

Group-ICA Spatial Maps
From the 27-component group-ICA analysis, 16 components

were judged to be non-artefactual, based on visual inspection of

each component’s spatial map. Spatial maps of these are shown in

Fig. 1 (A). The functions and anatomy of these RSNs are

summarized in Table S1 and further description of each of these

RSNs can be found in Text S1. Maps of eleven RSNs judged to be

artefactual can be found in Fig. S2.

Based on the 70-component analysis, 34 components were non-

artefactual. Maps of those RSNs that exhibited significant

amplitude-vs-SSRT correlation can be found in Fig. 1 (B), and

the spatial maps of all other components can be found in Figs. S3,

S4, S5, S6 and S7. As has been reported by Smith et al. [14], 70-

component analysis provided a more detailed separation of

functional networks than did the 27-component results. For

instance, the motor network (IC No. 10) based on 27-component

analysis was divided into 4 subnetworks (IC No. 30, 32, 56, 70) in

the 70-component analysis, and the primary-occipital/higher

visual network (IC No. 25) in the 27-component results was

further divided into 3 subnetworks (IC No. 46, 60, 67) in the 70-

component analysis (Fig. 1 (B)).

Spatial vs. Temporal Features in ICA
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Figure 1. Group-ICA estimated RSNs based on 27-component analysis (A) and 70-component analysis (B). All sixteen non-artefactual
components from the 27-component analysis (A) and 12 non-artefactual components exhibiting significant or marginal significant amplitude-vs-SSRT
correlations from the 70-component analysis (B) were shown. The number of each component was based on the ranking of variance explained by the
component. A summary of the functions of the components shown in subfigure (A) can be found in Table S1.
doi:10.1371/journal.pone.0066572.g001
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Correlation of SSRT vs. RSN Amplitude (RSN Timeseries
Standard Deviation) across Subjects

Six components from the 27-component analysis exhibited

significant negative correlations between RSN timeseries standard

deviation and SSRT, at a threshold of p,0.05 (FDR corrected)

(Table 1, Fig. S8). For components based on the 70-component

analysis, negative SSRT correlations from 9 components were

significant at a threshold of p,0.05 (FDR corrected) (Table 1, Fig.

S9). No significant positive SSRT correlation was observed for any

RSN from either of the two dimensions. Multiple comparison

correction was carried out because of the number of RSNs’

amplitudes tested for correlation with SSRT (d’ = 16 and 34,

respectively, for the two dimensionalities), and a further correction

factor of two (because testing for positive and negative correlations)

was applied here.

The results based on the two different decomposing dimensions

correspond to each other well (Table 1). Specifically, clear

correspondence was observed for the components corresponding

to the motor control network, the primary-medial visual network,

the two dorsal attention networks (DANs) (identified by the

bilateral intraparietal sulcus and the bilateral frontal eye field)

[48,49] and the task-activation network (as proposed in [6],

identified by lateral frontal-parietal regions, the dorsal anterior

cingulate cortex (dACC) and the orbital-frontoinsula regions). All

four sub-networks of the motor network based on 70-component

analysis exhibited significant negative SSRT correlation; correla-

tion of their counterpart from the 27-component analysis only

survived a less strict threshold of p,0.05 (uncorrected). For the

primary-occipital/higher visual network, the one component from

the 27-component analysis and two of the three components from

the 70-component analysis exhibited significant amplitude-SSRT

correlations (p,0.05, FDR corrected), and correlation of the third

visual component only survived a threshold of p,0.05 (uncorrect-

ed).

Temporal Correlation between RSNs, and the Correlation
of This with SSRT across Subjects

Fig. 2 shows the mean (across subjects) full/partial correlation

matrices evaluated by the 3 correlation-matrix methods. It can be

seen that the results look somewhat similar, specifically, the results

based on the two partial-correlation-oriented methods (ICOV &

gICOV) are very similar, and the correlations evaluated by

CORR are generally larger in magnitude (and less sparse) than

their counterparts based on partial-correlation methods (as

expected).

Temporal correlations between components are of functional

significance. For instance, based on 27-component analysis, strong

positive correlations were observed between the two visual networks

(Coordinate 9, IC No. 14 and Coordinate 16, IC No. 25), between

the two default mode components (DMN) (Coordinate 4, IC No. 7

and Coordinate 14, IC No. 21) and between the two DANs (IC

No. 12 and IC No. 8), although in the latter two cases this may be

partly driven by spatial blurring and induced spatial overlap

between strongly neighbouring components (this is less likely in the

visual case). Strong negative correlations were observed between

the anterior DMN (Coordinate 14, IC No. 21) and the two DANs

(Coordinate 8, IC No. 11; Coordinate 12, IC No. 19), and

between the posterior DMN (Coordinate 4, IC No. 7) and the

secondary DAN (Coordinate 12, IC No. 19). However, the

correlation between the posterior DMN (Coordinate 4, IC

No. 7) and the primary DAN (Coordinate 8, IC No. 11) was

positive.

The SSRT correlations based on the RSN timeseries correlation

r values and z-transformed-r values were very similar. Therefore,

we report only the results based on z-transformed correlation

matrices here. Fig. 3 shows the SSRT correlations across subjects.

The results based on the two partial-correlation methods (ICOV &

gICOV) were very similar (see also the right column of Fig. S10).

The results based on full correlation methods are more different,

but still bear some resemblance to the partial-correlation results

(see also the left and middle columns of Fig. S10).

From the 27-component analysis, gICOV gave significant

correlation with SSRT (p,0.05, FDR corrected) for just one

network matrix element (i.e., only one pair of RSN timeseries), and

no significant SSRT correlation was found when using the CORR

and ICOV methods. This single pair of RSNs, showing a positive

temporal partial-correlation that covaried positively with SSRT, is

Nos. 6 and 25, the orbital-frontal and primary-occipital/higher

visual networks (see the third row and the second column of Fig.

S11). From the 70-component analysis, no significant SSRT

correlation was observed from any of the three methods. To

provide a qualitative view of the distribution of the reasonably

strong SSRT correlations, we report results based on the 27-

component analysis that survived a threshold of uncorrected

p,0.01 (Table 2, see also Fig. S11).

Correlation of SSRT vs. RSN Spatial Maps across Subjects
Results relating to the influences of z-transformation and spatial

smoothing on the spatial-map-vs-SSRT correlations are provided

in Table 3, Figs. 4 and and S12. Significant spatial-map-vs-SSRT

Table 1. Significant negative correlation of RSN amplitude
(timeseries standard deviation) vs. SSRT.

27 dimensions 70 dimensions

IC No. r
p-value
(uncorrected) IC No. r

p-value
(uncorrected)

Motor Network

10a 20.37 0.031 30 20.44 0.0089

32 20.44 0.0085

70 20.46 0.0069

56 20.43 0.011

Motor Control Network

9 20.47 0.0051 25 a 20.41 0.016

Visual Network

14 20.51 0.0022 54 20.51 0.0019

25 20.47 0.0051 46 20.52 0.0018

60 20.47 0.005

67 a 20.37 0.033

Dorsal attention network

11 20.45 0.0069 68 20.49 0.0032

19 20.46 0.0064 66 20.51 0.0018

Task2activation network

24 20.41 0.015 69 a 20.40 0.018

The results obtained at two decomposing dimensions, arranged according to
their correspondence in the function of components. The threshold
(determining inclusion in this table) was p,0.05 (FDR corrected), which
corresponds to uncorrected pƒ0:015 for the 27-component analysis and
uncorrected pƒ0:011 for the 70-component analysis. For components
exhibiting significant SSRT correlations, their counterparts obtained at the other
decomposing dimension were also listed here even if they did not survive the
threshold, and are indicated by a.
doi:10.1371/journal.pone.0066572.t001
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correlations were observed in regions within the medial and lateral

visual networks, the motor network, the two DANs and the DMN

(Fig. 4, S11, Table 3). In addition, significant correlations were

also found in the dACC on the spatial-map of the motor network

(see subfigures 70-70-N-S and 70-70-Z-S of Fig. S12), and the

visual regions on the spatial-map of the secondary DAN (see

subfigure 70-66-N-S of Fig. S12).

Not surprisingly, spatial smoothing of the spatial maps increased

the spatial smoothness of the spatial-map-vs-SSRT correlation

maps (Fig. 4). Moreover, a greater number of significant voxels

(p,0.05, TFCE enhanced, FWE corrected for multiple compar-

isons across space, and for two-sided tests, but not corrected across

multiple RSNs), if any, were detected on the correlation maps

based on 10-mm smoothed spatial maps, compared to those based

on unsmoothed spatial maps (Table 3). A greater number of

significant voxels were observed based on the original spatial maps

as compared to those based on the z-transformed spatial maps

(Table 3). This was true for all 7 cases (showing significant results)

based on the 27-component analysis and all 12 cases based on the

70-component analysis. The spatial-map-vs-SSRT correlations

based on the original (BOLD amplitude) and z-transformed

spatial-maps were largely overlapping. In five out of six cases,

more than 90 percent of significant voxels based on z-transformed

spatial maps lay within (group mean) significant clusters acquired

based on original spatial maps (Table 3).

It should be noted that the present spatial-map-vs-SSRT

correlations were performed on each of the non-artefactual spatial

maps separately. For full consideration of multiple comparisons,

Figure 2. Maps of the mean (across subjects) full/partial correlation matrices. The coordinates in each subfigure indicate the number of the
component within the set of non-artefactual components. The correspondence between the component numbers and their coordinates in the
subfigures can be found in Table S2.
doi:10.1371/journal.pone.0066572.g002

Figure 3. Correlation of SSRT vs. the full/partial (within-subject) RSN timeseries correlation matrices across subjects.
doi:10.1371/journal.pone.0066572.g003
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more stringent correction should be applied. If Bonferroni

correction were adopted here, then an appropriate threshold

should be p (already corrected over space and two-tailed testing) ,0.0031

(0.05/16) for the 27-component analysis, and p,0.0015 (0.05/34)

for the 70-component analysis. As can be seen from Table 3, none

of the eight ‘‘significant’’ results based on the 27-component

analysis and only three of the seventeen ‘‘significant’’ results based

on the 70-component analysis survived this more stringent

thresholding.

Discussion

In this study, we systematically investigated which features in

ICA of resting-state fMRI relate to subjects’ behaviour, with their

performance in response inhibition measured by SSRT taken as a

test case. For multiple networks, we found significant (fully

corrected) correlations not only between SSRT and spatial maps,

but also between SSRT and RSN timeseries amplitude. Most of

these amplitude- and spatial-map-vs-SSRT correlations were of

functional interpretability. The temporal correlations between

Table 2. Network matrix vs. SSRT correlations from the 27-component analysis that survived a threshold of uncorrected p,0.01.

Component No. CORR ICOV gICOV

IC1 IC2 r-value p-value (uncorrected) r-value p-value (uncorrected) r-value
p-value
(uncorrected)

24 25 0.48 0.0042 0.26 0.14 0.13 0.47

9 19 0.46 0.0064 0.083 0.64 0.099 0.58

2 17 0.44 0.0096 0.37 0.032 0.36 0.036

9 14 0.32 0.066 0.35 0.040 0.45 0.0071

10 24 0.26 0.14 0.35 0.044 0.50 0.0026

6 25 0.17 0.34 0.53 0.0013 0.59* 0.00024

6 17 0.15 0.41 0.48 0.0037 0.43 0.011

21 25 0.12 0.48 20.37 0.031 20.53 0.0014

17 20 20.31 0.074 20.45 0.0081 20.47 0.0053

*indicated that the SSRT correlation survived a threshold of p,0.05 (FDR corrected). R-values in bold indicate that the SSRT correlation survived the threshold of
uncorrected p,0.01.
doi:10.1371/journal.pone.0066572.t002

Figure 4. The effects of spatial smoothing and z-transformation upon spatial-map-vs-SSRT correlations. The negative spatial-map-vs-
SSRT correlation maps were thresholded at p,0.05 (TFCE corrected for multiple comparisons across space, and for two-sided tests, but not corrected
across multiple RSNs). Non-Z-Map indicates SSRT correlations on the spatial maps produced directly by dual-regression, and Z-Map indicates the
correlations produced by the z-transformed version of these spatial maps. No Smooth indicates SSRT correlations based on the unsmoothed (i.e., only
the 5-mm FWHM smoothing at the preprocessing stage) spatial maps, and 10-mm smooth indicates the SSRT correlations based on the spatial maps
additionally smoothed with a Gaussian kernel of FWHM 10 mm. The correlation maps were superimposed on their respective group-mean spatial
maps obtained by Group-ICA and then on the MNI152 template. The group-mean spatial maps were provided here to show whether the significant
regions lie within or outside the group-level RSNs. Red-yellow indicates significant regions in the group-mean spatial map, blue indicates significant
spatial-map-vs-SSRT correlations that do not overlap with the group-mean map, and green indicates regions of overlap. The results were based on
components corresponding to primary-medial (high eccentricity) visual networks, namely, component No. 14 from the 27-component analysis and
component No. 54 from the 70-component analysis. The spatial-map-vs-SSRT correlations based on the z-transformed and 10-mm smoothed
components were also shown though no significant voxel was observed. It can be seen that a greater number of significant voxels, if any, could be
detected based on non-z-transformed and 10-mm smoothed spatial maps.
doi:10.1371/journal.pone.0066572.g004
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RSN pairs were of functional significance, but correlation-

network-matrix methods tested did not appear to be very sensitive

to finding SSRT correlations. A detailed discussion of the methods

and results are as follows.

Multiple Networks Were Found to Relate to Individual
Differences in SSRT When Judging by RSN Timeseries
Amplitude

SSRT correlations were performed on each component in this

study to investigate the relationship between the ‘‘strength’’ of a

component as a whole and SSRT. The results showed that the

SSRT correlations based on the 27-component analysis and those

based on the 70-component analysis correspond to each other

well. This correspondence between the results based on different

decomposition dimensions indicated that exact decomposition

dimension would hopefully have limited impact on the RSN

timeseries amplitude-based results.

In this study, only negative amplitude-vs-SSRT cross-subject

correlations were observed, indicating that higher amplitudes of

the RSNs are associated with better performance in inhibition, as

evaluated by shorter SSRT. The RSNs exhibiting significant

SSRT correlations include not only networks for sensory-motor

processing, including the medial and lateral visual networks, the

motor and the motor control networks, but also networks

specialized for higher-level cognitive processing, including the

DAN/task-activation network (Table 1, Figs. S8 and S9).

Most of these significant amplitude-vs-SSRT correlations are of

functional interpretability. For instance, the significant correlations

observed in the motor and motor control networks in this study

might also be interpreted by their own roles in response inhibition,

as components of these two networks have been reported to play

critical roles in inhibition [50,51]. The present finding of

significant amplitude-vs-SSRT correlations in the visual networks

based on RS-fMRI are consistent with the findings of significant

activation-vs-SSRT correlations based on a stop-signal task with

Table 3. The effects of z-transformation and spatial smoothing on spatial-map-vs-SSRT correlations.

27-Component Analysis

IC No Smoothed Nz Nnon-z Noverlap Poverlap (%) TFCE enhanced, FWE corrected

min pz min pnon2z

14 N 35a 7888 0 0.00 0.030 0.0032

Y – 33885 – – – 0.004

16 N – 18 – – – 0.036

S – 37 – – – 0.050

19 N – 15a – – – 0.022

25 N – 2217 – – – 0.0068

S – 92 – – – 0.049

70-Component Analysis

IC No Smoothed Nz Nnon-z Noverlap Poverlap (%) TFCE enhanced, FWE corrected

min pz min pnon2z

29 Y 2853 3804 2597 91.03 0.029 0.022

36 N – 17a – – – 0.030

54 N 173a 4782 173 100.00 0.010 0.0008*

Y – 18296 – – – 0.0010*

56 N – 507 – – – 0.0092

Y – 4551 – – – 0.0156

60 N 295 2714 292 98.98 0.008 0.004

Y 6390 28635 6390 100.00 0.026 0.0116

66 N – 1067 – – – 0.0024

Y – 32157 – – – 0.002

70 N – 1751 – – – 0.0036

Y 2426 60624 2426 100.00 0.0016 0.0008*

Nz is the number of significant voxels based on z-transformed spatial maps; Nnon-z is the number of significant voxels based on original spatial maps; Noverlap is the

number of significant voxels in common for the results based on z-transformed spatial maps and those based on original spatial maps; Poverlap~Noverlap
�
min (Nz,Nnonz)

describes the consistency of the results based on z-transformed spatial maps and those based on original spatial maps. The threshold was p,0.05 (TFCE enhanced, FWE
corrected across space, two-sided, but not corrected across RSNs). min pz is the TFCE corrected p-value (across space, two-sided, but not across RSNs) of the strongest
spatial-map-vs-SSRT correlation based on z-transformed spatial maps, and min pnon{z is that based on original spatial maps. ‘‘Y’’ indicates the results were based on 10-
mm smoothed spatial maps and ‘‘N’’ indicates no spatial smoothing. * indicates that the SSRT correlation survived a fully-corrected threshold of p,0.05 (TFCE
enhanced, FWE corrected for multiple comparisons across space, and for two-sided tests, and further corrected across multiple RSNs. To note, these RSNs also showed
significant amplitude-vs-SSRT correlations). a indicates that significant clusters were detected only on the correlation maps based on unsmoothed spatial-maps.
doi:10.1371/journal.pone.0066572.t003
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visual stimulus (see Fig. 2C in [52] and Fig. 3B in [53]). The DAN

has been deemed to ‘‘link relevant sensory representations to

relevant motor maps’’ [49]. The task-activation regions have

frequently been reported to coactivate in response to error,

attention and response selection [54–56], which are closely related

to response inhibition [50]. Menon et al. reported coactivation of

the task-activation regions in a Go/No-Go task, another paradigm

in which response inhibition is involved [54]. The present finding

of significant SSRT correlation in the DAN and task-activation

network is consistent with these former findings.

Temporal Correlations between RSNs Were of Functional
Significance, but Were Not Very Sensitive to Finding SSRT
Correlations

Three network (correlation) matrix evaluation techniques were

used in this study to evaluate the strength of the interactions

between RSNs. The group-mean matrices acquired by different

evaluation techniques were reasonably similar, with stronger and

less sparse correlations observed via the CORR (full correlation)

method (Fig. 2). This is expected, because partial-correlation

methods aim to remove mutual dependencies originating from

other brain regions’ common influences [57].

The temporal correlations between RSN pairs were of

functional significance. For instance, based on 27-component

analysis, strong positive correlations were observed between the

medial and lateral visual networks, between the anterior and

posterior parts of the DMN and between the two DANs. These

findings are consistent with former findings of close relations

among visual regions [58], DMN regions [3] and DAN regions

[48]. The DMN, as a whole, has formerly been reported to be

negatively correlated with the so-called task-positive network [59],

most of which overlaps the present DANs. In the present study,

strong negative correlations were observed between the anterior

DMN and the two DANs, and between the posterior DMN and

the secondary DAN, a result consistent with previous work based

on seed-based correlation [59]. However, the correlation between

the posterior DMN and the primary DAN was positive in this

study. Moreover, the positive correlation between the two

networks evaluated by the partial-correlation methods was the

strongest among the 120 possible component-pairs based on 27-

component analysis. This finding might be explained by the

functional heterogeneity of the anterior and posterior parts of the

DMN [60]. The functional significance of the strong positive

correlation between the posterior DMN and the primary DAN

needs to be further investigated.

In contrast to RSN amplitude-vs-SSRT correlations, almost no

SSRT correlations with network matrices survived thresholding at

p,0.05 (FDR corrected) (Table 2, Fig. 3). Here the number of

multiple comparisons to correct for is much higher than when

correlating against RSN amplitude: 120/561 two-tailed compar-

isons for the 272/70-component analyses, respectively, compared

to 16/34 comparisons for amplitude-vs-SSRT correlations.

Therefore, some relatively strong network-matrix-vs-SSRT corre-

lations did not survive the FDR corrected thresholding, even if the

strength of these correlations were comparable to those significant

amplitude-vs-SSRT correlations (i.e., r .0.4, see Table 2).

RSN Spatial-Map-vs-SSRT Correlations Provided
Additional Information about RSN-SSRT Relationships

The effects of increased spatial smoothing and z-transformation

of the RSN spatial maps on the spatial-map-vs-SSRT correlations

were evaluated. In a recent resting state fMRI study by Wu et al.

[61], spatial smoothing has been reported to consistently increase

spatial extents of seed-based correlations. In the current study, for

all cases when significant clusters were detected based on

smoothed spatial maps, the significant clusters were larger than

those based on unsmoothed spatial maps (Table 3, Figs. 4 and

S12). This could be expected because spatial smoothing can

enhance signal to noise ratio, and possibly ameliorate imperfect

functional alignment between subjects, and thus would increase

the sensitivity of SSRT correlation analysis, as long as the signal of

interest is not spatially too small or finely detailed. However, there

were 4 cases where (small) significant clusters were detected only

on the correlation maps based on unsmoothed spatial-maps (Table 3).

Z-transformation uniformly lowered the sensitivity of detecting

significant SSRT correlations. Specifically, for all 7 cases based on

27-component analysis and all 12 cases based on 70-component

analysis, more significant voxels were detected based on the

‘‘original’’ RSN spatial maps (meaning the size of the regression

parameter of the BOLD signal against the normalized RSN

timeseries), as compared to those based on the z-transformed

spatial maps. Z-transformation was carried out by dividing original

BOLD regression map by the standard deviation of the

background noise, and thus the Z-transformed spatial maps

measure the RSN’s (within-subject) signal-to-noise ratio [62],

while the original spatial maps acquired directly from dual-

regression analysis reflect just the RSN’s BOLD amplitude (and

spatial coherence). The present results indicate that including the

background noise information into the spatial maps did not benefit

brain-behaviour relationship analysis.

Spatial-map-vs-SSRT correlations were performed to evaluate

the relationship between SSRT and involvement of different brain

regions in the RSNs. The medial and lateral visual networks, the

motor network, and the two DANs exhibited significant ampli-

tude-SSRT correlations (Table 1), and here, significant spatial-

map-vs-SSRT correlations were observed in regions within these

networks (Fig. 4 and S12, Table 3). These results not only

supported the importance of these networks for individual

performance in inhibition evaluated by SSRT, but indicated that

some features of brain function, found through investigation of the

RSN timeseries, can also be detected based on spatial maps,

though in our case with less statistical sensitivity, when fully

correcting for multiple comparisons over space and RSNs tested.

Some significant SSRT correlations found through investigation

of the spatial maps might well be unreported if only the RSN

timeseries are investigated. For instance, significant spatial-map-

vs-SSRT correlations were also detected with respect to the

involvement of two regions of the DMN with the rest of the DMN,

namely, the right inferior parietal lobue and the posterior cingulate

cortex (see subfigures 70-29-N-S and 70-29-Z-S of Fig. S12).

Despite the interactions between networks and regions within

themselves, the interaction between the dorsal anterior cingulate

cortex (dACC) and the motor network (see subfigures 70-70-N-S

and 70-70-Z-S of Fig. S12), as well as that between the visual

regions and secondary DAN (see subfigures 70-66-N-S of Fig.

S12), were also observed to be related to individual differences in

response inhibition. A discussion of the functional significance of

these correlations can be found in Text S2.

Multiple Comparison Correction Issue
The problem of multiple comparison correction becomes

greater, with greater numbers of amplitudes/correlations/voxels

tested, and hence the less ‘‘rich’’ measures suffer the least from

this, and hence may be the most likely to survive fully corrected

thresholding. Consistent with this common sense, the amplitude-

vs-SSRT correlations of several networks were fully correctable

because of relatively fewer comparisons (16/34 comparisons for
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272/70-component analysis), and nearly no network-matrix-vs-

SSRT correlations survive the FDR corrected thresholding

because of more comparisons, even if the strength of these

correlations were comparable to those significant amplitude-vs-

SSRT correlations (i.e., r .0.4, see Table 2). The spatial-map-vs-

SSRT correlations discussed above were also based on a relatively

loose threshold, which considered only the corrections for the

number of voxels and the positive and negative correlations, and

did not further consider the number of RSNs. For full

consideration of multiple comparisons, more stringent correction

should be applied. If Bonferroni correction were adopted, none of

the eight ‘‘significant’’ results based on the 27-component analysis

and only three of the seventeen ‘‘significant’’ results based on the

70-component analysis survived this more stringent thresholding.

Because of a greater number of comparisons, statistics based on

spatial-maps and network-matrices are less likely to survive a fully

corrected threshold compared with RSN amplitude. If, instead of

the above, a post-hoc analysis was applied to test only the spatial

maps of the RSNs for which the RSN timeseries amplitude already

showed a significant SSRT correlation, more ‘‘significant’’ results

found would survive this correction (for the number of RSNs’

spatial maps tested); of course, this is not strictly valid (being a

somewhat circular analysis), but, in general, if one has a truly a

priori reason to only consider one RSN (or a few RSNs) in the final

cross-subject analyses, the problem of the multiple-RSNs-compar-

ison-correction will be alleviated.

All tests carried out in this study were univariate, meaning that

each single element in each different kind of measure (i.e., each

different RSN’s time series amplitude, each different correlation

matrix element, or each voxel in an RSN spatial map) was tested

for correlation against SSRT, largely independently of each other

element (though voxels in the spatial map are enhanced in terms of

their cluster-like behavior through the use of TFCE, and hence

this test is weakly multivariate). We chose to do this in order that

the results based on each measure (RSN amplitude, correlation

between RSN pairs, and RSN spatial-map) would be as clear and

interpretable as possible, but we note that the univariate approach

does not expect to maximize overall sensitivity to finding some

correlation against the ‘‘non-imaging’’ variable (in this case SSRT)

– for that, one would move to multivariate machine learning

approaches. Related to this, our correction for multiple compar-

isons across elements is not the (generally over-conservative)

Bonferroni approach, but the more accurate empirical FWE

method made possible through the use of permutation testing,

generating the null distribution of the maximum test statistic across

elements tested. The only case where this was not done was when

considering the correction for multiple comparisons across RSNs in

the case of spatial map testing, where we discussed either the use of

full Bonferroni, or a weaker (and less valid) correction over only

the RSNs showing a result in the RSN amplitude tests.

Conclusions
In this study, we systemically investigated which features in ICA

of resting-state fMRI relate to behaviour, with stop signal reaction

time (SSRT) taken as a test case. The results indicate that the time

series amplitudes of the motor and visual networks, as well as those

of the DAN and task-activation network are correlated with

SSRT. Spatial-map-vs-SSRT correlations could not only detect

the influences of these networks upon SSRT, but find other

networks, as well as interaction between brain regions and

networks, important for individual performance in inhibition

evaluated by SSRT. The temporal correlations between RSN

pairs were of functional significance, but these correlations did not

appear to be very sensitive to finding SSRT correlations. In

summary, the temporal information acquired by ICA provided us

a perspective complementary to that provided by spatial-maps.

This complementary role would be helpful not only for the

analyses of brain function in normal subjects, but also for the

pathology analyses of psychiatric diseases by selecting candidate

RSNs for further analyses based on the their temporal informa-

tion. In addition, as compared to spatial maps, the temporal

information of RSNs are of relatively low dimension and might be

directly used to classify psychiatric patients and controls based on

RS-fMRI, without necessarily performing feature dimensionality

reduction.

Supporting Information

Figure S1 Maps of the mean (across subjects) ICOV
matrices (Upper) and the ICOV-vs-SSRT correlations
(Lower) acquired with different lambdas. The coordinates

in each subfigure indicate the number of the component within the

set of non-artefactual components. The correspondence between

the component numbers and their coordinates in the subfigures

can be found in Table S2. NICOVw0:4 and NICOVw0:3indicate the

number of mean-ICOVs larger than 0.4 and 0.3, respectively.

Npv0:01 and Npv0:05 indicate the number of significant ICOV-vs-

SSRT correlations at thresholds of p,0.01 (uncorrected) and

p,0.05 (uncorrected), respectively. It can be seen that the mean

ICOV matrices evaluated based on lambdas of 5, 10 and 20 are

generally larger in magnitude and less sparse than those based on

50, 100, and 200. Based on 27-component analysis, more

significant ICOV-vs-SSRT correlations were found with lambdas

of 5, 10 and 20 (compared with 50, 100 and 200), and the strength

of the correlations based on 70-component analysis were

approximately the same between different lambdas. In this paper,

results based on lambda = 10 were reported in detail.

(TIF)

Figure S2 Maps of 11 components regarded to be
associated with artifactual sources from the 27-compo-
nent analysis. This figure shows every 3rd axial slice in 2-mm

MNI152 standard space, starting with the lowest slice at 254 mm.

On the right is the number of each component, which was based

on the ranking of variance explained by the component.

(TIF)

Figure S3 Maps of 11 of components from the 70-
component analysis. These components were considered non-

artefactual, but not shown in Fig. 1(B) in the main text. This figure

shows every 3rd axial slice in 2-mm MNI152 standard space,

starting with the lowest slice at 254 mm. On the right is the

number of each component, which was based on the ranking of

variance explained by the component.

(TIF)

Figure S4 Maps of a further 11 components from the 70-
component analysis. These components were considered non-

artefactual, but not shown in Fig. 1(B) in main text. This figure

shows every 3rd axial slice in 2-mm MNI152 standard space,

starting with the lowest slice at 254 mm. On the right is the

number of each component, which was based on the ranking of

variance explained by the component.

(TIF)

Figure S5 Maps of 12 of 36 components regarded to be
associated with artifact sources from the 70-component
analysis. This figure shows every 3rd axial slice in 2-mm

MNI152 standard space, starting with the lowest slice at 254 mm.
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On the right is the number of each component, which was based

on the ranking of variance explained by the component.

(TIF)

Figure S6 Maps of a further 12 of 36 components
regarded to be associated with artifact sources from
the 70-component analysis. This figure shows every 3rd axial

slice in 2-mm MNI152 standard space, starting with the lowest

slice at 254 mm. On the right is the number of each component,

which was based on the ranking of variance explained by the

component.

(TIF)

Figure S7 Maps of a further 12 of 36 components
regarded to be associated with artifact sources from
the 70-component analysis. This figure shows every 3rd axial

slice in 2-mm MNI152 standard space, starting with the lowest

slice at 254 mm. On the right is the number of each component,

which was based on the ranking of variance explained by the

component.

(TIF)

Figure S8 Plots of significant negative cross-subject
correlation of RSN timeseries amplitude (standard
deviation) vs. SSRT, based on 27-component analysis.
The threshold was p,0.05 (FDR corrected), which corresponds to

uncorrected pƒ0:015. SSRT correlation of component No. 10,

which did not survive thresholding, is also shown because its

counterparts obtained at 70-dimensions exhibited significant

SSRT correlation (see Table 1 in the main text for more details).

(TIF)

Figure S9 Plots of significant negative cross-subject
correlation of RSN timeseries amplitude (standard
deviation) vs. SSRT, based on 70-component analysis.
The threshold was p,0.05 (FDR corrected), which corresponds to

uncorrected pƒ0:011. SSRT correlations of component Nos. 25,

67, 69, which did not survive thresholding, are also shown because

their counterparts obtained at 27-dimension exhibited significant

SSRT correlation (see Table 1 in the main text for more details).

(TIF)

Figure S10 Similarities between different methods for
estimating RSN timerseries correlation matrices. The

correlations between SSRT and matrix elements is estimated for

each method, and then compared between methods. It can be seen

that the results based on the two partial-correlation methods

(ICOV & gICOV) shared much resemblance to each other (the

right column).

(TIF)

Figure S11 SSRT and network matrix correlations
surviving an uncorrected threshold of p,0.10 based on
the 27-component analysis. Only gICOV (6, 25) was fully

significant (p,0.05, FDR corrected).

(TIF)

Figure S12 Maps of other significant negative spatial-
map-vs-SSRT correlations besides those shown in Fig. 4
in the main text. The threshold was p,0.05 (TFCE enhanced,

FWE corrected). The correlation maps were superimposed on

their respective group-mean spatial maps obtained by Group-ICA

and then on the MNI152 template. The group-mean spatial maps

were provided here to give illusive idea about whether the

significant regions lie within or outside the RSNs. Red-yellow

indicates significant regions in the group-mean RSN map, blue

indicates significant spatial-map-vs-SSRT correlations, and green

color indicates overlap between the two. Each subfigure was

identified by an array of ‘‘Number-Number-Character-Charac-

ter’’. The first number of this array indicates the dimension of ICA

decomposition; the second number indicates the component

number; the first character indicates whether the spatial maps

were z-transformed before spatial-map-vs-SSRT correlation: with

‘‘N’’ indicates NO z-transformation and ‘‘Z’’ indicates the

opposite; the second character indicates whether the spatial maps

were 10-mm spatially smoothed before spatial-map-vs-SSRT

correlation: with ‘‘N’’ indicating NO spatial smoothing and ‘‘S’’

indicating the opposite. For instance, ‘‘27-16-N-N’’ indicates that

the subfigure was based on the unsmoothed non-z-transformed

spatial map of the component No. 16 based on 27-component

analysis.

(TIF)

Table S1 Summary of each network from the 27-component

analysis, and those exhibiting significant timeseries amplitude-vs-

SSRT correlations from the 70-component analysis. The IC No.

was based on the ranking of variance explained by the component.

(DOCX)

Table S2 Correspondence between the component numbers

and their coordinates in the subfigures of Figs. 2 and 3 in the main

text and Fig. S1. The Component No. is based on the ranking of

variance explained by the component. The Coordinate indicates the

number of the component within the set of non-artefactual

components. This table bridges the Component Nos. used in other

parts of the paper and the Coordinates in Figs. 2, 3 and S1.

According to this table, for instance, the value at the coordinate (3,

14) in Fig. 2 based on 27 component-analysis indicates the mean

correlation/partial-correlation between the components No. 6

and No. 21.

(DOCX)

Text S1 Description of Each Non-Artefactual Compo-
nent from the 27-Component Analysis.

(DOCX)

Text S2 A Discussion of the Functional Significance of
Some Spatial-Map-vs-SSRT Correlations.

(DOCX)
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