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Abstract

Segmentation is an important step for the diagnosis of multiple sclerosis (MS). This paper presents a new approach to the
fully automatic segmentation of MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance (MR)
images. With the aim of increasing the contrast of the FLAIR MR images with respect to the MS lesions, the proposed
method first estimates the fuzzy memberships of brain tissues (i.e., the cerebrospinal fluid (CSF), the normal-appearing brain
tissue (NABT), and the lesion). The procedure for determining the fuzzy regions of their member functions is performed by
maximizing fuzzy entropy through Genetic Algorithm. Research shows that the intersection points of the obtained
membership functions are not accurate enough to segment brain tissues. Then, by extracting the structural similarity (SSIM)
indices between the FLAIR MR image and its lesions membership image, a new contrast-enhanced image is created in
which MS lesions have high contrast against other tissues. Finally, the new contrast-enhanced image is used to segment MS
lesions. To evaluate the result of the proposed method, similarity criteria from all slices from 20 MS patients are calculated
and compared with other methods, which include manual segmentation. The volume of segmented lesions is also
computed and compared with Gold standard using the Intraclass Correlation Coefficient (ICC) and paired samples t test.
Similarity index for the patients with small lesion load, moderate lesion load and large lesion load was 0.7261, 0.7745 and
0.8231, respectively. The average overall similarity index for all patients is 0.7649. The t test result indicates that there is no
statistically significant difference between the automatic and manual segmentation. The validated results show that this
approach is very promising.
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Introduction

Multiple sclerosis (MS) is a chronic neurological disease of the

central nervous system (CNS), specifically involving the brain,

spinal cord, and optic nerves. There are several strategies to

determine if a person meets the long-established criteria for a

diagnosis of MS and to rule out other possible causes of whatever

symptoms the person is experiencing. These strategies include a

careful medical history, a neurologic exam and various tests,

including magnetic resonance imaging (MRI), evoked potentials

(EP) and spinal fluid analysis [1].

MRI is the best imaging technology for detecting the

presence of MS plaques or scarring (also called lesions) in

different parts of the CNS [1]. MS lesions can appear as a

hyperintense signal or as a hypointense signal depending on its

properties and on the used MRI sequence. The potential MRI

sequences for detection of white matter lesions are T1-

weighted (T1-w), T2-weighted (T2-w), PD-weighted (PD-w),

and FLAIR images. Multiple hyperintense lesions on T2-w and

PD-w sequences are the characteristic MRI appearance of MS.

A black hole (BH) is defined as any abnormal hypointensity as

compared with normal-appearing white matter visible on T1-w

sequences concordant with a region of high signal intensity on

T2-w images. These so-called black holes have various

pathological substrates depending, in part, on the lesion age.

FLAIR MR sequences produce heavily T2-w images by nulling

the signal from CSF. FLAIR images provide a better lesion

contrast than do PD-w or T2-w images [2]. Previous

researches have shown that the FLAIR sequence contains the

most distinctive lesion-healthy tissue differentiation for the

segmentation of white matter lesions.

The radiological criteria for MS include the number of

lesions on the MRI, their locations and their sizes, and this

quantitative information is also crucial for studying the

progression of MS lesions and the effect of drug treatments.

Consequently, segmentation of MS lesions from MR brain

images is important for the diagnosis of the disease [3].

However, manual segmentation and analysis of these lesions

from MR imaging examinations are usually time-consuming,

error-prone, costly and greatly suffers from intra-observer and

inter-observer variability [4,5]. Errors occur due to poor hand-

eye coordination, low tissue contrast and unclear tissue

boundaries caused by partial volumes (where individual pixels

contain more than one tissue type). Inconsistencies among

qualified experts as to the extent of various structures are also
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common [6]. Therefore, there is a great interest to find new

automatic and more effective methods or techniques to help

clinicians in their decision-making regarding appropriate

treatment of the disease. Automated procedures offer the

advantage of producing consistent results in a much shorter

operator time [7]. For this reason, automating the delineation

of MS lesions from MR brain image is a complex and

challenging task. Due to the existence of image imperfections

such as noise, inhomogeneity effects and partial volume effects,

segmenting MS lesions from MR brain images using only

intensity values alone remains truly a difficult problem. Also,

lesions cannot be simply modeled as normal anatomy, so they

cannot be directly segmented using explicit anatomical

templates. Consequently, segmentation of MS lesions is an

extremely challenging task [8].

Over the last years, many automatic and semiautomatic

approaches have been proposed for segmentation of the brain

into different tissues, including MS lesions. These approaches

include a variety of methods such as statistical, fuzzy, neural

networks, fuzzy neural networks and so on. These methods are

divided into supervised and unsupervised segmentation meth-

ods [9]. Supervised approaches are those based on using some

kind of a priori information or knowledge to perform MS lesion

segmentation. The supervised strategies group is further

subdivided into two sub-groups: in the first group all

approaches use atlas information [10–21], and therefore it is

necessary to apply a registration process for the analyzed

image to perform the segmentation; in the second group, all

approaches perform an initial training step on features

extracted from manually segmented images annotated by

neuroradiologists [7,22–32]. The methods in this second group

employ the image intensities previously segmented by an

expert, to train a classifier which segments the tissues and

lesions of the MR images. Unsupervised strategies, where no

prior knowledge is used, have two different subgroups: a sub-

group of methods that segments brain tissue to help lesion

segmentation [33–39]; and another sub-group that only uses

the lesion properties for segmentation [40–44]. In the first sub-

group, methods consist of either segmenting the tissue first and

then the MS lesions, or segmenting the tissue and the lesions at

the same time. In the second sub-group, the methods consist of

directly segmenting the lesions according to their properties,

without providing tissue segmentation. The advantage of

segmenting the tissue is that neuroradiologists can also

evaluate the GM tissue volumetry and monitor the progression

of cerebral atrophy.

Four strategies are, therefore, proposed to deal with the

automated MS lesion segmentation [9]: Supervised based on

atlas, Supervised based on training, Unsupervised based on

tissue and Unsupervised based on lesion. The inherent

advantage of supervised algorithms is that they can automat-

ically learn the characteristics of both normal tissue and

lesions. However, their main problem is that they rely on

having a good training set, which may be difficult to obtain.

According to the procedure, two supervised strategies have

been identified for introducing annotations into the algorithms:

with or without using a registration step. The advantage of

atlas-based approaches is that spatial information is inherently

used, although registration is also a challenging task. On the

other hand, training-based approaches allow for the use of the

real features of tissues and lesions, but spatial information has

to be introduced in a further step since it is not included in the

training process. This group of unsupervised techniques has

been subdivided into two different strategies according to the

use of tissue information. The advantage of using tissue

information is that it may help in localizing the lesions.

However, the correct segmentation of the tissue is critical in

these approaches. On the other hand, defining rules according

to lesion features makes it possible to identify special lesions,

although the rules may change according to the modality and

scanning machine used [9].

In this paper, a new approach is proposed to increase the

contrast of MR FLAIR images based on some image

processing techniques for segmenting brain tissues from MS

patients, without the need for any training set or any template.

The brain image is considered in three parts, which include

CSF, NABT and MS lesions, whose member functions of the

fuzzy region are Z{function, P{function and S{function,

respectively. The fuzzy regions are found by Genetic

Algorithm based on the maximum fuzzy entropy principle.

The image can keep as much information as possible when it is

transformed from the intensity domain to the fuzzy domain

[45]. Consequently, the intersection points of the membership

functions obtained are used to segment brain tissues. Research

has shown that brain tissues are not segmented well when using

the three-level threshold. So, each individual fuzzy region is

used to classify brain tissues. In this way, MS lesions are

determined by using a new Contrast-Enhanced image which is

obtained from FLAIR image and its lesions membership image

by means of SSIM indices. Also, CSF areas are segmented by

applying a localized weighted filter to Dark membership

image. The following sections explain: details of the research

procedure including MR imaging type; manual segmentation

of MS lesions; brain extraction; the use of the maximum fuzzy

entropy; Genetic Algorithm; and SSIM indices to segment

brain tissues. Finally, the proposed approach is introduced and

evaluated using Gold standard. There are three significant

advantages to the approach we propose: (1) our method is fully

automatic so manual segmentation and training set are not

required; (2) the proposed method increases the contrast of the

MR-FLAIR images using some image processing steps in order

to segment MS lesions;(3) only FLAIR image is used to

segment MS lesions.

Materials and Methods

Patients and MR imaging
The proposed procedure in this research was implemented

on MR images that were captured and used in [38]. This

dataset contains 16 females and 4 males with an average age of

29z
{ 8, and was selected according to the revised Mc Donald

criteria by Mc Donald 2005 [46]. Mean disease duration for

the patients was five years. For all patients the same MR

images were obtained via a Siemens 1.5T scanner. All images

were acquired according to full field MRI criteria for MS [46]

in T2-w, T1-w, Gadolinium enhanced T1-w and FLAIR in

axial, sagittal and coronal surfaces. We selected the FLAIR

images, especially the axial images, with lesions in deep,

priventricular, subcortical, juxtacortical, and cortical areas.

This selection was made because of greater lesion load and

higher accuracy of FLAIR in revealing these MS lesions [47].

Although FLAIR is especially helpful for priventricular lesions

closely apposed to an ependymal surface, where they may be

obscured by the high CSF signal on T2-w images [47],

Infratentorial lesions are better seen on PD-w images than on

FLAIR [2]. Scan parameters for repetition time (TR)/echo

time (TE)/inversion time (TI) and for FLAIR images were

9000/144/2500 ms. TR/TE for T1-w images were 424/10 ms

Segmentation of MS Lesions in MR FLAIR Images
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and TR/TE for T2-w images were 3820/105 ms. Each image

volume (patient data) consists of an average 40 slices with a

256|256 scan matrix. The pixel size is 1mm2, and the slice

thickness is 3mm without any gap.

Manual segmentation of MS lesions and brain extraction
The segmentation of MS lesions was performed manually by

a neurologist and a radiologist in Flair images, with visual

inspection of the corresponding T1-w and T2-w images. At

first, manual segmentation was performed independently by

two investigators, who were blinded to the study group. Then,

a difference image of the two binary lesion maps was generated

for each subject and together both experts together decided

which differences were assigned to lesions or not. However, in

some slices, the level of difference between the two binary

lesion maps was unacceptable and the experts decided to

segment these slices again. These manually segmented images

were used as Gold standard [24] to evaluate the performance

of the proposed method. Patients suffering from MS were

divided into 3 groups according to the volume of their lesions

[48]:

1. Patients with small lesion load (LVv4cc)

2. Patients with moderate lesion load (4ccvLVv18cc)

3. Patients with large lesion load (LVw18cc)

To evaluate the proposed method, different types of images

with different lesion volumes were applied. Also, brain

extraction was performed using a fully automatic object-

oriented approach [49]. This method was based on the

regional-spatial characteristics of the brain in MR images.

This algorithm consists of five steps. Firstly, the original image

is converted to a binary image. Secondly, the morphological

opening on the binary image is performed and tiny regions are

eliminated. In the third step, three rectangular masks showing

the cerebral regions are produced; the regions in the binary

image which overlap with these rectangles are preserved and

the rest are eliminated. In the fourth step, the final mask is

generated by dilating selected regions and filling tiny holes.

Finally, an image, which includes only cerebral tissues, is

obtained by applying the resulting mask to the original image.

Maximum fuzzy entropy based on probability partition
Let D~f(i,j) : i~0,1,:::,M{1; j~0,1,:::,N{1g and

G~f0,1,:::,l{1g, where M, N and l are three positive integers.

Then a digitized image is considered a mapping I : D?G: I(x,y)
is the gray level value of the image at the pixel (x,y).

I(x,y)[G V(x,y)[D

Dkd~f(x,y) : I(x,y)~k,(x,y)[Dg

k~0,1,:::,l{1

ð1Þ

hk~
nk

N �M
, k~0,1,:::,l{1 ð2Þ

where nk denotes the number of pixels in Dk. The following results

can be formed

[l{1

k~0

Dk~D, Dj

\
Dk~W k=jð Þ

0ƒhkƒ1,
Xl{1

k~0

hk~1, k~0,1,:::,l{1:

H~fh0,h1,:::,hl{1g is the histogram of the image,

Pl~fD0,D1,:::,Dl{1g is a probability partition of D with a

probabilistic distribution

pk~P(Dk)~hk, k~0,:::,l{1 ð3Þ

The image has 256 gray levels l (in this paper). Here, three-

level thresholding is used to segment the brain image: naming

the two thresholds t1 and t2; then, the image is segmented into

three gray levels; and brain tissue segmentation is evaluated. In

this gray level image, the domain D of the original image is

classified into three parts: Ed ,Em and Eb. Ed is composed of

pixels with low gray levels; Em is composed of pixels with

medium gray levels; and Eb is composed of pixels with high

gray levels. P3~fEd ,Em,Ebg is an unknown probabilistic

partition of D, whose probability distribution is given below:

pd~P(Ed ), pm~P(Em), pb~P(Eb) ð4Þ

A classical set is normally defined as a collection of elements

that can either belong to a set or not. A fuzzy set is an

extension of a classical set in which an element may partially

belong to a set. Let A be a fuzzy set, where A5X is defined as

A~f(x,mA(x))Dx[Xg where 0ƒmA(x)ƒ1 is called the member-

ship function. The value of mA(x) is the grade of x belonging to

A. Z(a,b,c,k){function, P(a,b,c,k){function and

S(a,b,c,k){function are used to approximate the memberships

of md , mm and mb to the image with 256 gray levels. The

membership functions have six parameters, namely

a1,b1,c1,a2,b2,c2. In other words, the two thresholds t1,t2, for

three-level thresholding depend on a1,b1,c1,a2,b2,c2, and the

following conditions are satisfied:

0va1ƒb1ƒc1ƒa2ƒb2ƒc2v255:

For each k~0,1,:::,255, let

Dkd~f(x,y) : I(x,y)ƒt1,(x,y)[Dkg

Dkm~f(x,y) : tt1vI(x,y)ƒt2,(x,y)[Dkg

Dkb~f(x,y) : I(x,y)wt2,(x,y)[Dkg

Then

pkd~P(Dkd )~pk � pd Dk

pkm~P(Dkm)~pk � pmDk

pkb~P(Dkb)~pk � pbDk

ð5Þ

When the pixel belongs to Dk, it is evident that pd Dk, pmDk, pbDk

are the conditional probability of a pixel when it is classified

into dark(d), medium(m) and bright(b) respectively, restricted

to pd DkzpmDkzpbDk~1;(k = 0,1,…,255).

Segmentation of MS Lesions in MR FLAIR Images
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pd~P(Ed )~
X255

k~0

P(Dkd )

~
X255

k~0

P(Dk) � P(Ed DDk)~
X255

k~0

pk � Pd Dk

pm~P(Em)~
X255

k~0

P(Dkm)

~
X255

k~0

P(Dk) � P(EmDDk)~
X255

k~0

pk � PmDk

pb~P(Eb)~
X255

k~0

P(Dkb)

~
X255

k~0

P(Dk) � P(EbDDk)~
X255

k~0

pk � PbDk

ð6Þ

In order to find the parameters a1,a2,bl ,b2,c1 and c2 three

membership functions are considered: md ,mm and mb, where

md (k)~pd Dk, mm(k)~pmDk and mb(k)~pbDk. Obviously,

mdzmmzmb~1, k~0,1,::,255: So, Eq. 6 is rewritten as

pd~
X255

k~0

Pk � md (k),

pm~
X255

k~0

Pk � mm(k),

pb~
X255

k~0

Pk � mb(k)

ð7Þ

The three membership functions are shown in Figure 1 [45].

md (k)~

1 kƒa1

1{
(k{a1)2

(c1{a1)�(b1{a1)
a1vkƒb1

(k{c1)2

(c1{a1)�(c1{b1)
b1vkƒc1

0 kwc1

8>>>>><
>>>>>:

ð8Þ

mm(k)~

0 kƒa1

(k{a1)2

(c1{a1)�(b1{a1)
a1vkƒb1

1{
(k{c1)2

(c1{a1)�(c1{b1)
b1vkƒc1

1 c1vkƒa2

1{
(k{a2)2

(c2{a2)�(b2{a2)
a2vkƒb2

(k{c2)2

(c2{a2)�(c2{b2)
b2vkƒc2

0 kwc2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ

mb(k)~

0 kƒa2

(k{a2)2

(c2{a2)�(b2{a2)
a2vkƒb2

1{
(k{c2)2

(c2{a2)�(c2{b2)
b2vkƒc2

1 kwc2

8>>>>><
>>>>>:

ð10Þ

where the six parameters a1,b1,c1,a2,b2,c2 satisfy the following

condition:

0ƒa1ƒb1ƒc1ƒa2ƒb2ƒc2v255

The fuzzy entropy function of each class is given below:

Hd~{
X255

k~0

pk � md (k)

pd

� ln(
pk � md (k)

pd

)

Hm~{
X255

k~0

pk � mm(k)

pm

� ln(
pk � mm(k)

pm

)

Hb~{
X255

k~0

pk � mb(k)

pb

� ln(
pk � mb(k)

pb

)

ð11Þ

Then, the total fuzzy entropy function is given as follows:

H(a1,b1,c1,a2,b2,c2)~HdzHmzHb ð12Þ

We can find a combination of a1,b1,c1,a2,b2,c2 such that the

total fuzzy entropy H(a1,b1,c1,a2,b2,c2) achieves the maximum

value. In this paper, the procedure for finding the optimal

combination of all the fuzzy parameters is implemented by

genetic algorithms.

Finding fuzzy parameters using Genetic Algorithm
The Genetic Algorithm (GA) is a stochastic global search

method that mimics the metaphor of natural biological evolution

[50]. A traditional, simple genetic algorithm has the following

steps:

1. Create initial generation P(0), let t~0.

2. For each individual i[P(t), evaluate its fitness f (i).

Figure 1. Membership function graph.
doi:10.1371/journal.pone.0065469.g001
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Figure 2. Brain tissue segmentation examples, using the three-level threshold. Each column shows the result of segmentation for a brain
image with different lesion load. (a) Shows the original brain images. (b) The obtained member functions plots. (c) Shows the segmentation results
using the three-level thresholding (maximum fuzzy entropy approach). (d) Dark membership images. (e) Medium membership images. (f) Bright
membership images. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
doi:10.1371/journal.pone.0065469.g002
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3. Create generation P(tz1) by reproduction, crossover, and

mutation.

4. Let t~tz1. Unless t equals the maximum number of

generations, return to Step 2

The user is required to specify the following parts for using GA:

coding method, object function, the population size (PoP), the cross-

over probability (Pc), the mutation probability (Pm) and the maximal

number of generations (MaxGen). So we should present the encoding

mechanism, the selection scheme, genetic operators, and the fitness

function used. The first step is to encode the parameters

(a1,b1,c1,a2,b2,c2) into an alphabet string. The parameters have to

follow an increasing order: a1ƒb1ƒc1ƒa2ƒb2ƒc2. In our

experiments, each image has 256 gray levels, i.e., the maximum value

of c2 is 255. Therefore, the chromosome of the genetic algorithm in our

experiment is encoded as six 8-bits strings that represent the value of all

the parameters, respectively. If all the parameters (a1,b1,c1,a2,b2,c2)
are generated randomly, it is possible that the parameters

(a1,b1,c1,a2,b2,c2) do not satisfy the criteria (a1ƒb1ƒc1ƒ

a2ƒb2ƒc2). In such a case, we can assign zero to the value of object

function for illegal chromosomes, which will not participate in the

reproduction of next generation. The drawback of this method is that

there are too many useless chromosomes in the searching space. Here

we use a mathematical processing method to make all chromosomes

legal. That is to say, every chromosome will satisfy the criteria

(a1ƒb1ƒc1ƒa2ƒb2ƒc2). The method is described below:

c1
1~c1

b1
1~c1

1 � (b1=255)

a1
1~b1

1 � (a1=255)

a1
2~c1

1z(255{c1
1) � (a2=255)

b1
2~a1

2z(255{a1
2) � (b2=255)

c1
2~b1

2z(255{b1
2) � (c2=255)

ð13Þ

Figure 3. Contrast-Enhanced FLAIR image for segmentation of MS lesions. (a) Shows a typical brain image. (b) Histogram of original brain
image. (c) Contrast-Enhanced image. (d) Histogram of Contrast-Enhanced image. (e) L1: Lesion areas obtained from Contrast-Enhanced FLAIR image.
(f) L2 : All candidate MS lesions obtained from bright membership image. (g) Result of MS lesions segmentation. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article).
doi:10.1371/journal.pone.0065469.g003
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Then the following condition is satisfied:

0va1
1ƒb1

1ƒc1
1ƒa1

2ƒb1
2ƒc1

2v255 ð14Þ

We can find a combination of a1
1,b1

1,c1
1,a1

2,b1
2,c1

2 such that the total

fuzzy entropy H(a1,b1,c1,a2,b2,c2) achieves the maximum value.

Also, the parameters of the genetic algorithm are: Number of

population: 300, Maximum number of generation: 0.5, Pc(probability

of crossover) = 0.5, and Pm(probability of mutation) = 0.01.

Structural Similarity Indices
We have used a structural similarity (SSIM) quality measure

[51] from the perspective of image formation which is a function of

luminance, contrast and structure. The algorithm’s greatest appeal

is that it matches human subjectivity. In particular, the SSIM

Index, like the HVS (human visual system), is highly sensitive to

degradations in the spatial structure of image luminances. The

luminance of the surface of an object being observed is the product

of illumination and reflectance, but the structures of the objects in

the scene are independent of illumination. The structural

information in an image is defined as those attributes that

represent the structure of objects in the scene, independent of the

average luminance and contrast. Since luminance and contrast

can vary across a scene, local luminance and contrast are used.

Suppose X~fxi Di~1,2,:::,Ng and Y~fyi Di~1,2,:::,Ng are

two nonnegative image signals. Let mx, s2
x and sxy be the mean of

X, the variance of X, and the covariance of X and Y, respectively.

Approximately, mx and sx can be viewed as estimates of the

luminance and contrast of X, and sxy measures the tendency of X

and Y to vary together, thus an indication of structural similarity.

The general form of the SSIM index between signal x and y is

defined as:

SSIM(x,y)~½l(x,y)�a:½c(x,y)�b:½s(x,y)�c ð15Þ

where

N l(x,y) is Luminance comparison measure. Luminosity is a

comparison of the mean values of each image.

l(x,y)~
2mxmyzC1

m2
xzm2

yzC1
ð16Þ

The constant C1 is included to avoid instability when m2
xzm2

y is

very close to zero, and

C1~(K1L)2 ð17Þ

where K1%1 and the dynamic range of the elements of x and y

is denoted by the variable L.

N c(x,y) is Construct comparison and is estimated as the

standard deviation s. Structure comparison is done after local

mean subtraction and local variance normalization.

c(x,y)~
2sxsyzC2

s2
xzs2

yzC2
ð18Þ

The constant C2 is included to avoid instability when s2
xzs2

y is

very close to zero, and

C2~(K2L)2 ð19Þ

where K2%1 and the dynamic range of the elements of x and y

is denoted by the variable L.

N s(x,y) is Structure comparison measure and is estimated from

the image vector by removing the mean and normalizing it by

standard deviation.

s(x,y)~
2sxyzC3

sxsyzC3

ð20Þ

where C3~C2=2.

N a,b and c are used to adjust the relative importance of the

three components..

This SSIM function, l(x,y), c(x,y) and s(x,y) satisfy the

following conditions:

1. Symmetry: S(x,y)~S(y,x);

2. Boundedness: S(x,y)ƒ1;

3. Unique maximum: S(x,y)~1 if and only if x~y (in discrete

representations, xi~yi for all i = 1,2,…,N);

Brain tissue segmentation
Fig. 2(a) shows five brain images with different lesion load. The

membership functions obtained and the three-level threshold

images are shown in Fig. 2(b) and (c), respectively. As seen in

Fig. 2(c), brain tissues are not segmented well when using the

three-level threshold. To make this clearer, the membership

function values (dark, medium, bright) are computed for each pixel

and shown in Fig. 2(d) to (f). In dark membership images, CSF

areas have high intensity values in comparison with the rest of the

brain areas. Also, in bright membership images, MS lesions have

high intensity values in comparison with CSF and normal areas.

These two membership images have been used to segment CSF

and MS lesions. But, as seen in Fig. 2(f), there are a lot of pixels

which do not belong to MS lesion class, but their bright

Figure 4. Segmentation of CSF areas. (a) Shows a typical brain
image. (b) Dark membership image (to give more understanding, the
obtained image has been inverted). (c) Result of applying the localized-
weighted filter to dark membership image (the inverted result). (d) C1 :
CSF areas obtained from filtered dark membership image. (e) C2 : CSF
areas obtained from dark membership image. (g) Result of CSF
segmentation. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article).
doi:10.1371/journal.pone.0065469.g004
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membership values are similar to the MS lesions. Moreover, in

manual segmentation, the possible lesions which are as small as

one or two pixels in size are not usually considered as MS lesions

by experts. These objects are recognized as noise and must be

removed [38]. So, simple thresholding of the fuzzy membership

images ends up with noise pixels in all classes. To tackle these

problems, a new image created from the original brain image and

its bright membership image are introduced. In this way SSIM

indices [51] have been used to increase the contrast between

lesions and the rest of the brain tissues (i.e., normal tissue and CSF)

on FLAIR images as given below:

If (x,y)~I(x,y)|

l(wI (x,y),wB(x,y))|c(wI (x,y),wB(x,y))|s(wI (x,y),wB(x,y)),

and

l(wI (x,y),wB(x,y))~
2mwI (x,y)mwB(x,y)zC1

m2
wI (x,y)zm2

wB(x,y)zC1

c(wI (x,y),wB(x,y))~
2swI (x,y)swB(x,y)zC2

s2
wI (x,y)zs2

wB(x,y)zC2

s(wI (x,y),wB(x,y))~
2swI (x,y)wB(x,y)zC3

swI (x,y)swB(x,y)zC3

ð21Þ

where I , B and If are respectively the original brain image, its

bright membership image (with dynamic range of I(L)) and the

new created image; wI (x,y) and wB(x,y) are two local windows

(k|k,k~3) in image I and B, respectively, which are centered at

pixel (x,y). mw(x,y) and sw(x,y) are mean and variance of the pixels

which are placed in window w(x,y). The constants C1 and C2 are

included to avoid instability when mwI (x,y)zmwB(x,y) and

s2
wI (x,y)zs2

wB(x,y) are very close to zero and are equal to

C1~k1L(k1%1) and C2~k2L(k2%1), C3~C2=2. In other

words, the constants C1, C2 and C3 are small constants that aim

to characterize the saturation effects at low luminance and contrast

regions and ensure numerical stability when the denominators are

close to zero. The obtained result for a typical brain image is

shown in Fig. 3. As seen in Fig. 3, the contrast between MS lesions

and the rest of brain tissues has been increased. A simple

observation of the histogram of the Contrast-Enhanced image

shows that it uniformly spreads across a large spectrum of values

for MS lesions. Then, a primary mask (L1) which determines MS

lesions areas is created using Adaptive thresholding [52] from (If ). To

have an accurate segmentation, all candidate MS lesions are

determined by thresholding the bright membership image:

L2~BwBM . As mentioned before, brain tissues are not

segmented well when using the three-level threshold, and as seen

in Fig. 2e and f, most of the lesion pixels have been considered as

other tissues; this means that they have a low bright membership

function value. So, setting the BM is very important for all types of

brain images with different lesion load. If we lose a candidate MS

lesion, which is an MS lesion, this means that it has been

eliminated from the final segmentation result. So, to avoid any

unwanted elimination of MS lesions, BM is set to 0.05, manually.

So, in comparison with L1, L2 is a mask which contains all
candidate MS lesions. Finally, To segment MS lesions, each

individual area in L2 which overlaps with L1 is selected as an MS

lesion.

To segment CSF areas through the dark membership image, a

localized weighted filter is used. At first, the dark membership

image is filtered using

Df (x,y)~U(D(x,y){DM)|

(a:(
Xxzk

i~x{k

Xyzk

j~y{k

D(i,j)){b:D(x,y))
ð22Þ

Where D(x,y) is the value of the dark membership image at pixel

(x,y), Df (x,y) is its value in the filtered image, U is the unit step

function, a and b determine the effect of the pixel’s neighborhood

and the pixel itself, respectively, and k controls the neighborhood

size. DM is considered as a threshold which determines candidate

Figure 5. Block diagram of the proposed approach for fully automatic segmentation of MS lesions.
doi:10.1371/journal.pone.0065469.g005

Figure 6. TP, TF, FP, and TN values are shown based on
comparison between segmented regions by proposed method
(Automatic segmentation) and manual segmentation.
doi:10.1371/journal.pone.0065469.g006
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CSF pixels, and experimentally it is found that DM~mzs gives

the best segmentation result, in which m, s are the mean and

standard deviation of non zero pixels of the D(x,y), respectively.

The filter parameters, i.e. a, b and k are the parameters used for

adjusting the relative weights or contributions of neighborhood

interaction, and have been experimentally set to 0.9, 0.6 and 3 for

the best result. Non zero pixels of the Df are then selected and

considered as a primary mask of CSF areas (C1). To accurately

segment CSF areas, the dark membership image is also

thresholded: C2~Dw0:5DM. Finally, to segment CSF areas,

each individual area in C2 which overlaps with C1 is selected as

CSF areas. The result obtained for a typical brain image is shown

in Fig. 4.

Algorithm
Based on the explanations given above, the block diagram of

our method for MS lesion segmentation is shown in Fig. 5 and

summarized below:

1. Segmentation of brain image.

2. Approximation of brain image memberships (dark, medium,

and bright) by maximizing fuzzy entropy (the procedure to find

the optimal combination of all the fuzzy parameters is

implemented by genetic algorithm).

3. Segmentation of brain tissues

(a) Segmentation of MS lesions:

i. Detection of MS lesion areas by thresholding the Contrast-

Enhanced FLAIR image (L1).

ii. Selection of all candidate MS lesions by thresholding the

bright membership image (L2).

iii. Selection of areas which are located in the L2 and overlap

with L1 as MS lesions.

(b) Segmentation of CSF regions:

i. Detection of CSF areas by thresholding the filtered dark

membership image (C1).

ii. Selection of candidate CSF areas by thresholding the dark

membership image (C2).

iii. Selection of regions which are located in the C2 and overlap

with C1 as CSF regions.

(c) After segmentation of MS lesions and CSF areas, other

pixels are labeled as normal tissues.

Evaluation
Results of lesion segmentation based on the proposed method

are compared with the Gold standard. To evaluate the proposed

method, similarity criteria (SI) [53], overlap fraction (OF) and

Figure 7. Brain tissue segmentation examples. Each column shows the result of the proposed method for a brain image with
different lesion load. (a) Original brain images. (b) Rresult of automatic segmentation. (c) Results of the automatic MS lesion segmentation overlaid
on brain image. (d) Extracted lesions. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article).
doi:10.1371/journal.pone.0065469.g007
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extra fraction (EF) [54] criteria are considered and computed for

all 20 patients. SI is a criterion for the correctly segmented region

relating to the total segmented region in both the manual

segmentation and the image segmented using the proposed

method. The OF and the EF specify the areas that have been

correctly and falsely classified as MS lesions areas with respect to

the MS lesion areas in manual segmentation. Similarity index,

overlap fraction, and extra fraction are obtained, respectively, by

Eq.(23) (see Fig. 6):

SI~
2|TP

2|TPzFPzFN
,

OF~
TP

TPzFN
,

EF~
FP

TPzFN

ð23Þ

where: TP stands for true positive voxels, FP for false positive

voxels, and FN for false negative voxels. For a good segmentation,

SI and OF should be close to 1 and EF should be close to 0. A

value of more than 0.7 for SI practically represents a very good

segmentation in this field [55]. Also, the mean values of the

similarity criteria are categorized to the three patient categories

and then, volumetric comparison of lesion volume between fully

automated segmentation and Gold standard are performed using

Intraclass Correlation Coefficient (ICC). Moreover, the paired

samples t test is used to evaluate the consistency between

computerized and manual segmentation. The original hypothesis

is that there is no significant difference between the two groups of

lesion areas segmented by different methods.

Results

The proposed algorithm was implemented on different FLAIR

images using a PC with 2.5 GHz Pentium 4 processor and 512

MB RAM. The results of the proposed method for five slices with

different lesion loads are shown in Fig. 7. Segmented brains from

typical original FLAIR images and results of the proposed method

for brain tissue segmentation are shown in Fig. 7 (a) and Fig. 7 (b),

respectively. It is apparent that there is a good correlation between

the input images (Fig. 7 (a)) and the resulting image (Fig. 7 (b)),

indicating the acceptable performance of the suggested algorithm

in detecting the lesion borders as well as the CSF regions. The

results for the automatic MS lesion segmentation overlaid on brain

images are shown in Fig. 7 (c). Extracted lesions are also shown in

Fig. 7 (d).

The evaluation of the results was performed qualitatively and

quantitatively as follows: the quality performance of the results was

confirmed by the neurologist and the radiologist separately; then,

in the quantitative evaluation step, the similarity criteria (i.e., SI,

OF, and EF) were calculated for all slices. Mean values of the

lesion volumes (LV) and similarity criteria are given in Table 1 for

each patient data and for all images in the data set (last line of

Table 1). As seen in this table, patient no. 1 has the lowest values

for both OF and EF. Although it is expected to achieve a low OF

value for patients with small lesion load, achieving low values for

both OF and EF indicates a high number of False Negative pixels

in this case. Also, mean values of the similarity criteria for each

Table 1. Mean values of lesion volumes (LV), similarity criteria and mean value of segmentation time (T) for each patient data and
for all images in data set (last line of the table) obtained using the proposed method.

Patient No.
Manualsegmented

LV(in cc)

Segmented

LV(in cc) SI OF EF T(Sec.)

1 0.873 0.699 0.7252 0.6529 0.1478 24.81

2 1.611 1.797 0.7165 0.7579 0.3575 27.25

3 1.884 2.112 0.7132 0.7564 0.3646 28.29

4 2.547 2.868 0.7224 0.7680 0.3581 25.42

5 2.991 2.619 0.7476 0.7011 0.1745 26.73

6 3.054 3.360 0.7325 0.7692 0.3310 26.19

7 3.888 3.723 0.7253 0.7099 0.2477 27.68

8 6.438 6.069 0.7633 0.7414 0.2013 28.17

9 9.057 9.726 0.7692 0.7976 0.2763 25.78

10 9.855 10.266 0.7726 0.7890 0.2527 27.24

11 10.359 11.613 0.7739 0.8207 0.3003 29.77

12 11.283 12.102 0.7808 0.8091 0.2635 28.11

13 13.803 12.648 0.7810 0.7483 0.1680 25.56

14 15.414 16.170 0.7823 0.8015 0.2476 28.31

15 16.173 17.676 0.7769 0.8130 0.2799 25.56

16 17.232 16.029 0.7739 0.7469 0.1833 26.12

17 17.907 18.819 0.7713 0.7909 0.2600 28.62

18 21.189 22.047 0.8190 0.8356 0.2049 26.35

19 26.331 25.890 0.8240 0.8171 0.1661 27.51

20 28.587 29.421 0.8262 0.8383 0.1909 28.94

Mean 11.0238 11.2827 0.7649 0.7732 0.2488 27.18

doi:10.1371/journal.pone.0065469.t001
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patient group are given in Table 2. As seen in this table, SI, OF

and EF are improved with an increase in lesion load. The results of

volumetric comparison of lesions between the proposed method

and the Gold standard are also presented in Table 2. This table

shows that according to the value of ICC, the accuracy of the

proposed method is increased for patients with large lesion load.

The differences between the computerized method and manual

segmentation are analyzed using the paired samples t test, with the

level of significance set at 5%. The paired t test between the areas

extracted by the two methods achieves a P value of 0.131. The

result indicates that the areas worked out by the two methods are

highly correlated without a significant difference at the averages.

Discussion

In this paper, a new approach for fully automatic segmentation

of brain tissues in MR FLAIR images of MS patients is proposed.

At first, the brain image is partitioned into three parts, including

dark (CSF), gray (normal tissues) and white part (MS lesions),

whose member functions of the fuzzy region are Z{function,

P{function and S{function, respectively. Membership functions

(MF) can either be chosen by the user arbitrarily based on the

user’s experience (MF chosen by two users could be different

depending upon their experiences, perspectives, etc.), or be

designed using machine learning methods (e.g., artificial neural

networks, genetic algorithms, etc.). For this application, modeling

requires continuously differentiable curves and therefore smooth

transitions, which the trapezoids do not have. The fuzzy regions

are determined by using maximizing fuzzy entropy. The

procedure to find the optimal combination of all the fuzzy

parameters is implemented by genetic algorithm, which can

overcome the computational complexity problem. The intersec-

tion points of the obtained membership functions are considered

to segment three parts. Research has shown that brain tissues are

not segmented well when using the three-level threshold. So, each

individual fuzzy region is used to classify brain tissues. It should be

noted that the value of the BM parameter is very important for the

segmentation of MS lesions; to find the optimal value, an empirical

approach is used to maximize the Jaccard scores of the

abnormality detection results for a set of values in the interval

[0.01, 0.1]. As can be seen in Fig. 8, the optimal value obtained is

0.05. Although using a lower BM value increases the number of

True Positive pixels and decreases the number of False Negative

pixels, it causes an increase in the number of False Positive pixels.

Also, using a greater value for BM parameter decreases the

number of True Positive and False Positive pixels, and increases

the number of False Negative pixels.

Manual segmentation is used to evaluate the proposed method

via similarity criteria (i.e., SI, OF, and EF) in a data set of MR

FLAIR images of 20 MS patients. Other researchers who have

used similar evaluation methods of evaluation (i.e., SI) are shown

in Table 3. It should be noted that these researchers have used real

data set and manual segmentation for the evaluation of their

methods. As seen in Table 3, the MS lesion segmentation

algorithms use different MR images to segment MS lesions and are

evaluated with different databases. So, direct comparison between

our proposed method and those reported here through the value

of SI, without considering Images and Databases is not justified.

Methods reported in Table 3 will be reviewed below.

Admiraal-Behloul et al. [48] suggested a fully automatic

segmentation method for quantifying white matter hyperintensity

in a large clinical trial on elderly patients. The algorithm they

introduced combined information from three different MR images

including PD, T2-w and FLAIR and FCM algorithm for the

clustering process. The approach demonstrated very high volu-

metric and spatial agreement with expert delineation. To initialize

and guide the FCM algorithm, they used brain templates, where

prior distributions of the tissue types were supposed to be known.

The success of a template-based segmentation algorithm depends

on the outcome of the template. Bijar et al. [39] presented an

automatic segmentation of MS lesions in FLAIR MR images. The

proposed method estimated a gaussian mixture model with three

kernels as CSF, normal tissue and MS lesions. To estimate this

model, an automatic Entropy-based EM algorithm was used to

find the best estimated model. Then, Markov random field (MRF)

model [56] and EM algorithm were used to obtain and upgrade

the class conditional probability density function and the apriori

Table 2. Similarity criteria and volumetric comparison of lesions for each patient group.

Patient category N Similarity criteria Correlation analysis

SI OF EF MGS+SDGS(cc) M+SD(cc) ICC

Small lesion load 7 0.7261 0.7308 0.2830 2:4069+1:0192 2:4540+1:0213 0.963

Moderate lesion load 10 0.7745 0.7858 0.2433 12:7521+3:8921 13:1118+3:9988 0.971

Large lesion load 3 0.8231 0.8303 0.1873 25:3690+3:7917 25:7860+3:6881 0.980

N : number of patients in each group, M : mean, SD: standard deviation,
ICC: Intraclass Correlation Coefficient (two-way mixed model with absolute agreement definition and 95% confidence interval).
doi:10.1371/journal.pone.0065469.t002

Figure 8. The average of the Jaccard Scores for different values
of the BM parameter (in the interval [0.01, 0.1]).
doi:10.1371/journal.pone.0065469.g008
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probability of each class. After the estimation of Model parameters

and apriori probability, brain tissues were classified using bayesian

classification. Khayati et al. [38] combined an adaptive mixture

method (AMM) [57], MRF and a Bayesian classifier to

simultaneously classify the three main brain tissues and the MS

lesions using only FLAIR images. In particular, they first

segmented the brain into four classes: WM, GM, CSF and

‘others’. Afterwards, inside the ‘others’ class, lesions were dealt

with as outliers which were not correctly explained by the model.

Sajja et al. [26] used PD-w, T2-w, and FLAIR MR images to

segment MS lesions, which involved techniques such as Parzen

window classifier, morphological operations, hidden Markov

random field-expectation maximization (HMRF-EM) algorithm,

and fuzzy connectivity. A similar approach was employed by

Datta et al. [43] to identify black holes in MS. The method

proposed by Anbeek et al. [24] was a supervised pixel classification

which used different information, including voxel intensity and the

spatial information, to classify voxels by a K-nearest neighbor

(KNN) classifier. This technique assigned a probability to each

voxel for being part of white matter lesion. The SI was then used

to determine an optimal threshold on the probability map to

segment the images. Their approach showed high accuracy

compared to other methods for a similar task.

Compared to the above-mentioned methods our proposed

algorithm does not need any training set or template. There is

further information about those methods which classified their

input database into different lesion load in Table 4. Anbeek et al.

[24] and Admiraal-Behloul et al. [48] made use of FLAIR images

for the segmentation of white matter lesions in patients of (Mean

+ SD: 65.6+7.7) years old. In comparison, we used FLAIR

images for the segmentation of MS lesions in younger patients

(Mean + SD: 29+8), which were also used by Khayati et al. [38]

and Bijar et al. [39]. For the patients with small lesion load, Anbeek

et al. [24], Admiraal-Behloul et al. [48], Khayati et al. [38] and Bijar

et al. [39] reached values of 0.5, 0.7, 0.7253 and 0.7262 for SI,

respectively, while we obtained a value of 0.7261 for SI, according

to Table 4. As seen in Table 4, our proposed method improves the

value of SI by about 2% for the patients with a moderate lesion

load in comparison with others. Also, there was no improvement

in SI of patients with large lesion load compared with supervised

methods. However, on average, an increase of about 1.49% in the

SI value for all patients was seen in our proposed approach,

compared to Admiraal-Behloul et al. [48], Khayati et al. [38] and

Bijar et al. [39] and no improvement achieved compared to

Anbeek et al. [24], which is a supervised method. Furthermore,

lesions that are smaller than six voxels were excluded by Admiraal-

Behloul et al. [48], while we do not exclude any lesions. If we

ignore the lesions that are smaller than six voxels, the results of

fully automated segmentation will be improved, because lesions

which are possibly as small as one or two pixels in size are not

usually considered as MS lesions by experts in manual segmen-

tation.

Finally, our findings about lesion load in FLAIR images,

mentioned in Table 2, are consistent with previous studies by

Anbeek et al. [24], Admiraal-Behloul et al. [48], Khayati et al. [38]

and Bijar et al. [39]. They suggested that better SI and CC were

associated with bigger T2-w lesion load.

Also, intraclass correlation test revealed a strong correlation

between the proposed method and manual segmentation

(ICC = 0.996). Statistical analysis using the t test for paired

Table 3. Similarity index (SI) values for the proposed method and the other methods.

# Article Method Similarity index (SI) Images Database

1 Datta et al. [27] Supervised 0.75 PD, T1, T2, FLAIR 14v

2 Admiraal-Behloul et al. [48] Supervised 0.75 PD, T2, FLAIR 100v

3 Bijar et al. [39] Unsupervised 0.75 FLAIR 20|12*20 s

4 Khayati et al. [38] Unsupervised 0.7504 FLAIR 20|12*20 s

5 Datta et al. [43] Supervised 0.76 PD, T1, T2, FLAIR 22v

6 Proposed Method Unsupervised 0.7649 FLAIR 20v

7 Sajja et al. [26] Supervised 0.78 PD, T2, FLAIR 23v

8 Anbeek et al. [24] Supervised 0.8 PD, T1, T2, FLAIR, IR 20|38 s

9 Anbeek et al. [25] Supervised 0.808 PD, T1, T2, FLAIR, IR 10|5 s

s: slices, v: volume.
The reader is referred to the [9,58] for complete explanations about methods reported here.
doi:10.1371/journal.pone.0065469.t003

Table 4. SI values for the proposed method and the other methods.

Method Patient category

Small lesion load Moderate lesion load Large lesion load All patients

Anbeek et al. [24] 0.50 0.75 0.85 0.8

Admiraal-Behloul et al. [48] 0.70 0.75 0.82 0.75

khayati et al. [38] 0.7253 0.7520 0.8096 0.7504

Bijar et al. [39] 0.7262 0.7531 0.8101 0.75

Proposed method 0.7261 0.7745 0.8231 0.7649

doi:10.1371/journal.pone.0065469.t004
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samples showed that there was no significant difference between

the obtained results and manual segmentation.

Because of partial volume effect, the edges of the tissues or

lesions are not well defined and consequently their correct

delineation is not easy. It becomes even more difficult when the

operator delineates small or irregular lesions and, as a result,

correction of the partial volume effect is necessary [41]. The most

prominent partial volume effect can be seen at the interface of

lateral ventricles, especially in T2-w and PD images, and also in

subarachnoid CSF spaces in T1-w enhanced images. Since we

made use of FLAIR images and theoretically in FLAIR images,

CSF signals are suppressed in these regions, we are able to ignore

the partial volume artifact in our study. However, we expect to use

some corrective measures, such as morphological operators,

connectivity principles and the integration of explicit anatomical

models of ventricles, which are useful and reduce this artifact [59].

It is reminded that FLAIR images are less sensitive in the depiction

of lesions involving brainstem and cerebellum, so lesion load may

be underestimated in the posterior fossa [60] (see Fig. 9).

There was no significant field inhomogeneity in the data set, so,

we did not use any field inhomogeneity correction method as the

pre-processing step. We repeated the experiments using a bias field

correction method and there was no considerable improvement in

the results. Although the probable reason may be the use of the

SSIM index in enhancing the contrast of the FLAIR image locally

and then the detection of lesion areas, we cannot claim that the

affect of global intensity inhomogeneity has been canceled by the

proposed method.

As the proposed algorithm requires no training and is based on

estimating three fuzzy membership functions for all classes (i.e.,

CSF, NABT, and lesions) through the Genetic algorithm, which is

a stochastic global search method, this type of method is less

dependent on image intensity standardization and can be used

with different scanners.

As future research, we intend to use different fuzzy membership

functions for MS lesion segmentation and hope it gives better and

more accurate results. Also, a simple observation of the Contrast-

Enhanced image’s histogram shows that it is uniformly spread

across a large spectrum of values for MS lesions, which could be

used to detect MS lesions subtypes in future studies.
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