
Portfolio Decision Analysis Framework for Value-Focused
Ecosystem Management
Matteo Convertino1,2*, L. James Valverde, Jr.3

1 Department of Agricultural and Biological Engineering—Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America,

2 Florida Climate Institute, University of Florida, Gainesville, Florida, United States of America, 3 US Army Engineer Research and Development Center, US Army Corps of

Engineers, HQ, Washington, DC, United States of America

Abstract

Management of natural resources in coastal ecosystems is a complex process that is made more challenging by the need for
stakeholders to confront the prospect of sea level rise and a host of other environmental stressors. This situation is
especially true for coastal military installations, where resource managers need to balance conflicting objectives of
environmental conservation against military mission. The development of restoration plans will necessitate incorporating
stakeholder preferences, and will, moreover, require compliance with applicable federal/state laws and regulations. To
promote the efficient allocation of scarce resources in space and time, we develop a portfolio decision analytic (PDA)
framework that integrates models yielding policy-dependent predictions for changes in land cover and species
metapopulations in response to restoration plans, under different climate change scenarios. In a manner that is somewhat
analogous to financial portfolios, infrastructure and natural resources are classified as human and natural assets requiring
management. The predictions serve as inputs to a Multi Criteria Decision Analysis model (MCDA) that is used to measure the
benefits of restoration plans, as well as to construct Pareto frontiers that represent optimal portfolio allocations of
restoration actions and resources. Optimal plans allow managers to maintain or increase asset values by contrasting the
overall degradation of the habitat and possible increased risk of species decline against the benefits of mission success. The
optimal combination of restoration actions that emerge from the PDA framework allows decision-makers to achieve higher
environmental benefits, with equal or lower costs, than those achievable by adopting the myopic prescriptions of the MCDA
model. The analytic framework presented here is generalizable for the selection of optimal management plans in any
ecosystem where human use of the environment conflicts with the needs of threatened and endangered species. The PDA
approach demonstrates the advantages of integrated, top-down management, versus bottom-up management
approaches.
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Introduction

Military installations worldwide often harbor threatened and

endangered species (TERs) that utilize habitat undisturbed by

human activity [1–6]. The dual goal of sustaining military

activities and protecting TERs in the face of changes in land

cover/use and increases in human population, coupled with

potential sea level rise and increases in storm frequency/intensity

create significant planning challenges for natural resource

managers [1,2,7]. For example, Santa Rosa Island (SRI), managed

by Eglin Air Force Base (EAFB) in Florida, requires sandy beaches

for training; concomitantly, the same habitat is utilized by the

Snowy Plover, an endangered resident species in Florida (Figure 1,

S1 and S2 in File S1) [2,8,9], and by other migrant shorebirds like

the Piping Plover and the Red Knot (Figure 1 and Figure S1 in

File S1) [2–6,10–12]. Of course, EAFB also maintains infrastruc-

ture of importance for humans (e.g., military buildings, training

lands, and recreational facilities, etc.; Figure S2 in File S1), as well

as habitat features of importance for ecological receptors (e.g.,

ephemeral pools, dunes, and breeding areas) (Figure 1) [8,9,13].

Decision contexts such as this present environmental managers

with challenges in selecting appropriate management actions that

meet competing objectives pertaining to mission needs and

requirements, on the one hand, and environmental preservation,

on the other.

Environmental management decisions are often suboptimal,

made solely on the basis of biophysical models that assess habitat

needs of TERs, together with scenarios of TERs’ habitats

[2,14,15]. At SRI, Snowy Plover (SP), Piping Plover (PP), and

Red Knot (RK) are the species of concern, since they are using

beach and coastal marsh habitats that are threatened by the effects

of sea level rise on the Gulf of Mexico [2]. Biophysical models

based on Geographic Information Systems (GIS) indicate that

climate change induced sea level rise negatively affects habitat area

and suitability necessary for sustaining these TERs and other

coastal species [2]. Evidence suggests that both habitat area and

habitat suitability may be declining in the future [2]. In a similar

vein, the types of areas necessary for military activities (e.g.,

training area, munitions testing, etc.; Figure S2 in File S1) may

also be declining. Even though biophysical models can be used to
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identify specific areas where habitats are most vulnerable/sensitive

to stress, used in isolation, such models do not provide a suitable

framework for addressing specific courses of action in space and

time [2,7]. Moreover, these models do not provide decision-

makers with a rational basis for comparing management actions

that may benefit one species or damage another, considering, also,

factors such as cost and relevant stakeholder preferences [14]

Along the coast of Florida, military training, recreational use, and

species conservation are conflicting objectives (Figure S2 in File

S1), in that these activities compete for utilization of the same

habitat. In consequence, considerable need exists for quantitatively

rigorous management tools that provide prescriptive guidance to

decision-makers, integrating environmental, social, and econom-

ical factors within a holistic, risk-based framework.

Previous Approaches
GIS and multi-criteria decision analysis [16] have, individually,

been used to address the needs of environmental managers. Taken

in isolation, both approaches have limitations. GIS models, for

example, are traditionally used to visualize data from biophysical

models, and are sometimes used to solve spatial optimization

problems [17]. In this vein, GIS models are well-suited to mapping

Figure 1. Region of the case study. The local species richness (LSR) and the occurrence of Snowy Plover (SP), Piping Plover (PP), and Red Knot (RK)
are reported in the map. The Panhandle – Big Bend – Peninsula within the black line is the region considered in our biophysical modeling effort (land
cover, habitat suitability, and metapopulation model). Considering the extent of each management area (3750 m2), 192 management areas in the
whole Gulf of Mexico coastal ecosystem of Florida were considered. Eight management areas cover the portion of Santa Rosa Island managed by
Eglin Air Force Base (EAFB) (a). (b) Tyndall Air Force Base that is the hotspot of SP, hosting about 60% of the whole SP population in Florida.
doi:10.1371/journal.pone.0065056.g001
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important habitat features, and to finding areas where certain

combinations of these features may result in increased vulnerabil-

ity [17,18]. These benefits notwithstanding, GIS-based approaches

rarely consider cost as a constraint in the selection of ‘‘best’’

intervention sites. In those few instances where costs are

considered, it is usually included as an explanatory variable that

may, in some cases, yield predictive power to the overall modeling

effort. One such example is the South Florida Ecosystem Portfolio

Model [19], which considers cost as one of its spatial variables, in

conjunction with several other relevant environmental variables.

In contrast, MCDA models provide a framework for prioritizing

restoration actions based on—among other things—a hierarchy of

objectives and criteria, each weighted or assigned a measure of

relative importance, on the basis of value judgments and/or

technical relevance to stated goals [17,18,20,21]. These approach-

es generally focus on prioritization/ranking-related decision

contexts (at predefined scales), with the primary emphasis placed

on selecting one alternative for one species, rather than on multiple, co-

occurring alternatives, for multiple species. Even though there have

been attempts to integrate GIS and MCDA, most of these efforts

lack spatial explicitness [20,21]. In particular, the GIS-MCDA

integration attempts reported in the literature lack the ability to

integrate spatially conflicting needs; as we discuss below, this is an

important requirement in multiple species management at military

installations, where decision-makers must often face the difficult

task of having to reconcile competing mission and conservation

objectives.

A key theme advanced here is that environmental managers

should look for multiple actions that can be simultaneously

implemented at the managed site, or at different spatial units

within the site, to increase overall restoration benefits and to

reduce total costs. Typically, the selection of these actions focuses

on maximizing local benefits within each site or management unit,

rather than on maximizing global benefits; this ends up creating a

‘‘tragedy of the commons’’ dilemma, where the reciprocal

influence or synergistic effects of restoration actions are not

considered [81]. Modern portfolio decision analysis (PDA) [22–26]

provides a set of conceptual and methodological frameworks for

selecting a portfolios (i.e., combinations) of actions in space and time

[27–29] (Figure 2). Even though applications of portfolio methods

to environmental management problems are relatively rare,

several papers consider natural resources (such as specific species

of interest and habitat types) and infrastructure as ‘‘assets’’ that

have beneficial value over time [69]. Human and natural assets

can, in this way, be characterized in a manner that is, in somewhat

analogous to financial assets [25,26,30–39]. Portfolio methods

have also been applied to water resource management problems

[40,42], the design of natural and human systems [41–81,82,83],

forestry [74], agriculture [75], fishery [76], and land use [77]; still,

applications focused on the design and management of large-scale

ecosystems is an important gap in the extant literature.

Proposed Approach
Here we present an integrated modeling approach for the

selection of optimal portfolios of management actions (Figure 2).

The model’s decision basis focuses on the conservation of habitat

for military mission and (possibly) recreational use, together with

the preservation of species of concern within ecosystems in military

installations. At the center of our framework is a portfolio decision

model (PDM) that integrates GIS-based model predictions via an

MCDA model, together with a Pareto optimization framework

that looks to maximize overall (risk-adjusted) value, subject to

several relevant constraints (Figure 3).

The PDM adopts several foundational concepts drawn from

modern portfolio theory (MPT), none more important, however,

than the concept of Pareto optimality. Whereas MPT focuses

primarily on the task of developing computationally tractable

means by which to allocate wealth among various expenditures

and investments over time, our primary focus here is on

developing a holistic, top-down approach to environmental

management, with the integration of detailed biophysical models.

In this paper, the value of each asset is not something that is

exogenously specified or modeled (as is often the case in MPT

models), but rather a spatially explicit variable that depends on a

set of criteria that evolve dynamically over time, as a function of

sea-level rise and restoration actions. These assets share the same

habitat; however, their level of interaction is, on average, low [1–

10]. For example, Snowy Plover, Piping Plover, and Red Knot

populations are weakly correlated in term of abundance. This is

due to their different spatial and temporal distribution within the

same habitat [1–10]. Correlation between military installations

and species is considered endogenously within the biophysical

models employed [1–10]; in consequence, no further correlation is

needed for the purposes of the portfolio analysis conducted here.

Lastly, the correlation among restoration actions, for the sets of

actions considered here, is also very small or negligible (for

instance, monitoring of species does not influence nourishment).

In the case of SRI, the Pareto optimization yields, among other

things, Pareto frontiers that represent the optimal combination of

restoration actions that maximize the global value of human and

natural assets for the military installation. Each point on the Pareto

frontier corresponds to a restoration plan for the whole domain

considered. Solutions that are some distance removed from the

frontier may result in gains to one asset that may be offset by losses

in another [21]; in the constrained case, budget (and perhaps

other) constraints may restrict the ability to achieve higher global

benefits than those contained within a given Pareto optimal set.

A key novelty of the PDA approach is its risk-based evaluation

of local restoration actions, for multiple assets at the management

area scale, as a function of their possible spatial combination at the

installation scale. The best combination of actions is taken at the

installation scale, with an objective function that maximizes the

expected global value of all feasible restoration plans that

appreciably affect the installation’s assets. Such an approach is

in contrast to ‘‘bottom-up’’ approaches that select the best action

in each management unit, or to ad hoc ‘‘top-down’’ approaches that

select just a few actions applied at the installation scale, without

searching the relevant combinatoric space and without considering

the reciprocal influence of these actions on all assets. The PDM

integrates the results of GIS-based biophysical models [1,2,52,53],

upscaled to the management area scale via a spatially explicit

Multi Criteria Decision Analysis model (MCDA) that considers

relevant stakeholder knowledge and preferences. In this way, the

PDM integrates and evaluates three distinct pieces of information:

(i) a precise biophysical representation of human-influenced

natural dynamics at the sublocal scale; (ii) the scale of heteroge-

neities for local scale management; and (iii) decisions evaluated at

a requisite scale for decision-makers to effectively manage the

system (i.e., the installation scale). In this manner, the PDM

enables the simultaneous consideration of environmental, social,

and economic factors in arriving at sustainable and optimal

designs for environmental management restoration plans.

Portfolio Decision Model for Ecosystem Management
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Materials

Portfolio Management Framework and Case-Study
The assets considered for Santa Rosa Island (SRI) include

military areas (e.g., physical infrastructure, together with military

training/testing areas shown in Figure S2 in File S1), as well as

selected threatened and endangered species (e.g., Snowy Plover,

Piping Plover, and Red Knot) (Figure 1 and S1). For our purposes

here, assets are indexed by the subscript j. Other species, such as

recreational and private infrastructure, occur in SRI (SI Materials

Figure 2. Management scales and actions. An example is reported for three management areas in SRI. Assets in each management area are
indicated by the number contained in each area (e.g., 1 is the SP, 2 is the PP and 4 is the military area). Thus, management area one has two types of
assets, management area two has three types of assets, and management area three has one type of assets. At least one action for each asset is
evaluated in each management area. The restoration actions are indicated as Ri(j),m (where, i is the action, j is the asset, and m is the management
area). Same actions can be evaluated for different assets (e.g. nourishment) because different assets can benefit from the same actions. Only one
action is selected by the PDM or by the MCDA model. The selected actions are called restoration interventions. The whole set of restoration
interventions in a management area is called restoration alternative, and the set of restoration alternatives is defined as restoration plan.
doi:10.1371/journal.pone.0065056.g002

Portfolio Decision Model for Ecosystem Management

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e65056



and Methods); here, we focus only on assets that can be managed

by the decision-maker (i.e., EAFB) and on selected threatened and

endangered species that are appreciably impacted by habitat

human use and by sea level rise. Military areas are also affected by

sea level rise.

A subset of the management problem is shown in Figure 2, and

the portfolio framework is shown in Figure 3. Installation

managers can perform restoration actions, ri(j), which are the types

of actions feasible to restore asset type j (SI Materials and

Methods). Restoration actions considered in the case study include

beach nourishment, restoration of vegetation, predator manage-

ment, limitation of recreational use, monitoring, and ‘‘No Action’’

(Tables S1–S4 in File S1) [52]. Restorations actions are indexed by

the subscript i (Figure 2) The dimensionality of ri(j) can vary with j,

and Hj denotes the maximum value of i for asset type j. Management

areas are the areas within SRI where restoration actions can be

performed (Figure 2). Management areas are indexed by the

subscript m = 1, …, M. The extent of management areas is

determined by evaluating the trade-off between the need to locally

capture the assets and the scale at which the restoration is feasible

(SI Materials and Methods). Management areas can be also

defined in terms of locations and areas where installation

commanders wish to consider implementing restoration actions

deemed potentially important for supporting military missions

and/or for sustaining the natural environment.

We define restoration interventions as the restoration actions

selected by the PDM or the MCDA model from the set of

delineated restoration actions (Figure 2). A restoration intervention

Ri(j),m = 1 if ri(j) is the restoration action selected in management

area m for asset j, and Ri(j),m = 0 otherwise. Accordingly, the set of

possible restoration actions is denoted as a vector R(j),m = R1(j),m, …,

RHj(j),m. The choice of intervention is, for our purposes here,

limited to one restoration action per area per asset. Restoration

alternatives, Rm, denote the set of restoration interventions for all

assets in management area m (Figure 2). Rm denotes the jagged

array [R(1),m, …, R(j),m]. In the case study, restoration actions for

different assets are not mutually exclusive within the same

management area. Thus, different restoration actions can be part

of the same restoration alternative, without negative feedbacks

among each other. If an identical restoration intervention is

selected for different assets, a special decision rule is involved to

keep just one intervention is kept in the global optimization

solution set. Nevertheless, the potential benefit of the restoration

intervention is, nevertheless, considered for both assets.

Restoration plans, R, are defined as the ensemble of all the

restoration interventions for every management area (Figure 2).

Equivalently, a restoration plan can be defined as the ensemble of

all the restoration alternatives in the ecosystem analyzed. For our

purposes here, we evaluate the performance of restoration plans

selected by using the MCDA model and the PDM (Methods). The

Figure 3. Diagram of the modeling framework. The Multi Criteria Decision Analysis model (MCDA) evaluates restoration actions for each human
and natural asset at the management area scale. Outputs of biophysical models at 120 m resolution are averaged at the management area scale
(3750 m). These models are run at the whole ecosystem scale that is the population scale (Figure 1) if assets are species. These outputs are part of the
criteria in the MCDA model. The risk model modifies the MCDA values by considering the vulnerability of the restoration plan for each asset at the
ecosystem scale and the effectiveness of each action at the management area scale (Eq. 2). The expected values of restoration actions are the inputs
of a Pareto optimization model together with the cost of the restoration plan and the constraint of the budget at the installation scale. The Pareto
optimization provides Pareto frontiers of optimal restoration plans at each year in the management horizon (Figure 4).
doi:10.1371/journal.pone.0065056.g003
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cost associated with each restoration action is a relative value

estimated from the literature, and is denoted by Ci,j. The cost of a

restoration action is assumed to be independent of the location.

The cost of a restoration plan, CT, is simply the sum of all selected

restoration interventions in SRI by the MCDA or the PDM.

Let Vm,j(R) denote the local value for restoration plan R with

respect to asset j in management area m (Eq. 1) The local values of

assets are calculated using the MCDA model based on criteria

values and asset criteria weights (Methods, and examples of Tables

S5 and S6 in File S1). Criteria values are the MCDA-derived values

for an asset, as a function of restoration plan R in a management

area m (Methods). Criteria values, and thus local values, change

each year in the simulated period, as a function of the sea level rise

scenario of 2 m (A1B) (SI Materials and Methods). A criteria value

xj,k,m(R), 0#x#1, defined on the unit interval, is the value for asset

type j on criterion k in management area m under restoration plan

R. Asset criteria weights, wj,k, are used to measure the relative

importance of each criterion k to the overall performance of asset j.

The sum of all weights for an asset are normalized and sum to

unity. In this way, assets can be valued differently by stakeholders,

and may play roles of differing importance for sustaining

ecological receptors; intuitively, some of them may be more

important than others for achieving specific goals. Accordingly, we

introduce stakeholder asset weights, wj, that define the relative

preference of different assets for stakeholders. We define stake-

holders as all the individuals (experts, laypersons, decision-makers,

organizations, etc.) with a stake in the decision problem considered

(Wood et al., 2012). These weights may also reflect different levels

of prioritization for specific assets, due to legal and/or economic

constraints. As before, the sum of all stakeholder asset weights is

normalized so that they sum to one.

Restoration actions change the value of assets in management

areas where these assets occur. In this way, restoration actions

affect criteria that characterize assets. In this way, the variation of

criteria expresses the variation of benefits determined by

restoration actions. The local values of assets are modified by

the vulnerability of the assets calculated by the risk model given

the restoration plan globally and the effectiveness of the restoration

action locally (Figure 3). Ideally, the calculated MCDA values

should represent the holistic values of assets, considering both local

and global management. For this purpose, we introduce an

effectiveness factor, fi(j), that represents the overall capability of

restoration action ri(j) to increase the value of asset j. The

effectiveness coefficient is defined for all restoration actions (Tables

S1–S4 in File S1) [54–63], except for the nourishment and ‘‘no-

action’’ options. The nourishment and no-action policies have

been simulated using biophysical models (SI Materials and

Methods), thus their criteria values endogenously model the

effectiveness of these actions. We define fj as the vector f1(j), …, fHj(j)

that multiplies the MCDA value of the no-action restoration to

obtain the MCDA value of the other restoration actions

considered here. The effectiveness of each action is assessed from

the relevant literature: for the predator management [57]; for the

restoration of ephemeral pools and beach profile [12,61]; for

nourishment [12,52]; for limitation of recreational use, monitor-

ing, and restoration of dune vegetation [61].

The vulnerability, vj, of asset j is defined as the risk of loss or

decline of the asset as a function of restoration plan R. The risk of

assets is calculated on the basis of the magnitude and frequency of

sea level rise, asset vulnerability, and exposure under uncertainty

and different restoration plans. In this way, vulnerability is a

measure of how each restoration plan withstands changes in

habitat area and quality determined by sea level rise for a

particular asset. For human assets (military areas, MA hereafter),

the vulnerability is defined as a function of the expected

probability that the habitat area is preserved. The vulnerability

is given by the complementary of the ratio between the habitat at

each time step and the habitat in 2013. For natural assets (SP, PP,

and RK), the vulnerability is determined as the expected decline of

the species population. Such declines occur when the mortality

(and emigration) rate is greater than the birth (and immigration)

rate for the period considered, where the population size reaches a

value lower than a critical population threshold. The population

threshold is set to twenty for the SP, and RAMAS [64] is used for

the metapopulation risk modeling [1]. The risk model (Figure 3)

considers the whole time horizon and all the subpopulations along

the Florida Gulf coast (Figure 1). For the PP and the RK, the

probability of extinction/decline of species is derived from the

International Union for Conservation of Nature (IUCN) index

[65–67], which is normalized to the maximum IUCN index of the

species considered. The IUCN index is 1–6/7 (Near Threatened

over seven classes of conservation status) for the PP and the RK.

The IUCN is an acceptable surrogate metric of the vulnerability

when a metapopulation model cannot be run for the species

considered [66,67]. The IUCN Red List categories are intended to

reflect the likelihood of a species going extinct under prevailing

circumstances. For the human assets, vulnerability is assessed by

the land cover model evaluated at the Florida Gulf coast scale.

The expected local value, V*
m,j(R), (Eq. 2 below) of the restoration

plan is calculated for each management area m, considering its

probability of success as a function of the vulnerability of asset j

and the local effectiveness of the restoration actions selected. The

expected local risk is simply the product of the complementary of

the local value, the vulnerability, and the complementary of the

effectiveness coefficient. The PDM takes as input these expected

local values to calculate VT(R) (Eq. 3), which is the global value of

human-natural assets at the installation scale. VT(R) is calculated

by considering all of the local expected values of human and

natural assets for a given restoration plan. These local values are

then weighted by stakeholder asset weights prior to entering the

PDM. The global value is determined by maximizing the objective

function via a Pareto optimization algorithm for determining the

optimal restoration plan (Methods). The optimal restoration plan

is defined as the plan that maximize the expected value of assets at

the global scale, with a restoration plan cost that is less than or

equal to the available budget B. The global value can, itself, be

disaggregated into two discrete components: a global value for

human assets, VH(R), and a value for natural assets, VN(R). In

maximizing the objective function, it is therefore possible to choose

Pareto optimal restoration plans that favor human and/or natural

assets, with different relative importance values specified at the

installation scale.

For ease of analysis and exposition, we make a number of

simplifying assumptions in numerically specifying the proposed

portfolio model for ecosystem management. We assume, for

example, that the cost of restoration actions is invariant in space

and time. In addition, no discount rate has been incorporated for

either budget and restoration action costs (though, clearly, in

extending the model presented here to dynamic decision contexts,

such an assumption would be untenable, especially in situations

characterized by long planning horizons). We further assume that

there is no species adaptation to climate change in the time

horizon considered. Habitat requirements and metapopulation

parameters are therefore constant in time. All of these assumptions

can be modified to suit particular instances, applications, and

purposes. Our goal here is to outline the core elements of a spatio-

temporal portfolio decision model that aggregates together

environmental models, decision models, stakeholder preferences,

Portfolio Decision Model for Ecosystem Management
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and economic constraints at the management scale. In doing so,

we consider the heterogeneity at smaller scales in the distribution

of assets, the needs of biophysical models, and the scale of

decisions dictated by the scale at which decision makers can

implement management decisions.

Results

The effects of Sea Level Rise (SLR) on the habitat, e.g., by

diminishing beach areas [5,6] and habitat suitability [2], increase

the need for major restorations in time (Figures S3, S4, and S5 in

File S1). The value of the criteria maximized within the MCDA

model (e.g., habitat area and suitability) decreases as sea level rise

increases on average (Figure S3, Tables S5 and S6 in File S1). The

habitat suitability of the Snowy Plover [68] for different years

(2013, 2060, and 2100) and scales (whole coast and Eglin AFB,

respectively) is shown in Figures S4 and S5. The habitat area and

suitability rapidly decreases after 2060, at which point SLR begins

to rapidly increase to 2 m in 2100 (Figure S3 in File S1). The

change in value of criteria that are minimized in the MCDA

model due to SLR, and specifically the abundance fluctuation and

the habitat fragmentation, is different depending on the particular

criterion and management area considered. For this reason, the

MCDA value of a restoration action fluctuates around an average

value, and it is difficult to conclude if the local value of assets

increases or decreases as a function of SLR in a given management

area. The global value for all restoration interventions of all assets

at the SRI scale decreases on average as sea level rise increases.

This is observed in the ‘‘No Action’’ scenario. The MCDA values

are used for selecting restoration plans, with both the MCDA-

based and the PDM-based selection methods.

Portfolio Decision Model Selection
The outputs of the PDM are shown in Figure 4. The optimal

restoration plans for SRI selected by the PDM framework in 2013

and 2100 are shown in Figures 5b and 5d, respectively. The total

number of portfolio combinations is 28657678641 = 4.6161014,

which is simply the product of the number of possible actions for

each asset (MA, PP, SP, and RK, respectively) raised to a power

exponent equal to the number of management areas where each

asset is present (Table S7 in File S1). Pareto frontiers for the years

2013, 2020, 2040, 2060, 2080, and 2100 unconstrained to the

available budget are shown in Figure 4a. This figure shows what is

known as the ‘‘productivity ratio’’ curve. The investment choices

that lie along the surface of this curve are considered to be

‘‘efficient’’ in that they return the greatest possible value for any

specified level of funding or resource. As one moves, then, from

the left-hand portion of the Pareto frontier to the right-hand-

portion, there is decreasing marginal return in value obtained for

each additional increment of cost or investment.

Restoration plans, which are the individual points shown in the

Pareto plot, define the set of possible restoration interventions

selected for all of the natural and human assets in all management

areas within SRI. Restoration plans along the Pareto frontier are

optimal restoration plans, in that they maximize the global value

of assets for any specified level of budget. We consider a long time

horizon (2013–2100), and therefore uncertainties in sea level rise

projections are an important consideration. These uncertainties

are explored for each model used (SLAMM, MaxEnt, and

RAMAS) in [5], [11,79] and [6], respectively, by performing a

global sensitivity and uncertainty analysis [80]. For each year, the

Pareto frontier that corresponds to the maximum global value

VT(R) (Eq. 3) for each budget level is generated up to a budget of

250. These forward-looking Pareto frontiers can be used together

to develop a comprehensive restoration strategy for the planning

horizon under consideration.

The Pareto frontiers in Figure 4a show that the increase in

VT(R) is small for the initial years of the time horizon considered

(2013–2060), for any presumed budget level. In contrast, the

increase in VT(R) determined by the frontiers is higher for the

years after 2060, as a function of the installation budget. These

trends indicate that larger investments in restoration efforts should

be potentially considered in later years after 2060, when the effects

of climate change on the habitat are larger than in the initial years

before 2060. The utility, then, of larger expenditure in restoration

efforts should be larger from 2060 onwards. On the basis of the

expected VT(R) determined by the Pareto frontiers in these

periods, these numerical results suggest that the investment of

resources should be approximately in the range of 0#B#75 from

Figure 4. Pareto frontiers after realization of the selected
restoration plan. (a) Pareto optimization unconstrained to the
available resources. Red points represent the suboptimal restoration
plans for the frontier in 2013. Grey dashed lines represent the variability
of the frontiers related to thirty Monte Carlo simulations generated
considering a random white noise applied to the MCDA value. (b)
Pareto frontiers constrained to the resources available for selected years
of analysis; we assume that the total resources available are equal to
250 at the installation scale (Eglin AFB in Figure 1). The frontiers show
VH and VN (Eq. 2) normalized to their maximum value. The blue and red
dots represent unaffordable and affordable restoration plans (or
portfolios) for 2100. All the possible values of VH(R) and VN(R) for
selected years are shown along the Pareto frontiers. The choice of the
Pareto set depends on relative stakeholder preferences for human and
natural assets.
doi:10.1371/journal.pone.0065056.g004
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2013 to 2060, and in the range 75#B#250 from 2060 to 2100.

The global value of human-natural assets for a budget equal to

zero shows the case where no restoration plans are adopted for any

year in the time horizon considered. The global value of assets for

this scenario is shown in Figure 6. For Pareto optimal plans, VT(R)

in 2012–2040 is smaller than the average value for years after

2040. This observation reinforces the suggestion that large

investments are necessary in later years of the planning horizon,

in order to keep the expected global value at least equal to the

global value in 2013. In an adaptive management context, these

frontiers are updated year-to-year, without necessarily considering

the relevant state history. The idea here is to provide a

management tool that shows the potential global value of

restoration plans if these plans are fully implemented every year,

with ‘‘No Action’’ being taken in the previous years of the

management horizon considered (from 2013 to the selected year).

More realistic utilizations of the PDM would naturally consider

potential trajectories of subsequent restorations plans in time,

updating the Pareto frontiers of subsequent years considering the

selected restoration plans in earlier years.

Because we consider the productivity ratio curves rather than

the classical MPT frontiers the variance of the portfolio is

represented within the grey regions. The variance is a function of

the value of the criteria considered, their uncertainty, and the

additional portfolio uncertainty included as truncated Gaussian

noise (Methods).

The Pareto frontiers constrained to a budget of 250 are show in

Figure 4b. For these frontiers, each possible restoration plan is

depicted as a dot with different ratio between the global value of

human and natural assets (Eq. 3). Accordingly, the frontiers show

the global value, disaggregated into its respective human and

natural asset values, at different years for the Pareto optimal and

suboptimal solutions of Figure 4a with B = 250. The relative

importance of human versus natural assets can be decided

according to stakeholder preferences, or perhaps by legal

Figure 5. Restoration plans for Santa Rosa Island for the MCDA and PDM. Restoration plans are shown for 2013 (a, b) and 2100 (b, d) after
the MCDA and portfolio decision model (a, c, and b, d respectively). The size of each management area is 3750 m2. The total cost of the selected
restoration actions is 250 resource units that is the budget available.
doi:10.1371/journal.pone.0065056.g005

Figure 6. Global value disentangled into expected human and
natural value of optimal restoration plans for the MCDA and
PDM. The expected natural and human values (Eq. 2) are calculated by
considering the vulnerability of human and natural assets given a
restoration plan for the whole ecosystem and the effectiveness of each
restoration intervention for each asset. The curves are shown for a
budget of 250 units. We selected the Pareto set for which VH(R) = 0.5
VN(R). Grey dashed lines represent the variability of the patterns related
to thirty Monte Carlo simulations generated by considering a random
white noise in the MCDA value.
doi:10.1371/journal.pone.0065056.g006
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constraints. In this way, the frontiers are useful for the design of

restoration plans because they allow decision-makers to consider

the implications of (desired or required) trade-offs among habitat-

competing assets of the managed ecosystem. For instance, VH can

be considered as the ecosystem service of the built environment

(military infrastructure), and VN as the ecosystem service for the

natural environment (species habitat). However, a net separation

of ecosystem services does not exist, due to the overlapping nature

of different land uses for assets within the same habitat. Thus, the

coastal habitat is the natural resource that both natural and

human assets use to perform some services, and the value of these

services is captured by the natural and human values.

The tri-dimensional view of the Pareto optimal restoration plans

for 2013 and 2100 (Figures 5b and 5d, respectively) simplifies the

visualization of overlapping actions in management areas.

Management actions are represented by squares of different

colors. These plans correspond to a ratio between human and

natural values that is equal to one (i.e., for VN/Max(VN) = 0.32 in

Figure 4b). The PDM-based plan selection is seen to be

heterogeneous in terms of restoration action types, and the

portfolio restoration interventions (i.e, the actions selected) tend to

be close to each other within SRI. This management heteroge-

neity, created by the large variety of restoration interventions, is

observed for the entire time horizon.

In 2013 (Figure 5b), the nourishment selected in management

areas 5, 6, and 7 (from west to east) for the military is positively

affecting SP, PP, and RK that co-occur in the same management

areas (Table S8 in File S1). Monitoring is the intervention that

benefits just the PP from management areas 3 to 7. Moreover, the

Pareto optimization includes restoration of ephemeral pools in

management areas 2 to 8 (selected for the PP in area 8 and for the

SP elsewhere), and the restoration of dune vegetation in

management area 8. ‘‘No Action’’ is needed in management

areas 1 and 2. The number of major restoration interventions (e.g.,

nourishment) is increased in 2100, as well as the number of areas

where no-action is selected. In fact, the number of ‘‘No Action’’

options selected in Pareto optimal plans increase in time. This

effect is related to both the constraint of the budget, and the need

for major and costly restorations in preserving the habitat.

The frequency distribution of PDM-selected restoration inter-

ventions for SRI is shown in Figure S6 (File S1) for several relevant

years in the modeled time horizon. It is noticeable that the

frequency of costly restoration interventions (i.e, nourishment)

increases from 2013 to 2100, and the number of ‘‘No Actions’’ has

a peak in 2060. This trend is related to the predicted rapid

increase of inundation of the coastal ecosystem starting in 2060

[5,6], and to the very limited budget available. The available

budget is, in fact, assumed to equal 10% of the total cost if all the

restoration actions are performed for each asset in every

management area. The constraints of the budget do not allow

decision-makers to perform minor asset-specific restoration when

the effect of sea level rise is major.

MCDA Selection
The MCDA-based selection method of restoration plans occurs

independently of the consideration of the budget available for the

installation. Restoration actions are selected one at a time for the

management areas, according to the expected MCDA value,

V*
m,j(R) (Eq. 2), starting from the action with the highest value

within the installation. Although the selection is based on MCDA

values adjusted by the vulnerability vj (Eq. 2), the selection does not

consider the best combination of restoration actions for the

installation globally. We observe that the selection is biased

toward expensive restoration actions (e.g., nourishment) for any

asset using the MCDA as a selection method of restoration plans

(Figure 5). One reason for this is that these actions dominate other

actions in terms of benefits. Table S9 (File S1) reports the

interventions of the MCDA-based selection method in 2013.

There, just a few less costly actions are included in the MCDA-

based restoration plans (e.g., the plans in 2013 and 2100 are shown

in Figures 5a and 5c, respectively). In addition, we note that the

selection of actions based solely on expected MCDA values tend to

select actions in pixels that are far from each other. These

interventions may diminish the benefit for the assets for which they

have been selected, and the benefit for assets in the rest of the

habitat.

Comparison of MCDA and PDM
A formal comparison is made of the restoration actions as

prioritized utilizing the MCDA approach and those that are

recommended by the PDM. The comparison is made to highlight

the prescriptive implications for the two approaches. Current

practice within ecosystem management tends to maximize benefits

locally, without considering dependencies of these actions and their

global value at the installation scale.

The cost and global value of restoration plans selected by

MCDA and PDM can be compared. For SRI, PDM allows a

higher VT(R) for the same cost in both 2013 and 2100 (Figure 5).

The restoration plans in Figure 5 for 2013 are the plans that are

listed in detail in Tables S8 and S9 (in File S1). The global value of

plans is given by the sum of the expected local values for all the

assets that benefit from the interventions of the plan. The

comparison between MCDA and PDM selection methods is made

by investing the available budget in its entirety. We note that the

PDM plan outscores the MCDA plan with higher benefits and

lower costs, even when removing some interventions from the

PDM plan (see Figure 5, and Tables S8 and S9 in File S1). By

considering the whole time horizon without the constraint to invest

the whole budget for the PDM (‘‘No Actions’’ are selected when

the MCDA cannot add any other action to the plan), the PDM

allows a 25% reduction in the cost of restoration plans with respect

to the MCDA. The PDM plan benefits are estimated to be 20%

higher than the MCDA. On average, then, the PDM with Pareto

optimization results in higher benefit/cost ratios for management

plans in the planning horizon. The higher benefit/cost ratio is

achieved by the ability of screening any combination of restoration

actions without the limitation of considering plans that just

maximize locally the expected benefits of restoration actions.

The global values of assets for restoration plans selected by the

MCDA model and the portfolio-based method are shown in

Figure 6 for a budget of 250 units. We adopt ‘‘units’’ proportional

to the current relative cost of restoration actions (Table S7 in in

File S1). The global value is calculated for the A1B sea level rise

projections through 2100 for the SRI coastal system. We assume

that the Pareto optimal plan is performed each year. We also show

the global value in the ‘‘‘‘No Action’’’’ case for every year of the

analysis, management area in SRI, and elsewhere along the

Florida Gulf coast. We observe that the global value of natural and

human assets increases, on average, until 2065, for both the

portfolio and MCDA plans. For the MCDA plan, the global value

decreases from approximately 2065 to 2100; in contrast, the global

value of the PDM plan continues to increase to 2100. The

decrease observed in the global value of assets for the MCDA plan

is related to the strong decrease in habitat area caused by sea level

rise and is not replenished optimally by the MCDA restoration

plan. A rapid decrease in the global value of assets is observed

from 2030 for the ‘‘No Action’’ scenario. This result speaks to the

need for restoration actions in the SRI coastal ecosystem. The
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value of natural assets is higher than the value of human assets

because of the shape of the concave Pareto frontiers constrained to

the available budget (Figure 5b). On average, VN is larger than

VH, with the exception of the ‘‘No Action’’ scenario, where the loss

of habitat strongly affects both natural and human assets equally.

Despite the absence of explicit spatial rules in the combination

of restoration actions in the PDM model (all combinations are

screened), the global value of assets for restoration plans selected

by the PDM is maximal for all years along the considered timeline.

Restoration plans are, indeed, needed, but they should be selected

by an optimization method that selects those combinations of

strategies that hold the greatest potential for maximizing the global

value of assets at the installation scale. The PDM is well suited to

this task, as it allows the selection of the best spatial combination

because the mutual location of actions and relative benefits are

screened as independent variables of the managed system. In

contrast, methods like traditional MCDA evaluation rank actions

at the installation scale according to their local benefits, and

restrict further selection of actions to plans that guarantee those

local benefits. Bottom-up approaches like this erode faster the

global budget at a greater rate by investing in costly actions that do

not necessarily increase the value globally (many assets are not

affected by restorations) and, perhaps, in the long term.

Discussion

The proposed spatio-temporal and multiscale portfolio decision

model holds the potential for being able to transform the ways in

which stakeholders manage human and natural assets that are

both threatened by natural stressors (such as sea level rise), and

that compete with each other for the use of the same habitat. The

PDM is particularly useful in ecosystems where strong trade-offs

among assets appear; for example, where human uses can interfere

with the preservation of natural resources, as is the case of military

installations. The incorporation of multi-criteria value models

allow for the systematic integration of output drawn from several

biophysical models, directed at selecting optimal restoration plans.

The portfolio model provides a conceptual scheme that is well-

suited for the analysis of restoration plans under other climate

change related stressors (e.g., changes in precipitation and

temperature) and military mission scenarios. At the same time,

the framework is quite flexible and robust. For example, in those

cases where biophysical models are not available, expert assess-

ments can be used as inputs. Importantly, this approach explicitly

accounts for the priorities and values of stakeholders in a

transparent and quantitative fashion. Resource managers can

use the weighting scheme to determine how sensitive candidate

restoration plans are to changes in mission objectives or

parameters. The PDM approach provides a powerful analytic

framework for the identification of restoration plans that consider

the spatiotemporal complexity of ecosystems in response to

complex and potentially conflicting needs and objectives. We

believe that this approach quantitatively embraces the sustainabil-

ity paradigm that brings together social, environmental, and

economical factors in the effective management of ecosystems [7].

The recommendations that follow from the PDM improve upon

the set of restoration interventions selected by the MCDA model

alone. The Pareto optimization within the PDM allows for the

identification of restoration plans that maximize value and

minimize the vulnerability of assets for each year (or for a

specified planning horizon) at the installation scale. By contrast,

the MCDA model selects the dominant restoration actions (those

single actions that have the highest MCDA value) for each asset in

each management area, without considering the combinations

with other restoration actions in terms of mutual benefits and

costs. In this way, the MCDA model does not consider the

importance of a restoration plan as spatial combination of actions

at the ecosystem scale; rather, the MCDA model selects

restoration actions starting from the maximization of local benefits

at the management area scale. The Pareto optimal frontiers of

global value of assets relative to the budget for each year are useful

for the management of the ecosystem at each year in the planning

horizon. In addition to the direct use of each Pareto frontier

separately for each year, the set of frontiers can be used for

strategically identifying feasible restoration trajectories over time,

given anticipated resource availability and discount rate predic-

tions. Ideally, with the knowledge of the resources available for

restoration plans over multiple years, there are many trajectories

that can be followed, moving from one Pareto frontier to another.

The PDM can therefore inform simultaneous management of

natural and human assets, in a manner that considers needs, costs

of restorations, and stakeholder preferences.

Despite its utility, the PDM can be technically challenging.

Rigorous implementation requires an investment in biophysical

and decision analytic modeling. Our simplified case study requires

a number of assumptions to be made, which may limit its

prescriptive usefulness. Specifically, costs were assumed to be

invariant and no discount rate for either costs and budget was

applied. Criticality factors, the effectiveness of each action,

together with costs, were estimated for each asset and restoration

action, with limited data. Amending or strengthening each of these

assumptions adds a level of complexity to the overall analysis, and

potentially introduces new sources of error to the model. In this

approach, uncertainty in the form of truncated Gaussian noise is

added to the MCDA values in an effort to visualize the cone of

uncertainty in the results. A better representation of the sensitivity

of each model factor and their uncertainty on the selection of a

restoration plan would be desirable. The incorporation of this level

of investigation represents the next steps in the development of the

portfolio model. The global sensitivity and uncertainty analysis will

also help in determining the value of information of additional

factors not yet considered and related to the assumptions made in

the current version of the model.

Related research developing portfolio approaches for maximiz-

ing environmental value is limited. Reference [33] develops a

method that maximizes ecological diversity, but reduces social

returns. Thus, in the method of [33], maximizing biodiversity is

not an optimal investment from a societal point of view. In

contrast, the PDM approach developed here maximizes an

objective function that simultaneously considers societal and

ecological values. The objective function is the function that

brings together competing and non-competing environmental and

social factors, in a utility scale limited by economic constraints.

Conclusions

Portfolio-optimized decision models should be considered in

environmental management of human and natural resources. The

current legal system and practice tends to adopt bottom-up

management practices that maximize a few local assets. Alterna-

tively, integrated top-down portfolio approaches like ours maxi-

mize the collective benefits of multiple assets at the management

decision scale. The diversification of resources among assets of the

portfolio scheme allows managers to plan and act by implementing

optimal restoration plans that increase ecosystem value concom-

itantly with the pursuit of other goals and objectives.
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Methods

Restoration Plans and Plan Selection
All feasible restoration plans are identified by the combination

of restoration actions considered for the assets analyzed. The

maximum number of possible restoration plans is given by the

product of the number of alternatives to the power of the product

of the number of management areas where assets occur for each

asset. The value of each restoration action is evaluated by the

MCDA model in each management area, and for each restoration

plan. This value is then adjusted to consider the probability of

success of the restoration plan for all assets. Two selection methods

of restoration plans are examined: (i) a method based on the rank

of the local expected value of asset; and (ii) a method based on the

maximization of the global expected value of assets. The first

method selects restoration actions according to the expected

MCDA value, starting from the actions with the highest value until

the budget B is spent. The only constraint is to select plans that

observe the value of restoration actions already selected in other

management areas. The second method selects the best portfolio

of restoration actions that maximize the global value of assets at

the global scale constrained to the budget available. Accordingly,

the MCDA-based selection method tends to maximize the local

value of each asset at the management scale; in contrast, the

portfolio-based selection method maximizes the global value of all

assets at the installation scale. If the same restoration action is

selected for two or more assets for the same management area, the

duplicated action is dropped from the restoration plan. However,

the values of the duplicated restoration actions for all the assets

considered are included in the formation of the global value. This

is because the same restoration action benefits simultaneously

multiple assets. Thus, the cumulative value aims to represent the

benefits of the same intervention despite habitat competition and

interactions among assets can decrease that value. In our case

study, none of the restoration actions have a negative effect on

other assets occurring in the same management area. The cost of

only one intervention is included in the portfolio-based selection

method in the case of duplicated interventions for assets in the

same management area. For both approaches, the budget B is

limited to 250 units for SRI. This budget is approximately 10% of

the total cost if all the restoration actions are performed for each

asset in every management area.

MCDA Model
The MCDA model used for evaluating each restoration plan for

human and natural assets is a linear Multi Attribute Value Theory

(MAVT) model. The MCDA model ranks restoration actions by

scoring them as linear combination of criteria values and criteria

weights. The MCDA model calculates the local value for

restoration plan R with respect to asset j in management area m

at each of the simulation. We assume implicitly the dependence on

time of the predicted values. The MCDA value that is ultimately

the value of assets given a restoration plan is:

Vm,j(R)~
X

k
wj,k,m(R): ð1Þ

The weights wj,k are assigned by stakeholders, and correspond to

the relative importance of each criterion for the local value of

restoration actions [16,69]. Here, we utilize an illustrative set of

weights elicited according to our expert knowledge about the

problem. The MCDA model takes as input spatially explicit

predictions of local- and installation-scale criteria from biophysical

models [1–6,10–12]. Each restoration action is evaluated every

year for each feasible restoration plan (SLAMM, MaxEnt,

RAMAS) [1–6,10–12,64,70–72], for the planning horizon consid-

ered (2013–2100). We assume that projected sea level rise

proceeds according to the A1B climate change scenario. Criteria

values xj,k,m depend on the whole restoration plan R. These criteria

are maximized or minimized for rescaling criteria values to

increasing or decreasing value functions in a range dictated by the

maximum and the minimum criteria values. For example, habitat

suitability is a criterion that depends on local heterogeneities, but

also on the whole configuration of the habitat along the coast. The

MCDA value of assets does not take into account the likelihood of

success of the restoration plan. The likely success of each

restoration action is evaluated by both considering the vulnera-

bility of each asset at the global scale and the local effectiveness of

each restoration action. These factors multiply the MCDA value

to obtain the expected value of assets.

Expected Local Value of Assets
The expected local value in area m for asset j and for restoration

plan R at each of the analysis is given by:

V�m,j(R)~(1{vj(R))fi(j)Ri(j),mVm,j(R): ð2Þ

The value of a restoration plan is adjusted by the probability of

success given by the vulnerability of each assets at the global scale

(vj(R)) and the effectiveness of a restoration plan (fj = fi(j) Ri(j),m),

considering the restoration interventions selected locally in the

management areas (Ri(j),m). The expected values are calculated for

both the MCDA-based method and the PDM-based selection

methods.

Expected Global Value of Assets
The global value of human-natural assets, VT(R), of a

restoration plan (i.e., a set of restoration alternatives at the

installation scale) is calculated as a Euclidian distance.

We selected the Euclidian distance because we hypothesize the

ecosystem services as additive services. Ecosystem services are the

benefits that natural and human assets can get by actions that

preserve the habitat they use. The Euclidian distance allows to

easily analyze the contribution of both factors. A simple sum of

natural and human values produces the same Pareto frontiers bur

rescaled vertically in values. The Euclidian distance is used

because the space of ecosystem services is often seen as a multi-

dimensional space, and thus the distance is the most proper

function to consider services together.

The values of human and natural assets weighted by stakeholder

preferences at the global scale, VH(R) and VN(R), are the two

components of the distance. These values are VH(R) =gm gj V*
H

m,j(R) wj and VN(R) =gm gj V*
N m,j(R) wj respectively. Because of

the absence of a careful stakeholder preference elicitation, in this

study we assume the preferences wj to be homogeneously

distributed among assets because the lack of a stakeholder

preference elicitation effort. The elicitation of preferences should

be performed in real-world applications of the model. The global

value of a restoration plan calculated for both the MCDA-based

and PDM-based selection method at each year of the analysis is

given by:

VT (R)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m~1

XJ

j~1

(V�m,j(R)wj)
2

vuut ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VN (R)2zVH (R)2

q
: ð3Þ
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Pareto Optimization Model
The Pareto optimization model assumes that the global value of

assets for each restoration plan is a multi-objective function that

maximizes (Eq. 3). We assume mutually independent restoration

actions under uncertainty. The optimization is a linear mixed-

integer optimization algorithm [73] that explores all possible

combinations of restoration actions (for each asset, one at a time),

with their expected local value and cost at the installation scale.

The maximization of the global value is performed with and

without the constraint of the available budget B of the installation,

for each simulated time period. In the constrained case, the cost of

the restoration plan, C(R) =gm = 1,M gj = 1,J Cm,j(Ri(j),m), cannot

exceed the budget B. In the case of the Pareto optimization

unconstrained by budget, if VT(R1)$VT(R2) and C(R1),C(R2),

then the portfolio solution R1 dominates R2. Thus, all the

restoration actions in R1 are selected. In the budget constrained

Pareto optimization, if VT(R1)$VT(R2) then the portfolio combi-

nation R1 dominates R2.

Optimal restoration plans are defined as the Pareto-efficient

solutions along the Pareto frontiers calculated by the optimization

model. Pareto frontiers can also show the relative importance of

natural and human assets. In our budget constrained case, we

assume that natural and human assets are equally important at the

installation scale. Thus, the ratio VH(R)/VN(R) is equal to one.

Unaffordable plans are those for which the cost is higher than the

available budget, and with global value of assets lower or higher

than the Pareto optimal plans. These portfolio solutions are above

the Pareto frontiers unconstrained to the budget available.

Affordable plans are those whose total cost is lower than the

budget, but they are suboptimal in term of global value

(C(R1),C(R2) and VT(R1),VT(R2)).

The input factors of the Pareto optimization model are reported

in Table S7 (in File S1). The number of restoration interventions

contained in any Pareto optimal solution is equal to the product of

the number of assets considered and the number of management

areas including the ‘‘No Action’’.

Uncertainty Analysis
To consider uncertainty in the selection of restoration plans we

add a truncated Gaussian noise term m in the local values of assets

determined by the MCDA model (Eq. 1). The noise is assumed to

fall in the range [20.05, 0.05], with mean and standard deviation

equal to zero and K, respectively. The same white noise has been

assigned to the cost of the restoration actions considered. Hence

we both considered uncertainty in the benefits and costs of the

restoration actions. The truncated noise is included to add further

uncertainty which may be related to other factors not considered

in the biophysical models and portfolio models: for example

species changes in habitat preferences that change their habitat

suitability, and changes in the interactions among species which

may change the asset correlation. The truncated Gaussian noise is

also taking care of all deterministic factors included in the portfolio

such as the effectiveness factor, stakeholder preferences, and the

extent of military areas.

Thirty Monte Carlo simulations are generated by considering

such uncertainties in local values and costs of restoration actions.

Thirty simulations are enough to capture the variability of the

output based on our previous studies of the uncertainty in the

biophysical models [5,6,11,79] by performing a global sensitivity

and uncertainty analysis [80].

Supporting Information

File S1 The file contains supporting materials and methods

(Asset Data, Management Area Scale, Biophysical Models and

Restoration Actions, Nourishment, and supporting tables: Table
S1, Restoration actions and their effectiveness for the Snowy

Plover (SP). Table S2, Restoration actions and their effectiveness

for the Piping Plover (PP). Table S3, Restoration actions and

their effectiveness for the Red Knot (RK). Table S4, Restoration

actions and their effectiveness for the Military Area (MA). Table
S5, MCDA model for the Snowy Plover. Table S6, MCDA

model for the Military Area. Table S7, Input factors for the PDM

for Santa Rosa Island; Table S8. PDM restoration plan (Pareto set)

in 2013 for Santa Rosa Island. Table S9, MCDA restoration plan

in 2013 for Santa Rosa Island. Supporting figures: Figure S1,
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Figure S3, Sea level rise scenario and land cover change. Figure
S4, Habitat suitability of the Snowy Plover in time for the whole
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distribution of restoration interventions determined by the PDM

for selected years in the simulated period (2013–2100).
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67. Akçakaya HR, Mace GM, Gaston KJ, Regan H, Punt A, et al. (2011) The SAFE
index is not safe. Frontiers in Ecology and the Environment 9: 485–486.

68. FGDL, Florida Geographic Data Library Documentation (2009) Ffwcc Potential
Habitat By Species. Florida Fish and Wildlife Conservation Commission-Fish

and Wildlife Research Institute. Available: http://www.fgdl.org/metadata/fgdl_

html/pothab_qry_09.htm. Accessed 2012 June 10.
69. Smith KV (1996) Estimating Economic Values for Nature. Methods for Non-

market Valuation. Edward Elgar, Cheltenham, UK.
70. SLAMM (2011) Sea Level Affecting Marshes Model (SLAMM), Warren

Pinnacle, Inc. Available: http://www.warrenpinnacle.com/prof/SLAMM/.
Accessed 2012 June 5.

71. Anderson PSR, Schapire R (2006) Maximum entropy modeling of species

geographic distributions. Ecological Modelling 190: 231–259.

72. Phillips SJ, Miroslav D (2008) Modeling of species distributions with MaxEnt:

new extensions and a comprehensive evaluation. Ecography 31: 161–175.

73. Kim IY, de Weck OL (2004) Adaptive weighted-sum method for bi-objective

optimization: Pareto front generation, Structural and Multidisciplinary Optimi-

zation, 01/2005; 29(2):149–158. DOI:10.1007/s00158-004-0465-1.

74. Mills WL Jr, Hoover WL (1982) Investment in Forest Land: Aspects of Risk and

Diversification, Land Economics, Vol. 58, No. 1, pp. 33–51.

75. Macmillan WD (1992) Risk and Agricultural Land Use:A Reformulation of the

Portfolio-Theoretic Approach to the Analysis of a von Thunen Economy,

Geographical Analysis, Vol. 24, No. 2, Ohio State University Press.

76. Edwards SF, Link JS, Rountree BP (2004) Portfolio management of wild fish

stocks, Ecological Economics, Volume 49, Issue 3, Pages 317–329, ISSN 0921-

8009, 10.1016/j.ecolecon.2004.04.002.
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