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1 Georges Lemaı̂tre Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium, 2 SOIL Action, Land Resource Management

Unit, Institute for Environment and Sustainability, Joint Research Centre of the European Commission, Ispra, Italy

Abstract

Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the
atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon
content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse
reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some
uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale
EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy
for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to
15 g C kg21 for mineral soils and a root mean square error of 50 g C kg21 for organic soil materials. Model errors are shown
to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content.
Although errors are ,5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy
provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil
organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform
continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the
state of the soil that can be used in biogeochemical models and the monitoring of soil degradation.
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Introduction

Human pressure on the soil has now reached the extent to

which vital ecosystem services, such as food and fiber production

or buffering against increases in greenhouse gas concentrations are

at risk [1–3]. Soil Organic Carbon (SOC) is recognized as one of

the key soil properties reflecting the state of the soil resource [3].

Existing soil maps and inventories are rarely adequate to assess the

trends in SOC over time and determine the main driving forces at

the scale of a country [4] let alone a continent [5], as the spatial

resolution is generally low and many maps are based on outdated

and imprecise methods [3]. Hence, high-throughput and cost-

effective methods of SOC analysis should be developed to support

the implementation of effective soil inventories and production of

digital soil maps at the continental scale from which the state of the

SOC can be determined in a consistent manner.

Visible and Near InfraRed (Vis-NIR) diffuse reflectance

spectroscopy has been applied in soil analysis over the last 20

years [6] and has been demonstrated to accurately measure several

soil attributes at minimal costs [7] and with satisfactory analytical

errors [8]. Vis-NIR spectroscopy is currently used in laboratory

conditions, but its application in-situ and even on air- or space-

borne platforms is growing [9]. Vis-NIR reflectance carries

information on the organic and inorganic composition of the soil

[10] and, due to its integrative nature, has also been proposed as a

screening tool for soil quality and fertility diagnosis [11]. Inference

is based on multivariate calibration models developed from digital

libraries linking Vis-NIR spectral data with reference laboratory

measurements [12]. Obviously, these empirical calibrations are

only applicable to samples having similar soil composition and

spectral characteristics as those in the library and generally and

cannot be extrapolated to other soil types [13].

When applying Vis-NIR to assess soil properties in a region of

interest, a spectral library representing the local soil diversity needs

to be constructed. As a consequence, many local, purpose-specific

libraries are being built independently by different research groups

using different protocols for soil and spectral analyses. This can

produce good results for individual studies, but extrapolation to

other areas is difficult. Mutatis mutandis the process will have to be

repeated over and over again for each study area. This is not

efficient and a waste of resources compared to reference methods

of soil analyses. This considerably limits the field of applications of

local scale spectral libraries so that national and international

databases have been or are being developed [14–16].

Because soils are extremely variable and the relationship

between Vis-NIR spectra and soil attributes can be complex and

can vary in space, such databases require very large numbers of

samples to be collected to adequately cover soil variation at

continental scales [14]. To minimize calibration errors, samples

should be analyzed by means of high-standard reference soil
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analyses and using a standardized spectroscopic measurement

protocol [17]. Development costs of such databases can be

prohibitive, so that there currently exist only few large scale soil

spectral libraries and there are even fewer examples of the use of

these libraries as an operational tool for routinely measuring soil

properties. However, some initiatives have recently been launched

[18,19]. The world soil spectral library presented in Brown et al.

[14] includes 3,794 samples analyzed for SOC content using the

Walkley and Black method [20], most of them originating from

North America. The ICRAF-ISRIC spectral library contains

4,436 samples from 785 soil profiles distributed across the five

continents (only 3,643 samples were analyzed for both chemical

properties and soil texture) [16]. SOC was analyzed with the

Walkley and Black method. Shepherd and Walsh [12] collected

around 1,000 samples for the spectral library of eastern and

southern Africa. The Africa Soil Information Service is currently

collecting a large number of samples (more than 17,000 so far)

from 60 sentinel sites of 100 square km in sub-Saharan Africa that

are measured using both soil reference methods and vis-NIR

spectroscopy [21]. The Australian library [22] contains 10,677

samples analyzed for total organic carbon using different methods.

In Europe, a large scale soil spectral library has been developed

in the framework of the European Land Use/Cover Area frame

Statistical Survey (LUCAS) during which ,20,000 geo-referenced

top-soil samples were collected in order to assess the state of the

soils across Europe. Thirteen chemical and physical properties,

including Vis-NIR reflectance, were analyzed. The database is

characterized by a higher sampling density than that of other large

scale libraries. All samples were collected following the same

sampling protocol and analyzed in a single ISO certified

laboratory. SOC content was measured using an automated CN

analyzer. To our knowledge, the LUCAS database constitutes to

date the most complete and consistent soil spectral library at

continental scale. The accuracy of spectroscopic models being

limited by (i) the number and representativity of the calibration

samples, and (ii) the quality and consistency of the reference

methods, the LUCAS library represents a unique opportunity to

evaluate the accuracy of continental-scale soil spectroscopic

models. Based on the LUCAS library, we developed the first

European-scale calibration models for the prediction of SOC

content and analyze model prediction errors.

Materials and Methods

Ethics Statement
The LUCAS survey is part of the Community Statistical

Programme 2008–2012, based on the decision No 1578/2007/

EC of the European Parliament and the Council of the European

Union of 11 December 2007 [23]. Data Confidentiality policy is

based on the Regulation (EC) No 223/2009 on European statistics

(recital 24 and Article 20(4)) of 11 March 2009 [24]. The policy on

soil sampling included the clause that upon denial of access, the

given point was skipped and a pre-selected alternative location was

sampled instead. Field sampling did not involve endangered or

protected species.

The LUCAS SOIL Database
The soil database was compiled as part of the LUCAS survey.

Its primary goal was to provide harmonized data on land use/

cover in 23 member states of the European Union (EU) by

collecting observations in ,250,000 survey points [25]. About

10% of the points were selected based on environmental variables

and accessibility criteria [26] and composite samples consisting of

five sub-samples of the top soil (0–30 cm) were taken with a spade

following a standardized protocol [26]. Vegetation cover and

residues, stones and litter in case of forest land cover were removed

before taking a sample. The sampling campaign resulted in the

collection of about 20,000 topsoil samples for which geographical

coordinates, land use/cover, management and other environmen-

tal attributes were retrieved. The mean sample density per

European level 1 territorial units (NUTS 1) varies between 11 and

77 samples per 10,000 km2, with a mean of 48 samples per

10,000 km2 over the 23 EU countries of the survey (Figure 1).

While samples are distributed over all land use/cover types, more

samples were proportionally taken in cropland soils (Table 1). The

surveyed area represents about 68% of the European continent

and islands (excluding Russia and Turkey). However, LUCAS

samples cover all the major soil types in Europe (Table 2),

although Chernozems and Albeluvisols, particularly from Eastern

Europe, are underrepresented in the database.

Soil Analyses
All samples were sent to an accredited laboratory (Kecskemét,

Hungary) where the following properties were analyzed using ISO

standard methods: coarse fragments, particle size distribution, pH

in CaCl2, pH in water, cation exchange capacity, organic carbon,

carbonate, total nitrogen, P, and extractable K content. SOC

content (g C kg21) was measured by dry combustion (ISO

10694:1995) using a vario MAX CN analyzer (Elementar

Analysensysteme GmbH, Germany).

Vis-NIR Measurements and Processing
Absorbance spectra of air-dried and sieved (,2 mm) soil

samples were measured with a XDS Rapid Content Analyzer

(FOSS NIRSystems Inc., Laurel, MD). The spectrometer is

equipped with Si (400–1100 nm) and PbS (1100–2500 nm)

detectors, offering 4,200 wavelengths in the Vis-NIR region of

the electro-magnetic spectrum. Two scans were acquired and

subsequently averaged. For each band, standard deviation

between scans was calculated and averaged over the wavelengths.

Thirteen spectra with an average standard deviation .0.01 might

have been improperly measured and were removed. We corrected

the spectra for the shift in absorbance at the splice of the two

detectors. The beginning of the Vis (400–500 nm) showed

instrumental artifacts and was therefore removed. Several

mathematical pre-treatments on the spectra were applied to

remove physical variability due to light scattering and enhance

features of interest [27]. Firstly, we created two pre-treated

spectral matrices by applying Savitzky-Golay (SG) smoothing and

first derivative filters [28] with a window size of 101 data points

and 3rd order polynomial. Secondly, we applied Standard Normal

Variate (SNV) transformation on SG-filtered spectral data [29].

Finally, we kept only one band in twenty (i.e. one every 10 nm),

leaving ,200 predictor variables for model calibration.

Spectroscopic Models and SOC Predictions
First, samples were separated into mineral and organic soil

samples using the FAO definition of organic soil materials [30].

Mineral soil samples were further divided into samples under (i)

cropland, (ii) grassland and (iii) woodland land cover. These

subsets are based on the land cover classes defined in the LUCAS

survey and are consistent with the IPCC/FAO land cover/land

use systems [31]. We carried out identical but separate analyses on

each of these five subsets (cropland, grassland, woodland, mineral

and organic soil samples). We tested several multivariate regression

models and spectral pretreatments for predicting the SOC

content. Furthermore, we evaluated the potential of (i) imple-

menting variable selection procedures through recursive feature

Spectroscopic Predictions of Soil Organic Carbon
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elimination via random forest and (ii) including sand and clay

content as auxiliary predictor into the spectroscopic models.

Sample selection with the Kennard-Stone algorithm. For

each subset, two thirds of the samples were selected for training the

spectroscopic models using the Kennard-Stone algorithm [32] and

the remaining samples were assigned to the test set for assessing

the model’s performance. Based on a spectral distance measure,

the Kennard-Stone algorithm selects a set of samples having a

uniform distribution over the predictor space and hence that

comprise all sources of variation found in the spectral library. The

procedure starts by selecting the pair of points that are the farthest

apart. They are put in the training set and removed from the list.

Then, the remaining points are iteratively assigned to the training

set by computing the distance between each unassigned points i0
and training points i and finding the point i0 which is the farthest

apart from its closest neighbor i according to:

Figure 1. Sampling density of the LUCAS SOIL database per European territorial units, level 1 (NUTS 1). Map labels give the total
number of samples per country.
doi:10.1371/journal.pone.0066409.g001
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d~maxi0
mini di,i0

� �� �
ð1Þ

where d is a measure of distance. Here, we defined d as the

Euclidean distance in the normalized score space of the principal

components explaining more than 99% of the spectral variation.

The principal components were computed on the continuum-

removed reflectance spectral matrix [33] to select samples on the

basis of their absorption features.

Multivariate calibration. Each pre-treated spectral calibra-

tion matrix was related to SOC with multivariate regression tools

able to deal with high-dimensional and multi-collinear spectral

measurements. Using the caret package [34] of the R software [35],

we ran the following linear and non-linear multivariate models on

the training set: partial least square regression, boosted regression

tree, random forest, radial-basis support vector machine regres-

sion, multivariate adaptive regression splines and Cubist. Details

on the latter algorithm, which has shown good prediction accuracy

for soil spectral analyses [36], can be found in Quinlan [37]. We

used the Cubist GPL C code provided by RuleQuest (RuleQuest

Research Pty Ltd, NSW, Australia). The other algorithms are

described in Hastie et al. [38] and an overview of their

performance for soil spectroscopic inference is given in Viscarra

Rossel and Behrens [39]. The models were sequentially developed

on a grid of model parameters generated by the caret package

which provides likely default parameter values. Ten random

partitions of the data with a 0.5 selection probability were created

and consistently used for leave-one-group-out cross-validation of

the models. The best model parameters were determined as the

ones producing a model having the smallest value within one

standard error of the minimal observed RMSE of cross validation

[40].

Recursive feature elimination. We tested the potential of a

Recursive Feature Elimination (RFE) algorithm based on random

forest to select a small set of optimal (and possibly non-collinear)

spectral predictors for model calibration. The RFE procedure, as

implemented in the caret package, performs a backward selection

of the variables by ranking their importance to an initial model run

using all the predictors [41]. The algorithm builds several

calibration models that use the pi most important predictors,

where pi is an element of a predetermined sequence {p1,p2,…,pn}

of possible numbers of predictors. The set of predictors pi

producing the best model amongst the candidate models is

retained.

Auxiliary predictor. We assessed the possibility to improve

the models by adding another predictor to the spectral matrix,

which to be useful should be readily available [14]. We tested sand

and clay content as auxiliary predictors. Particle size fractions are

unlikely to change much over time at the sample location and

hence could directly be exploited in models predicting the SOC

content of samples collected during a future resampling of the

LUCAS database. In order not to overweigh in the multivariate

model the spectral data compared to the auxiliary predictor, we

computed the principal component scores of the spectral matrix,

retained the scores explaining more than 99% of the variation,

attached the auxiliary predictor to the scores and scaled the

resulting matrix [42]. When RFE is applied, we assumed that the

spectral matrix has been reduced to its intrinsic dimensionality so

that the predictor matrix was only scaled, without performing the

principal component step. This approach was tested only for

Table 1. Number of samples (n), frequency (in % of the total
number of samples) and surface (in % of the total surface)
occupied by land cover type as defined in the LUCAS survey
[31].

Land Cover n Frequency (%) Surface (%)a

Artificial 39 ,1 5

Bare land 346 2 2

Cropland 8426 44 26

Grassland 4205 22 22

Shrubland 444 2 6

Water areas 12 ,1 3

Wetland 90 ,1 1

Woodland 5473 29 36

aPercentage of the total surface occupied by land cover type in the 23 EU
countries of the LUCAS survey [25].
doi:10.1371/journal.pone.0066409.t001

Table 2. Number of samples (n), frequency (in % of the total
number of samples) and surface (in % of the total surface)
occupied by World Reference Base (WRB) major soil groups
[30].

WRB soil type n Frequency (%) Surface (%)a

Unknown 41 ,1 –

Town 23 ,1 ,1

Water body 41 ,1 ,1

Rock outcrops 3 ,1 ,1

Albeluvisols 436 2 7

Acrisols 45 ,1 ,1

Andosols 22 ,1 ,1

Arenosols 379 2 1

Chernozems 193 1 7

Calcisols 82 ,1 ,1

Cambisols 6764 36 25

Fluvisols 1178 6 5

Gleysols 502 3 3

Gypsisols 32 ,1 ,1

Histosols 601 3 4

Kastanozems 0 0 ,1

Leptosols 1078 6 8

Luvisols 2949 16 11

Phaeozems 229 1 4

Planosols 75 ,1 ,1

Podzols 3657 19 16

Regosols 480 3 5

Solonchaks 55 ,1 ,1

Solonetz 19 ,1 ,1

Umbrisols 3 ,1 ,1

Vertisols 148 1 1

aPercentage of the total surface occupied WRB major soil groups. Data should
be considered approximate: surfaces have been computed using the dominant
value of the soil typological units of the European Soil Database [58]. The total
land surface considered is the European continent and islands (United
Kingdom, Ireland, Iceland, Malta, Sicily, Sardinia, Corsica,…), excluding Russia
and Turkey.
doi:10.1371/journal.pone.0066409.t002
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mineral soils since texture analyses were not realized for organic

soil samples.

Assessing model performance. Multivariate models were

validated with the test set and their quality assessed by means of

the following statistics [43]:

bias~
1

n

Xn

i~0
ei ð2Þ

SEP{b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~0
ei{biasð Þ2

r
ð3Þ

RMSEP~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~0
e2

i

r
ð4Þ

RPD~SD=RMSEP ð5Þ

where ei is the residuals (i.e. prediction error) of sample i in the test

set, n is the number of observations, SD is the standard deviation of

the observations. The SEP-b (Eq. 3) is the standard error of

prediction corrected for bias (i.e. the difference between predicted

and observed means, Eq. 2) and is equivalent to the standard

deviation of the predicted residuals. The SEP-b and bias represent

two independent components of the Root Mean Square of

Prediction (RMSEP, Eq. 4). The Ratio of Performance to

Deviation (RPD, Eq. 5) is a way of normalizing RMSEP’s to

compare calibration models where the measured variables have

different ranges or variances. We used the RMSEP (Eq. 4) to rank

all pre-treatments and multivariate calibration models and choose

the best modeling approach.

Reproducibility of the reference and spectral

methods. All soil analyses were replicated once for 25

randomly-selected samples which allowed estimating the repro-

ducibility (or intermediate precision) of the reference and spectral

analyses methods (i.e. repeatability+between-runs error) using

[44]:

SEL~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~0 e2

i

2n

s
ð6Þ

where SEL is the Standard Error of Laboratory and ei is the

difference between duplicate measurements/predictions of sample

i.

Results and Discussion

Exploratory Analysis of the LUCAS Database
Mineral samples have a mean SOC content of 29 g C kg21, a

median at 19.6 g C kg21 and a highly skewed SOC distribution

with 75% of the samples below 35 g C kg21 (Table 3). The SOC

values of mineral samples of the LUCAS library are relatively

higher than in other large scale spectral library, mainly because

many samples were collected in organic-rich soils of northern

Europe (Figure 1). The African [12], Australian [22] and world

[14] spectral libraries have a median SOC content of respectively

12, 6 and 4.7 g C kg21. SOC content of organic samples in the

database ranges from 156 to 587 g C kg21 with a mean of 387 g C

kg21.

To analyze the spectral variation included in the database, we

performed a principal component analysis on the continuum-

removed reflectance of mineral and organic samples [33]. The

eigenvectors of the three first principal components (PC) show

diagnostic variations across the Vis-NIR spectrum that can be

linked to soil properties (Figure 2). For mineral soils, the first PC,

explaining 56% of the spectral variation, shows important peaks

that are associated to overtones of O-H and H-O-H stretch

vibrations of free water (1455 and 1915 nm) and overtones and

combinations of O-H stretch and metal-OH bends in the clay

lattice (1415 and 2207 nm), which express spectral differences

between illite and smectite clay minerals [39]. Hence, the scores of

PC1 are strongly correlated with soil properties related to clay

mineralogy such as clay content (r= 20.45), cation exchange

capacity and pH in water (r= 20.5; Table 3). The eigenvector of

PC2 (explaining 26% of the spectral variation) is dominated by

one prominent feature centered at 620 nm that can be attributed

to various organic compounds [10], explaining the negative

correlation of PC2 scores with OC (r= 20.55) and N (r= 20.44;

Table 3). While the scores of PC3 show only weak correlations

with the measured soil properties (Table 3), the third PC can be

related to the absence/presence of iron oxides as indicated by well-

defined peaks in the eigenvector of PC3 around 540, 640 and

900 nm (Figure 2) caused by variations in the shape of the

absorptions due to electronic transitions of goethite iron oxide at

620 and 920 nm [39].

For organic soils, the first PC scores are strongly correlated with

OC (r= 20.46) while PC2-3 scores show weaker correlations with

OC (r= 0.26–0.35; Table 3). The eigenvectors of PC1-3 display

oscillations between 500 and 900 nm that are related to variations

in the size and width of the organic matter absorption feature in

the visible region (Figure 2). Other important features in the

eigenvectors can be distinguished at 1450 nm, 1760 nm and

between 1900 and 2500 nm corresponding to vibrations of C-O,

O-H, C = O,C-H and N-H bonds that are present in organic

compounds such as proteins, starch, cellulose, humic acids and

lignin [45]. These absorptions are however difficult to attribute to

a single component since they are greatly overlapping in the NIR.

Since these organic soils have generally very low clay content,

there is no visible feature at 2207 nm due to O-H and metal-O-H

bonds in clay mineral lattices. The eigenvector of PC2 shows three

local minima around 1450, 2100 and 2300 nm that can be

assigned to lignin and cellulose [46] and may therefore account for

spectral variation related to the decomposition stage of organic

matter (arising e.g. from difference between forest and wetland

samples). This preliminary analysis of European-scale spectral

variation demonstrates that soil spectra are tightly linked with key

soil properties, which supports thereby the development of spectral

prediction models.

Multivariate Models for SOC Prediction
We compare here the prediction ability of the different models

and pre-treatments tested for the subsets. For cropland, mineral

and organic soils, the lowest prediction errors were achieved by

models using the first derivative of the spectral matrix, while for

grassland and woodland soil samples, the best models used the

primary absorbance spectra (Figure S1). Overall, SNV transfor-

mation did not noticeably improve the accuracy of the models

(Figure S1). Model performance varied greatly with the predictors

included (Figure S2). Using sand content in addition to the spectral

matrix improved grassland and woodland models compared to

models using spectral data only, with a median decrease in RMSEP

of ,1 g C kg21 for grassland soils and ,4 g C kg21 for woodland

soil, while no clear improvement could be observed for cropland

Spectroscopic Predictions of Soil Organic Carbon

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66409



and mineral soil models (Figure S2). Using clay content and the

spectral matrix in the models allowed to decrease RMSEP of

grassland soil predictions with a median of ,1 g C kg21 but no

improvement was observed for other subsets (Figure S2).

Recursive feature elimination provided no overall increase in

prediction accuracy for models using spectral data only. This is to

be expected since most of the multivariate models that we tested

(boosted regression tree, Cubist, multivariate adaptive regression

splines) include an internal feature selection method. However,

models using RFE in combination with sand and clay content

showed clear improvements in accuracy compared to models using

the spectral matrix only and the spectral matrix in combination

with particle size fractions (Figure S2). This is probably related to

the fact that RFE, by reducing the dimensionality of the spectral

matrix and by keeping the relevant information for SOC

prediction, allowed increasing the relative weight of the auxiliary

predictor in the models compared to the spectral matrix. Cubist,

closely followed by support vector machine regressions, produced

the most accurate predictions (i.e. have lower RMSEP) for

grassland and woodlands soils, while Cubist regressions performed

slightly less for cropland and mineral subsets (Figure S3). This

confirms the good performance of support vector machine

regression and Cubist in predicting soil properties compared to

other multivariate calibration models [36,39]. For organic soils,

Cubist and partial least square regression showed the best

prediction abilities (Figure S3).

Performance of the Best Spectroscopic Models
Prediction performance statistics of the best models (i.e. having

the lowest RMSEP’s) with and without auxiliary predictors are

given in Table 4. The lowest RMSEP’s (Eq. 4) were obtained for

cropland soils (4–4.9 g C kg21), followed by grassland (6.4–9.3 g C

kg21), mineral (7.3–8.9 g C kg21), woodland (10.3–15 g C kg21)

and organic soils (50.6 g C kg21; Table 4). The difference in

RMSEP between the subsets reflected the dependence of the model

errors on (i) calibration size and (ii) the variance of observed SOC

values. Hence, cropland, grassland and mineral soils, character-

ized by a large number of samples and small variance were better

predicted than woodland and organic soils (Table 4). The accuracy

of spectroscopic models increased with the number of calibration

sample [12,47] because a large sample size allows to better

describe the soil complexity of a given area. The tendency of

RMSEP to increase with SOC variance as observed in the LUCAS

database is also well documented [8]. Datasets characterized by

larger SOC variances usually cover larger areas or areas with an

important variation in soil properties, which may be detrimental to

SOC prediction models. However, since all subsets cover the same

geographical extent, it is more probable that SOC variation itself

and SOC concentration rather than soil diversity explain the

increase in RMSEP from cropland to organic soils [8,48,49].

The bias (Eq. 2) of the spectroscopic models was very low in

absolute value (,1.1 g C kg21 for mineral soils, Table 4)

compared to the standard error of prediction corrected for bias

(SEP2b; Eq. 3), indicating that a large portion of the error was due

to the residual variance. Residuals tend to increase with increasing

SOC content, except for organic soils (Figure 3). While such

increase in model residuals could be attributed to an increase in

analytical error with SOC content [12], we rather suggest that this

was caused by the skewed distribution of SOC content of mineral

soils (Table 3) because predictions at high SOC content were

affected by a strong bias (Figure 3). This often occurs when

predicted samples are under-represented in the training set [50].

Organic soil samples, having only a small negative skewness

(Table 3), did not show an increase in prediction residuals with

SOC content.

The accuracy of the models developed from the LUCAS library

compared very well to other published results with Ratio of

Performance to Deviation (RPD; Eq. 5) ranging from 1.74 to 2.88

Table 3. Summary statistics of soil properties available in the LUCAS database, for mineral and organic soil materials.

Property Unit Mean SDa Min Q25b Q50c Q75d Max Skew rPC1
e rPC2

e rPC3
e nf

Mineral soils

SOC g kg21 29.4 28.9 0.0 12.3 19.6 34.7 199.2 2.67 0.08 20.55 0.16 17937

N g kg21 2.2 1.6 0.0 1.2 1.7 2.6 16.2 2.44 20.01 20.44 0.17 17937

clay g kg21 18.9 13.0 0.0 8.0 17.0 27.0 79.0 0.91 20.45 0.23 20.03 17937

silt g kg21 38.2 18.3 0.0 25.0 37.0 51.0 92.0 0.21 0.07 0.27 20.04 17937

sand g kg21 42.9 26.1 1.0 19.0 42.0 64.0 99.0 0.19 0.17 20.30 0.04 17937

CaCO3 g kg21 54.6 128.4 0.0 0.0 1.0 16.0 944.0 2.87 20.32 0.12 0.05 17937

pHw – 6.3 1.3 3.4 5.2 6.3 7.5 10.1 20.13 20.50 0.27 20.07 17937

CEC cmol+kg21 14.1 10.5 0.0 6.8 11.7 18.7 137.0 1.94 20.50 20.08 0.13 17937

Organic soils

SOC g kg21 387.1 101.2 156.4 297.3 401.1 475.0 586.8 20.25 20.46 0.35 0.26 1099

N g kg21 15.5 5.7 3.1 11.2 14.5 19.0 38.6 0.72 20.53 20.10 20.05 1099

CaCO3 g kg21 2.9 19.9 0.0 0.0 0.0 1.0 418.0 14.63 0.03 0.02 20.11 1099

pHw – 4.5 0.7 3.2 4.0 4.3 4.7 7.5 1.35 20.23 20.09 20.54 1099

CEC cmol+kg21 42.0 33.0 0.0 23.8 31.8 42.5 234.0 2.54 20.39 0.03 20.48 1099

aStandard Deviation;
blower quartile;
cmedian;
dupper quartile,
ecorrelation of PC1-3 scores with the soil properties;
fnumber of samples.
doi:10.1371/journal.pone.0066409.t003
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Figure 2. Eigenvectors and eigenvalues of the first three principal components of continuum-removed spectra. The principal
component analysis has been realized separately for mineral (top panel) and organic (bottom panel) soil materials.
doi:10.1371/journal.pone.0066409.g002

Table 4. Performance of the best spectroscopic models as measured against the test set.

Subset Treatmenta MVCb Predictorc SDd RMSEPe Biasf SEP-b
g RPDh R2 Ni

Cropland SG1 svm spc 8.6 4.9 0.2 4.9 1.74 0.67 2828

Cropland SG1+SNV svm rfe+clay 8.6 4.0 0.1 4.0 2.17 0.79 2828

Grassland SG1 svm spc 17.4 9.3 20.9 9.3 1.86 0.71 1383

Grassland SG0 cubist rfe+sand 17.4 6.4 0.1 6.4 2.70 0.87 1383

Woodland SG1 svm spc 29.8 15.0 0.8 15.0 1.99 0.75 1564

Woodland SG0 cubist rfe+sand 29.8 10.3 1.1 10.3 2.88 0.89 1564

Mineral SG1 svm spc 19.1 8.9 0.2 8.9 2.13 0.78 6053

Mineral SG1 svm rfe+sand 19.1 7.3 0.1 7.3 2.62 0.86 6053

Organic SG1+SNV cubist spc 100.8 50.6 210.9 49.5 1.99 0.76 368

aSpectral transformation (SG0 = Savitzky-Golay smoothing; SG1 = Savitzky-Golay first derivative; SNV = standard normal variate);
bMultivariate Calibration Model (svm = support vector machine regression; cubist = Cubist);
cPredictor used in the models (spc = spectral matrix; rfe = spectral matrix with bands selected by recursive feature elimination);
dStandard Deviation of the observations (g C kg21);
eRoot Mean Square Error of Prediction (g C kg21; Eq. 4);
fBias (g C kg21; Eq. 2);
gStandard Error of Prediction (g C kg21; Eq. 3);
hRatio of Performance to Deviation (Eq. 5);
iNumber of validation samples.
doi:10.1371/journal.pone.0066409.t004
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and R2 from 0.67 to 0.89 (Table 3). SOC spectroscopic models

reported in the literature achieve an R2 between predicted and

observed values ranging from 0.66 to 0.96 (average of 0.79) and

RPD values ranging from 1.44 to 4.2 [51,52]. Brown et al. [14]

obtained a RMSEP of 7.9–9 g C kg21 for global SOC

spectroscopic models of mainly mineral soils. The accuracy of

spectroscopic models is usually negatively related to the hetero-

geneity of the samples in a given spectral library [8,12]. This

relation explains the relatively low accuracy achieved by large-

scale calibrations compared to the one that can be potentially

obtained by local-scale (i.e. field, landscape-scale) spectroscopic

models. The main reason for the poor performance on heteroge-

neous soils is that absorption features associated to organic matter

can be altered and/or masked by other components of the soil (e.g.

iron oxides, clay mineralogy) or can change with the chemical

composition or quality of the organic matter [50]. Hence, for

heterogeneous soils there is no univocal relationship between SOC

content and soil spectra.

To better understand how the spectral response of SOC can be

affected by variations in other soil properties, we computed the

mean reflectance and continuum-removed reflectance of mineral

samples grouped by classes of SOC, sand and clay content

(Figure 4–5). Mean reflectance values tend to decrease with both

sand and SOC content, so that variation in the spectra that are

due to sand content can be confounded with spectral variations

due to an increase in SOC content (Figure 4). Sand is a featureless

property. However, an increase in sand content typically increases

light scattering, which in turn diminishes spectral baseline height

and enhances weak absorptions through an increased path length

[53]. This effect can be clearly observed in continuum-removed

reflectance values (Figure 4): for the same amount of SOC, the

absorption feature between 500 and 800 nm that is linked to SOC

content is enhanced as sand content increases. Similarly, variations

in clay content induce large differences in spectral shape for the

same class of SOC content (Figure 5). In each SOC class, one can

indeed observe an increase in the depth of absorptions related to

O–H and metal–OH in the mineral crystal lattice and O-H in

water (1415, 1455, 1915 and 2207 nm) with the increase in clay

content. Conversely, the SOC absorption between 500 and

800 nm is progressively masked as the clay content increases.

Generally, the albedo of the mean spectra tends to increase with

clay content until 60% of clay and decreases thereafter.

Differences in albedo are more pronounced for samples with

SOC contents below 50 g C kg21 (Figure 5).

The differences in spectral response observed in Figure 4–5 had

logically a strong impact on model errors. To illustrate this, we

computed the relative RMSEP for mineral soil models for intervals

of SOC and sand content. The relative RMSEP is the RMSEP

divided by the mean of the observed SOC content in a given class.

For models using the spectra only for prediction, the relative

RMSEP of the models was stable across the SOC content classes

but it increased with the sand content (Figure 6). This confirms the

results of other studies [48,54] that found larger SOC prediction

errors for soils with the highest sand contents. The effect of sand

content on SOC prediction accuracy was more pronounced at low

SOC content due to the relatively low absorption rates of organic

matter and the masking from other soil components ([55];

Figure 4–5). It is therefore expected that spectral libraries of soils

characterized by a low SOC content will perform poorly when

samples have large variations in particle size distribution. It can be

also observed that the use of sand content as auxiliary predictor

drastically improved model predictions for sandy soils (Figure 6),

explaining the increase in model accuracies compared to models

based on the spectral matrix only (Table 4).

Reproducibility Error
We assessed the reproducibility error of the models with a set of

duplicate samples. The error of reproducibility (SEL, Eq. 6) of the

reference method was estimated at 1.5 g C kg21 for cropland,

Figure 3. Predicted SOC content as a function of observed SOC
content in test sets. Model predictions are shown for models with
(rfe+aux, right panels) and without auxiliary predictors (spc, left panels).
doi:10.1371/journal.pone.0066409.g003
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0.8 g C kg21 for grassland, 2.9 g C kg21 for woodland, 2 g C kg21

for mineral and 11.6 g C kg21 for organic soils (Table 5). The

reproducibility of SOC predictions by the spectroscopic models

was roughly similar, with values ranging from 1.2 to 9.1 g C kg21

(Table 5). These relatively low values suggested that spectroscopic

models are robust through time and only a small component of the

error budget can be attributed to measuring conditions (e.g.

temperature and humidity in the laboratory). Both analytical

techniques showed an increase in reproducibility error with the

SOC content.

Implication for SOC Spectroscopic Assessment at Large
Scale

The prediction error of the spectroscopic models was ,5 times

larger than the reproducibility error of the reference method

(Table 3–4) while ratio of RMSEP to SEL of 1 to 3.5 have been

reported in local studies [51]. This clearly indicates that it is

currently difficult to produce spectroscopic models of SOC content

that are valid for large areas while sufficiently accurate to be useful

for most applications at fine scales. However, the models proved to

have low biases (Table 4) and hence could be used to estimate the

mean SOC content of large areas since the variance of the model

residuals is reduced by averaging [6].

Increasing the number of training samples improves the

prediction accuracy [12] because a higher number of samples

will better describe the soil variability in a given area. Despite the

relatively high sampling density of the LUCAS database (Figure 1;

Table 1–2), large prediction errors are still observed (Table 4) and

it is unlikely that including more samples in the database will

significantly improve the prediction for the geographical entities

covered by the current LUCAS survey. The two main reasons for

this are that: (i) soils are complex materials with a strong spatial

structure and, as stated above, the relationship linking soil

properties with soil spectra is not stationary, so that large-scale

spectroscopic models cannot achieve the same level of accuracy as

for more homogeneous materials like plants or other agricultural

commodities [13] and (ii) the natural positive skew of SOC values

induces a large model bias at high SOC content. Rather than

increasing the number of samples in soil spectral libraries, further

efforts should be deployed towards the development of calibration

Figure 4. Mean reflectance (left scale) and continuum-removed reflectance (right scale) spectra of LUCAS mineral soil samples,
computed for arbitrary sand and SOC classes. The sand classes are 0–25%, 25–50%, 50–75%, 75–100% and the SOC classes are 0–25 g C kg21,
25–50 g C kg21, 50–75 g C kg21, 75–200 g C kg21. Each panel regroups samples of a given SOC interval.
doi:10.1371/journal.pone.0066409.g004
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models that are capable of identifying local patterns of spectral

variation in large scale libraries because developing a universal

calibration model for SOC prediction is unlikely. We showed that

a promising approach consists in including readily available soil

covariates in the spectroscopic modeling, although other strategies

should be explored, such as simple subsetting of samples by soil

type or SOC content [49,56]. Ideally, covariates should be linked

with important spectrally-active soil components (e.g. mineralogy,

texture, iron content) or with pedogenetic factors such as climate

and land cover.

Conclusion
The LUCAS soil database is the result of a harmonized soil

survey conducted on a relatively dense sampling grid over 23

member states of the European Union. This database represents

currently the most comprehensive soil spectral library at conti-

nental scale using a uniform protocol for both chemical and

spectral analyses. Still, SOC spectroscopic models showed

relatively large errors (.4 g C kg21) compared to established

methods of SOC analysis, suggesting that accurate SOC

predictions based on large scale spectral libraries will be hard to

achieve. Prediction errors were found to be related to SOC

variation, SOC distribution (skewness) and variation in other soil

properties such as sand and clay content. These findings strongly

suggest that vis-NIR spectral data alone do not contain enough

information to get accurate predictions of soil properties at large

scales. Hence, to develop spectroscopy as a valuable tool for soil

analyses, further research should be directed towards the

development of strategies that can address this issue, such as the

use of additional predictors in the modeling.

Despite these difficulties, large spectral libraries can be very

valuable to (i) build local and more accurate spectroscopic models

that are specific to a given geographical entity or soil type and (ii)

develop spectroscopic models able to quickly produce SOC

predictions for estimate accurately SOC means across regions or

countries, due to the unbiasedness of the method. The LUCAS

spectral library will be made publicly available for non-commercial

purpose through the European Soil Data Centre (http://eusoils.

jrc.ec.europa.eu/projects/lucas/data.html).

Figure 5. Mean reflectance (left scale) and continuum-removed reflectance (right scale) spectra of LUCAS mineral soil samples,
computed for arbitrary clay and SOC classes. The clay classes are 0–20%, 20–40%, 40–60%, 60–80% and the SOC classes are 0–25 g C kg21, 25–
50 g C kg21, 50–75 g C kg21, 75–200 g C kg21. Each panel regroups samples of a given SOC interval.
doi:10.1371/journal.pone.0066409.g005
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Although not addressed in this paper, there are indications that

other key soil properties identified by the Global Soil Map

community such as clay content, pH and cation-exchange capacity

[3] can simultaneously be analyzed using Vis-NIR spectroscopy

[8]. As similar large scale spectral libraries are being developed in

USA [57], Africa [16], and Australia [22], spectral analyses will

provide consistent soil measurements for a large portion of soils

across the globe. However, in order to develop soil spectroscopy

into an operational tool producing harmonized data across

laboratories and environments, we urgently need consultation

and cooperation to define internationally agreed standards for soil

spectral analyses, including norms for instrumentation, sampling

preparation, reference materials, measuring set-up, quality checks

and calibration transfer methods.

Supporting Information

Figure S1 Box-and-whisker plots of the Root Mean
Square Error of Prediction (RMSEP) as a function of

Figure 6. Relative Root Mean Square Error of Prediction (RMSEP) per land cover, for arbitrary classes of SOC and sand content. The
sand classes are 0–25%, 25–50%, 50–75%, 75–100% and the SOC classes are 0–25 g C kg21, 25–50 g C kg21, 50–200 g C kg21. The relative RMSEP is
the RMSEP divided by the mean of observed SOC values of models developed with (red bars) and without auxiliary predictors (blue bars). Each panel
regroups mineral samples of a given SOC interval and land cover type. The number of training samples (n) for each class of SOC content is given in
each panel.
doi:10.1371/journal.pone.0066409.g006

Table 5. Reproducibility of SOC estimates (g C kg21; Eq. 6) of
the reference method and the spectroscopic models with
(rfe+aux) and without (spc) the use of auxiliary predictors.

Subset Reference spc rfe+aux na

Cropland 1.5 1.8 0.9 13

Grassland 0.8 1.4 1.7 5

Woodland 2.9 2.1 2.4 4

Mineral 2 1.8 2.4 22

Organic 11.5 9.1 – 3

aNumber of duplicate samples.
doi:10.1371/journal.pone.0066409.t005
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the pretreatments. Each panel presents separately the results

obtained for cropland, grassland, woodland, mineral and organic

models. Pretreatments: SG0 = Savitzky-Golay smoothed absor-

bance; SG1 = Savitzky-Golay first derivative; A = absorbance;

SNV = Standard Normal Variate.

(TIF)

Figure S2 Box-and-whisker plots of the Root Mean
Square Error of Prediction (RMSEP) as a function of
the predictors. Each panel presents separately the results

obtained for cropland, grassland, woodland, mineral and organic

models. Predictors: spc = spectral matrix; rfe = spectral matrix with

bands selected by recursive feature elimination.

(TIF)

Figure S3 Box-and-whisker plots of the Root Mean
Square Error of Prediction (RMSEP) as a function of
the multivariate calibration approach. Each panel presents

separately the results obtained for cropland, grassland, woodland,

mineral and organic models. Multivariate models: pls = partial

least square regression; cubist = Cubist; mars = multivariate adap-

tive regression splines; brt = boosted regression tree; rf = random

forest; svm = support vector machine.

(TIF)
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