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Abstract

While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully
explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism
suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate
scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase
linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body
mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of
RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in
those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of
metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that
ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological
consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate
and body mass.
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Introduction

Despite decades of research, our understanding as to the

determinants of metabolic rate scaling with body size remains

unsatisfactory. This has recently become a subject of renewed

intense debate among the proponents of several models put

forward to explain patterns of metabolic allometry [1–5]. Among

those most debated is the ‘‘Metabolic Theory of Ecology’’

predicting metabolic scaling with the power of L among

eukaryotes which should emerge from the geometry of resource

distribution networks [1,6–8]. The ‘‘Metabolic-level Boundaries’’

hypothesis views the interspecific variation of metabolic scaling as

a consequence of species-typical lifestyles and various ecological

factors that affect the overall metabolic level (intensity) of a species,

and thereby the relative effects of surface area- versus volume-

related processes on the scaling slope [4,9,10]. Kooijman [11], in

his ‘‘Dynamic Energy Budget’’ theory abstracts the organism into

two compositionally homogenous parts called ‘‘structure’’ and

‘‘reserve’’ and explains the negative allometry of metabolic rate as

the result of an increase of the proportion of a metabolically

inactive ‘‘reserve’’ with an increase of structural body mass [12].

The last of the currently most explored hypotheses is the ‘‘Cell

Metabolism Hypothesis’’ [2,13], which postulates that variation in

metabolic scaling could be largely attributed to differences in cell

size. This hypothesis predicts that larger cells are metabolically

more frugal, i.e., they have lower metabolic rate per volume unit,

due to their relatively smaller membrane surface to cell volume,

which should determine the cell metabolic rate. The Cell

Metabolism Hypothesis was supported by studies of metabolic

scaling within mammalian and bird lineages [2], within a reptilian

family [14], and between polyploid and diploid forms of fish from

a Cobitis species complex [15]. In the latter two experimental

studies, red blood cell (RBC) size was taken as a proxy of general

cell size of an organism. However, RBC size correlates with size of

cells in other tissues only in some (amphibians, passerine birds), but

not the other (mammals) vertebrate lineages [16]. The negative

relationship between genome size and mass-corrected metabolic

rate in both passerine birds and mammals [17,18] together with

the fact that genome size strongly correlates with RBC size in both

groups [19,20] suggest that just RBC size variation may be

crucially connected with metabolic scaling, possibly due to their

direct role in oxygen supply. It is possible that the link between

metabolic rate and cell size expected under the Cell Metabolism

Hypothesis as formulated by Kozłowski et al. [2] holds in

vertebrates only for RBCs rather than for organismal cells in

general.

Surprisingly, very little of the current discussion on mechanisms

of metabolic scaling involves the consequences of ontogenetic

changes in metabolic rates to the observed patterns of scaling (but

see e.g., [4,9,21–23]). Those patterns are typically analysed in

adult individuals with little regard to the life-history of growth and

development which underlies distributions of adult sizes. All of the
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aforementioned models make clear predictions with regard to the

shape of ontogenetic allometries of metabolic rates. According to

the Metabolic Theory of Ecology, the L power scaling should

hold for both interspecific and ontogenetic allometries, because it

reflects the organization of transport networks that ensures

minimization of costs of transportation across bodies of various

sizes [24]. On the other hand, the other three hypotheses point to

variability in metabolic scaling among individual species. The

Metabolic-level Boundaries hypothesis focuses on the differences

in ecology among species. According to this hypothesis, species

with high energy expenditure (usually active species) tend to have

lower scaling exponents of the relationship between metabolic rate

and body mass, which could reflect amounts of energetically

expensive tissues associated with different activity levels [10]. The

Dynamic Energy Budget hypothesis views variability in intraspe-

cific (ontogenetic) metabolic scaling as a consequence of surface-

area-specific variation in assimilation rate and ‘‘reserve’’ density.

However, no simple general prediction is given [12]. The Cell

Metabolism Hypothesis predicts that the metabolic rate allometry

should reflect the contribution of cell size increase versus cell

number increase to body mass enlargement within a clade [2].

Therefore, individuals of species characterized by cell-size

invariance should exhibit an isometric (linear) relationship

between metabolic rate and body mass during ontogeny.

Conversely, an increase of cell size during ontogeny should result

in flattening of metabolic rate scaling.

Chown et al. [25] supported the aforementioned predictions of

the Cell Metabolism Hypothesis for a mutual relationship between

cell size contribution to body size changes and metabolic scaling at

intraspecific levels in ants, where particular species differ in the

proximate mechanism of body size variation among castes.

However, the Cell Metabolism Hypothesis has not yet been tested

in relation to ontogenetic changes of metabolic scaling. Originally,

Kozłowski et al. [2] expected isometric scaling of metabolic rate

during ontogeny because they assumed stable cell size within a

species. This was because they expected a close relationship

between cell size and genome size, the latter being fairly stable

within species. It has been shown, however, that cell sizes,

including RBC sizes in vertebrates, are phenotypically plastic, and

they are significantly affected, for example, by temperature or

nutrition [26–28]. Recently, Grenat et al. [29] documented an

increase in the size of RBC with age and body size among juvenile

and adult frogs (Odontophrynus americanus), though they did not test

any physiological or phenotypic effects of the cell size variation. Pis

[30] showed that RBC size changes during development in a bird

(grey partridge, Perdix perdix) during a short period after hatching

and demonstrated an inverse relationship between erythrocyte size

and mass-specific resting metabolic rate within the first three

months after hatching.

Our aim is to test the prediction of the Cell Metabolism

Hypothesis as to metabolic scaling by exploring whether there

exists consistent ontogenetic variation in RBC size and how this

relates to metabolic scaling among closely related species. We use

five species of the family of the eyelid geckos (Eublepharidae) as a

model system. Previously, we demonstrated that RBC size

correlates with body size across species of the family [31].

Moreover, RBC size correlates inversely with mass-specific

standard metabolic rate among species of eyelid geckos, and thus

their variation possibly affects interspecific metabolic scaling [14].

However, we were not able to disentangle whether RBC size

variation affects metabolic scaling causally, or just due to

correlation with body size across species. Therefore, here, we

expand these studies to ontogenetic variation in metabolic rate and

RBC size in several species of the group in the hope to find

diversity in the relationship between RBC size variation during

ontogenetic growth, which would allow to test the causality. The

Cell Metabolism Hypothesis predicts that metabolic rate should

increase linearly with body mass in species with invariance in RBC

size or lack of correlation between RBC size and body mass, while

an increase of RBC size with body mass during ontogeny should

result in slower than linear relationship between metabolic rate

and body mass or in other words in flattening of the metabolic rate

scaling.

Materials and Methods

Experimental animals
Eyelid geckos are a monophyletic group sharing similar

morphology and lifestyle. They are all largely insectivorous and

mostly ground dwelling lizards which inhabit tropical and

subtropical regions of Africa, Asia and North and Central

America, but they differ considerably in body size and also in

RBC size ([14,31] and references there). In this study, we

combined previously published data on standard metabolic rate

(SMR) and RBC size in adult individuals [14] with measurements

of resting metabolic rate and RBC size in fresh hatchlings and

juveniles. Typically, SMR is estimated as oxygen consumption of

an adult, non-reproductive, post-absorptive ectothermic animal at

rest, at a temperature not inducing thermal stress. SMR reflects

the metabolic costs of maintenance, whereas metabolism of

juveniles also includes metabolic costs of growth (reviewed in

[4]). Nevertheless, for simplicity and avoidance of multiplying

terminology we refer also to our metabolic measurements on

juvenile geckos as being SMR.

We chose five species: Coleonyx elegans Gray, 1845, C. mitratus

(Peters, 1845), Eublepharis macularius Blyth, 1854, Goniurosaurus luii

Grismer Viets & Boyle, 1999, and G. lichtenfelderi (Mocquard,

1897), because in these five species we were able to cover the full

range of body sizes from hatchlings to fully grown adults several

years of age. Animals used for the experiment were either bred in

our laboratory (Charles University in Prague, Prague, Czech

Republic) or they originated from the pet trade but had been

acclimated to our laboratory conditions (mean temperature 26uC)

for at least one year. In our breeding facilities, animals were

housed individually or in small groups in glass cages or plastic

boxes of appropriate size with dry or partly moist substrate (sand

or coconut shell chippings), equipped with shelter and a small dish

for water. Water supplemented with calcium was provided ad

libitum and regularly enriched with vitamins E, A and D3

(Combinal E and Combinal A + D3; IVAX Pharmaceuticals,

Opava, Czech Republic). Lizards were fed live crickets (Gryllus

assimilis) dusted with vitamins and minerals (Roboran H, Univit,

Czech Republic) twice per week (hatchlings and juveniles) or once

per week (adults). A light cycle of 12L:12D was maintained.

Ethics Statement
The experiment was held under approval and supervision of the

Ethical Committee at the Faculty of Science, Charles University in

Prague, permit number 29552/2006-30.

Metabolic rate measurement
Metabolic rate was measured by the same methodology and

instrumental set-up as described in Starostová et al. [14]. Briefly,

SMR measurements were taken for adult or juvenile individuals at

25uC during the light phase (i.e., inactive day phase for nocturnal

geckos). A stable chamber temperature was maintained by

immersion of metabolic chambers into a thermally-controlled

water bath (60.1uC). Animals were fasted for two days before

Ontogeny of Metabolic Rate and Cell Size
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trials, but water was always available. Metabolic rate was

measured as O2 consumption in a flow-through respirometry

system (Sable Systems, Las Vegas, Nevada) calibrated with a

bubble flow meter (Optiflow 420, Supelco, Bellefonte). To achieve

high measurement precision, the animals were weighed to the

nearest 0.01 g before metabolic trials and the air flow (range 5–

40 ml/min) and metabolic chamber volume (50–300 cm3) were

adjusted to the body mass of each individual. The water vapour

and CO2 were scrubbed from the airstream prior to gas analysis.

We defined SMR as the lowest 10 minutes recorded during up to

180 minutes long trials, calculated according to equation 4a of

Withers [32] and converted to standard (STPD) conditions. In

total, our data set consists of data on 133 measurements, with one

SMR measurement per individual animal. Sample sizes and body

size range for each species are presented in Tables 1 and 2 and

Figs. 1 and 2.

Erythrocyte size measurement
In measuring RBC size, too, we followed the methodology

described in the previously published papers [14,31,33]. A small

drop of blood was taken from the humeral vessel after completing

all metabolic measurements and the blood was used to prepare

blood smears. Dry smears were fixed for five minutes in methanol

and subsequently dyed using standard May-Grünwald and

Giemsa-Romanovski solutions. Cell size calculated as mean area

of 50 dry erythrocytes per individual (104 individuals in total) was

measured using light microscopy and subsequent image analysis

(analySIS 1.10, Soft Imaging System).

Data analyses
Our statistical analyses did not take into account potential

sexual differences in RBC size and metabolic rate, because we

were not able to determine the sex of juvenile individuals. No

sexual differences were found, however, in either SMR or in RBC

size for eyelid geckos in our previous studies [14,31,33], nor are

these reported in most publications concerning reptiles (e.g., [34]

and references there on SMR; [35] on RBC size).

Statistical analyses were performed using Statistica 6.0 (StatSoft,

Tulsa, OK,

USA, 2001) software and the SAS 9.1.3 statistical package (SAS

Institute, Cary, NC, USA, 1996). For each species, we tested the

scaling of RBC size with body mass using linear regression.

Figure 1. Ontogenetic changes of red blood cell size and metabolic rate with body mass. In species of eyelid geckos without correlation
between red blood cell (RBC) area and body mass (left column), we cannot reject linear model as the adequate description of the ontogenetic
relationships between standard metabolic rate (SMR) and body mass (right column). Each point represents a single individual. Linear function (solid
line), power function (dashed line) and two-segmented linear function (dotted line) are shown. Supported models are in bold.
doi:10.1371/journal.pone.0064715.g001

Ontogeny of Metabolic Rate and Cell Size
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Ontogenetic patterns of changes in SMR with body mass were

analysed by means of the NLIN procedure of SAS. The Cell

Metabolism Hypothesis predicts a linear relationship between

SMR and body mass across individuals without correlation

between RBC size and body mass, but departure from linearity

across individuals with such correlation. To test this we fitted a

Figure 2. Ontogenetic changes of red blood cell size and metabolic rate with body mass. In species of eyelid geckos with correlation
between red blood cell (RBC) area and body mass (left column), standard metabolic rate (SMR) increases non-linearly with body mass during
ontogeny (right column). Each point represents a single individual. Linear function (solid line), power function (dashed line) and two-segmented
linear function (dotted line) are shown. Supported models are in bold.
doi:10.1371/journal.pone.0064715.g002
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linear, two-segmented linear and power model to each of the data

sets, where the latter two are used as a mathematical description of

flattened (concave) function, which should result from nonlinearity

in untransformed data. For the two-segmented linear models, we

used a simple SAS program that finds the optimum breakpoint

while minimizing the residual sum of squares. The power model

took the form of y = a*(body mass)b, where a and b were fitted

constants. Note that the power model was applied exclusively for

testing non-linearity and the exponents should not be interpreted

as standard scaling exponents calculated under log-log transfor-

mation. We did not log-transformed the data before all statistical

analyses, because our aim was to test linearity versus non-linearity

(flattening) of the SMR-body mass relationship, and transforma-

tion of data with quite narrow mass range would distort the

distribution of data points. As we argued in our earlier paper [14],

it is reasonable to expect that an organism with zero mass should

have zero metabolism. For this reason we have run all statistical

models of SMR with a zero intercept.

We then compared models’ goodness of fit, expressed as the

second order Akaike information criterion (AICc) score, while

assuming that differences in AICc (D) calculated as the value of

AICc for each model minus that of the model with the lowest value

which are lower than 2 are not informative [36]. We calculated

and compared also Akaike weights for each model.

Results

The results of the statistical analyses are summarized in Tables 1

and 2, while scatter plots of RBC area and SMR versus body

masses in the studied species are presented in Figs 1 and 2.

As indicated by the absence of statistical significance for the

slopes of the relationships between RBC size and body mass, RBC

Table 1. Relationship between size of red blood cells and body mass within species of eyelid geckos during ont ogeny.

Species n Linear regression between RBC size and BM

Coleonyx elegans 20 n. s., p = 0.286

Coleonyx mitratus 18 RBC size = 3.415*BM+124.050, p = 0.001

Eublepharis macularius 24 RBC size = 0.259*BM+155.320, p = 0.002

Goniurosaurus lichtenfelderi 21 n. s., p = 0.724

Goniurosaurus luii 21 RBC size = 0.952*BM+147.580, p,0.001

Number of individuals is indicated by n, red blood cells as RBC and body mass as BM.
doi:10.1371/journal.pone.0064715.t001

Table 2. Comparison of models fitted to standard metabolic rate and body mass relationship within species of eyelid geckos
during ontogeny.

Species n Fitted model SMR–body mass relationship AICc D AICc Akaike weights

Coleonyx elegans 31 Linear regression SMR = 0.097*BM 227.589 1.747 0.249

Power function SMR = 0.337*BM0.472 229.336 0.000 0.598

Segmented regression SMR = 0.146*BM for BM,5.382 226.610 2.726 0.153

SMR = 0.044*BM+0.549 for BM$5.382

Coleonyx mitratus 25 Linear regression SMR = 0.102*BM 232.818 3.519 0.104

Power function SMR = 0.289*BM0.499 236.337 0.000 0.602

Segmented regression SMR = 0.176*BM for BM,3.529 234.911 1.426 0.295

SMR = 0.043*BM+0.470 for BM$3.529

Eublepharis macularius 32 Linear regression SMR = 0.042*BM 215.677 8.477 0.010

Power function SMR = 0.321*BM0.480 224.154 0.000 0.696

Segmented regression SMR = 0.100*BM for BM,12.043 222.434 1.720 0.294

SMR = 0.023*BM+0.922 for BM$12.043

Goniurosaurus lichtenfelderi 22 Linear regression SMR = 0.097*BM 225.175 0.000 0.417

Power function SMR = 0.200*BM0.708 224.873 0.302 0.359

Segmented regression SMR = 0.115*BM for BM,11.201 223.936 1.239 0.224

SMR = 20.013*BM+1.439 for BM$11.201

Goniurosaurus luii 23 Linear regression SMR = 0.063*BM 217.394 14.252 0.001

Power function SMR = 0.349*BM0.415 223.746 7.900 0.019

Segmented regression SMR = 0.103*BM for BM,13.661 231.646 0.000 0.980

SMR = 20.027*BM+1.781 for BM$13.661

Number of individuals is indicated by n, standard metabolic rate as SMR and body mass as BM. Substantially supported models with differential AICc (D) less than 2 and
high probabilities based on Akaike weights are in bold.
doi:10.1371/journal.pone.0064715.t002
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size does not increase during ontogenetic growth of C. elegans and

G. lichtenfelderi (Fig. 1, Table 1). In the three other eyelid gecko

species (C. mitratus, E. macularius, and G. luii), by contrast, RBC size

significantly increases with body size during ontogenetic growth

(Fig. 2, Table 1). In those three species, RBC size increases in the

course of ontogeny by 23%, 17% and 18%, respectively.

In accordance with the predictions derived from the Cell

Metabolism Hypothesis, in two species characterized by the lack of

ontogenetic RBC size increase – C. elegans and G. lichtenfelderi – we

were not able to reject a linear model as an adequate description of

the SMR scaling in favor of the models expecting nonlinearity of

this relationship. The predictions of the Cell Metabolism

Hypothesis are further supported by the analyses of ontogenetic

SMR changes in all three species whose RBC size significantly

increased in the course of ontogeny (C. mitratus, E. macularius, and

G. luii). In this case relationships between SMR and body mass

were significantly better fitted by two-segmented linear or power

models than by simple linear models (Table 2). Mean Akaike

weights for a linear model fitted to the SMR-body size data for two

species with no relationship between RBC size and body size were

considerably larger (0.333) than mean Akaike weights (0.038) of

the linear model fitted in three species whose RBC size increases

with body size during ontogeny. This points to substantial

nonlinearity of the SMR-body mass relationships in the latter

three species.

Discussion

Due to the correlation between RBC size and genome size,

RBC size in vertebrates used to be considered a stable species-

specific characteristic [14,31,37,38]. Nevertheless, RBC size is

considerably plastic with respect to thermal environment [26] and

ontogeny ([29,30], this study). We demonstrated that RBC size

increases with body mass through ontogeny in three species, but

not in another two species of eyelid geckos. Previously, measuring

RBC size in adult individuals using the same methodology, we

demonstrated that RBC size increases with body mass across

species of the family [31]. The increase in mean RBC size (dry

projection area) from the smallest (Coleonyx brevis; mean adult body

mass 4.6 g) to the largest (Eublepharis angramainyu; mean adult body

mass 89 g) species came to about 36%. The ontogenetic increase

of RBC size in all three species with significant correlation

between RBC size and body mass during ontogeny was about

20%, although the species largely differ in absolute ranges of body

mass (Fig. 2).

The variability in RBC size could have important physiological

consequences. Erythrocytes serve to distribute oxygen to all other

tissues, which is potentially a constraining process for oxidative

metabolism. Their diameters, limited by the nuclei size and shape,

necessarily determine blood capillary diameter and hence affects

all tissues [39] and thus the total metabolic rate of an organism.

The variation in cell size is a key component of the Cell

Metabolism Hypothesis on metabolic rate scaling [2]. For

ontogenetic scaling, this hypothesis expecting causal relationship

between RBC size and metabolic rate, predicts a linear

relationship between logarithmically untransformed SMR and

body mass across individuals without correlation between RBC

size and body mass, but slower than linear SMR increase

relationship across individuals with such correlation (i.e., flattening

of metabolic rate scaling). The pattern of ontogenetic scaling

among the species of eyelid geckos described here fits the

prediction well. Clear non-linearity in SMR scaling was observed

only in species with significant increase of RBC size with body

mass. The pattern is consistent with the single-species study in the

grey partridge demonstrating negative relationship between RBC

size and mass-specific metabolic rate [30].

It is notable that in the congeneric species in our study we

observed the contrasting patterns in scaling of RBC size and SMR

(C. mitratus versus C. elegans and G. lichtenfelderi versus G. luii), which

suggests that the increase of RBC size during ontogenetic growth is

not phylogenetically conservative. Analogously, two independently

established clines in body size in Drosophila subobscura across

latitudinal gradient differed in presence of correlation of cell size

with body size [40]. It was suggested that the differences in cell size

increase with body size among closely related species or

populations of Drosophila could reflect whether larger body size is

achieved via prolonged growth or higher growth rates [28]. The

growth data in eyelid geckos suggest that differences in RBC size

and metabolic rate scaling might not be correlated with differences

in growth rates: three species (E. macularius, C. elegans and C.

mitratus) with comparable growth rates [41] show different patterns

in both RBC size and SMR scaling.

Metabolic rate of an animal can be affected by many factors.

We were largely able to control external factors (e.g., environ-

mental temperature) in the laboratory, but there remain many

internal factors potentially responsible for shaping ontogenetic

changes in SMR. The traits known to affect metabolic rate and at

the same time differing between juveniles and adults include level

of tissue hydration, which generally decreases with age and

increases SMR [42]; relative proportions of internal organs

[43,44], many of which scale allometrically with body size [45];

density of mitochondria in muscle fibres [46,47]; and size-

correlated differences in enzyme activity [48]. Nevertheless, we

demonstrate here that RBC variation contributes to differences in

SMR dynamics across ontogeny. There are several possible, not

mutually exclusive, mechanisms generating this pattern. First,

RBC size may correlate with cell sizes in other tissues and serve as

a proxy of generalized cell size as found in passerine birds [16],

which shapes SMR scaling as expected by earlier versions of the

Cell Metabolism Hypothesis [2]. The correlation between RBC

size and size of cells in other tissues has not yet been tested in

geckos. Second, RBC diameter may determine the architecture of

circulatory system, namely capillary diameter. Third, RBC

surface-to-volume ratio, lower in small RBC, may directly affect

gas exchange [39,49]. The role of these mechanisms requires

further studies.

There is an ongoing debate whether the scaling of metabolic

rate is primarily driven by constraints of supply network [1] or

intrinsic demands [50]. Under the latter possibility, ontogenetic

scaling of metabolic rate should be largely influenced by metabolic

demands of growth and development resulting in differences of

scaling among particular ontogenetic stages [22,51,52,53]. We

measured total metabolic rate of non-active animals without

attempting to estimate the importance of particular components of

energy budget. Under the Cell Metabolic Hypothesis, however,

total metabolic rate, not just maintenance costs, should depend on

the size variation of the cells. Therefore, the model should hold

regardless of the varying contribution of costs of growth to the total

metabolic rate across ontogeny.

In summary, our study further highlights that intraspecific

allometries from juveniles to adults provide an important

perspective on processes shaping metabolic allometries. Especially

organisms exhibiting indeterminate growth such as reptiles, where

there is usually substantial variation in body size between juveniles

and adults (see also [54]) but where many aspects of general

biology (e.g., diet) or physiology are still shared, could be

informative in this respect. Here, we found support for the causal

role of RBC size variation in shaping metabolic rate scaling, which

Ontogeny of Metabolic Rate and Cell Size
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is in agreement with general predictions of the Cell Metabolism

Hypothesis in a reptilian lineage. During ontogeny, metabolic rate

increases nearly linearly with body mass in those species of eyelid

geckos where there is no correlation between RBC size and body

mass (Type II pattern defined by [4]), whereas clear non-linearity

of metabolic rate scaling is evident in those species with

ontogenetic increase of RBC (Type III pattern [4]). The variability

in cell size could have important physiological consequences, such

as a qualitatively different pattern of SMR-body mass relationship.
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