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Abstract

In sports such as golf and darts it is important that one can produce ballistic movements of an object towards a goal
location with as little variability as possible. A factor that influences this variability is the extent to which motor planning is
updated from movement to movement based on observed errors. Previous work has shown that for reaching movements,
our motor system uses the learning rate (the proportion of an error that is corrected for in the planning of the next
movement) that is optimal for minimizing the endpoint variability. Here we examined whether the learning rate is hard-
wired and therefore automatically optimal, or whether it is optimized through experience. We compared the performance
of experienced dart players and beginners in a dart task. A hallmark of the optimal learning rate is that the lag-1
autocorrelation of movement endpoints is zero. We found that the lag-1 autocorrelation of experienced dart players was
near zero, implying a near-optimal learning rate, whereas it was negative for beginners, suggesting a larger than optimal
learning rate. We conclude that learning rates for trial-by-trial motor learning are optimized through experience. This study
also highlights the usefulness of the lag-1 autocorrelation as an index of performance in studying motor-skill learning.
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Introduction

In precision sports such as golf, bowling, archery and darts it is

crucial to produce accurate ballistic movements of an object

towards a goal location. The smaller the variability of the endpoint

of the object over repeated movements, the better the performance

can be. We will refer to this variability as performance variability,

which is the inverse of performance consistency. The performance

variability depends on various factors. First, noise in the

sensorimotor system [1–7] places a lower bound on the

performance variability. Second, performance variability depends

on the kinematics of the limb movement before releasing the

object. The kinematics determine how noise in motor signals

translates into variability of the object’s end position. Skilled

sportsmen may produce limb movements with different trajecto-

ries than less-skilled sportsmen so as to reduce the variability in the

endpoints [2,8–12] and/or the variability in the limb trajectories

themselves [13–15]. Third, the performance variability depends

on the coordination of release parameters such as release speed,

release angle and relevant joint angles. Since different limb

movements can lead to the same end position of the object, release

parameters can co-vary without affecting the object’s end position.

Numerous studies have shown that humans display such

‘‘compensatory variability’’ in laboratory tasks [11,16–21], and

also in sports [10,22–28], where skilled performers are thought to

explore and exploit the high dimensionality of the motor system

better than less-skilled performers [26,29].

A factor that also affects the performance variability but that has

received little attention is the extent to which motor planning is

updated from movement to movement based on performance

errors. It has been known for many years that feedback from a

previous movement is used to update planning of the next

movement such that this movement is expected to be more

accurate [30,31]. Studies on repeated reaching movements of the

unseen hand to a visual target found that motor planning is

corrected by a fixed proportion of the observed error in the

previous movement [32,33]; we will refer to this proportion as the

learning rate and denote it by B. The performance variability

depends on the learning rate. If no planning corrections are made

(i.e., B = 0), an initial error, if present, will persist, which is

obviously not a good strategy. There is however another

disadvantage. The random effects of noise in the central planning

of a motor command [5] accumulate over movements [34]. In the

absence of trial-by-trial planning corrections, the endpoint will

therefore drift randomly, like a random walk (see Figure 1A),

giving rise to unnecessarily large performance variability. An

alternatively strategy could be to correct for the full observed error

(i.e., B = 1). Although the mean endpoint will in that case be on

target (see Figure 1E), this is not a good strategy either, because

part of the error is not due to incorrect planning but to noise in the

execution of the movement (i.e., noise in the relay of the motor

command by motoneurons and in the conversion into mechanical

forces in muscles [3,6]. When this strategy is followed, corrections

are too large as they correct not only for incorrect planning but

also for random effects of noise in movement execution, making it

likely that one will end up at the opposite side of the target than in

the previous movement (see Figure 1E). This also leads to

unnecessarily large performance variability. The performance
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variability is smallest for intermediate learning rates. The

minimum is obtained when the learning rate is large enough to

counteract random walks, and small enough to avoid jumping over

the target (see Figure 1C).

Not only the variance but also the serial dependence of the

endpoints depends on the learning rate. If no corrections are made

(Figure 1A), each endpoint is close to the previous one. This can

also be seen in Figure 1B, which shows the vertical component of

the endpoints in Figure 1A as a function of the movement number.

The lag-1 autocorrelation (ACF(1)), which quantifies the correla-

tion between endpoints of consecutive movements, will therefore

be positive. If one corrects for the full error (Figure 1E, F),

endpoints of consecutive movements tend to be on opposite sides

of the mean endpoint, giving rise to a negative ACF(1). For

learning rates that lead to a small variance, the ACF(1) will be

close to zero, so that each endpoint is statistically independent of

the previous one (Figure 1C, D). Van Beers [32] developed a

model that made the relationship between learning rate, variance

and autocorrelation explicit. We will show here that according to

that model, the ACF(1) is always zero for the learning rate that

minimizes the variance, independent of the proportions of noise

that arise in motor planning and in motor execution.

For the reach task, all participants had ACF(1)s close to zero

[32], suggesting that their learning rates were near optimal. This

raises the question how they had achieved this. Is our motor

system programmed such that it automatically uses the optimal

learning rate, or does it learn the appropriate learning rate

through experience? To answer this question, we studied dart

throwing, as most people have little or no experience with this task,

whereas others are highly experienced. We compared expert dart

players with beginners in their ability to make repeated throws

towards the bullseye. We analyzed the ACF(1) of the positions

where the dart landed on the dartboard to determine whether they

used the optimal learning rate. If the learning rate is hard-wired,

the ACF(1) will be the same for both groups. In contrast, if the

optimal learning rate is learned through experience, the ACF(1)

can be expected to be near-zero for the experts, and non-zero for

the beginners. This hypothesis does not predict the sign of ACF(1)

for the beginners. It could be positive for all beginners, it could be

negative, but it could also be highly variable across the population,

with both positive and negative values in the population. To make

sure that potential differences between the autocorrelations of the

two groups are the result of their differential dart experience, and

not of other differences between the groups, we compared both

groups also on a reach task.

Materials and Methods

Theoretical relation between ACF(1) and the optimal
learning rate

In [32], equations were derived for the endpoint variance Var(x)

and the lag-1 autocorrelation ACF(1) according to the model

developed there:

Var(x)~
wz2B(1{w)

B(2{B)
Tr Smotð Þ ð1Þ

ACF(1)~1{B{
B(2{B)(1{w)

wz2B(1{w)
ð2Þ

where Smot is a covariance matrix that represents the endpoint

variability resulting from noise in the motor system (the combined

effect of noise in central movement planning and in peripheral

movement execution), Tr denotes the matrix trace, B is the

learning rate and w is the proportion of Smot that arises in

movement planning (and 1 – w is the proportion that arises in

movement execution).

We do not know the value of w for dart throwing. We therefore

plotted the variance (Figure 2A) and ACF(1) (Figure 2B) as a

function of B for different values of w according to equations 1 and

2. For each value of w, there is an optimal learning rate for which

the variance is minimal. The location of this optimum depends on

Figure 1. Effect of learning rate on variance and serial correlation. A Simulated set of 45 movement endpoints if learning rate B = 0 (i.e., no
corrections). Consecutive endpoints are connected by lines. Endpoints were generated using the model of van Beers (2009) with w = 0.2, where w is
the proportion of the total effect of motor noise that arises during motor planning. B The vertical component of the endpoints shown in A plotted as
a function of the trial number. C The same as in A, but now for B = 0.39, which is the optimal learning rate for this value of w. D The vertical
component of the endpoints shown in C plotted as a function of the trial number. E The same as in A, but now for B = 1 (i.e., correct for the full error).
The same set of random numbers was used in A, C and E, only the value of B varied. F The vertical component of the endpoints shown in E plotted
as a function of the trial number.
doi:10.1371/journal.pone.0064332.g001
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w; the larger w, the larger the optimal value of B. Figure 2B shows

that for each w shown, the ACF(1) is zero for the optimal B (see

vertical dashed lines). We will now show that is true for every value

of w.

The simplest way to see this is to determine (1) the B for which

the variance is minimal from equation 1, and (2) the B for which

ACF(1) = 0 from equation 2. A straightforward calculation shows

that both have the same solution:

B~
{wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4{3w)w

p
2(1{w)

ð3Þ

Alternatively, one could use equation 2 to express B as a

function of w and ACF(1), and then substitute the result into

equation 1. After some straightforward but tedious algebra, one

finds an expression for the variance as a function of w and ACF(1):

Var(x)~
2{w{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4(1{w)2ACF(1)2z(4{3w)w

q
2 1{ACF(1)2
� � Tr Smotð Þ ð4Þ

This relation is plotted for a range of values of w in Figure 2C.

This figure clearly shows that for each value of w, the variance

reaches its minimum for ACF(1) = 0. This can also be checked by

setting the derivative of equation 4 with respect to ACF(1) to zero.

The result that for every value of w the learning rate is optimal if

ACF(1) = 0 means that it is not necessary to know the value of w to

determine whether a participant adopts the optimal learning rate.

One only needs to determine the ACF(1). This is the approach we

followed here: We measured the ACF(1) of repeated dart throws

by experienced and inexperienced dart players to determine

whether these groups used the optimal learning rate for trial-by-

trial planning corrections.

Note that we cannot be sure that the model for trial-by-trial

corrections in reaching [32] also applies to dart throwing.

However, it is evident that the principle that the minimum of

the variance coincides with the lag-1 autocorrelation being zero

holds more generally as any non-zero autocorrelation causes

additional variance: a positive ACF(1) leads to random-walk

behavior, with its associated variability, whereas a negative ACF(1)

corresponds to over-corrections which also induce unnecessarily

large variability.

Participants
We compared two groups of male, right-handed participants.

The group of Experts consisted of eight dart players from the

highest division of local dart leagues (age range: 19–51 years,

mean: 34 years, SD: 11 years; dart-experience range: 8–30 years,

mean: 16 years, SD: 7 years). The group of Beginners consisted of

nine undergraduate students who had no dart experience (age

range: 20–24 years, mean: 22 years, SD: 1.3 years). All

participants were naive to the purpose of the experiment. The

experiment was part of a research program that was approved by

the ethics committee of the Faculty of Human Movement Sciences

of VU University Amsterdam. All participants gave written

informed consent before the start of the experiment.

Apparatus
Each participant performed two tasks, a Dart task and a Reach

task. For the Dart task, we used a sisal dartboard with a diameter of

42.5 cm and 9 black and white concentric rings. In accordance

with the rules of the World Darts Federation, the centre of the

bullseye was 1.73 m above the floor and the horizontal distance

between the dartboard and any part of the participants’ shoes was

at least 2.37 m. The Experts used their personal darts, whereas

standard steel darts were provided to the Beginners. To record the

position of the dart on the dartboard, we placed the tip of a

pointing device at the required position. This pointing device had

six markers, the positions of which were recorded by an Optotrak

Figure 2. Effect of w on the optimal learning rate and the
ACF(1). A Variance as a function of learning rate B for different values
of w (the proportion of the total motor variance that arises during
motor planning) according to equation 1. The variance is expressed in
units of Smot. The location of the minimum (indicated by small circles)
depends on the value of w. B ACF(1) as a function of learning rate B for
different values of w according to equation 2. The learning rate for
which the ACF(1) vanishes is equal to the learning rate for which the
variance (in A) is minimal. C Variance plotted as a function of ACF(1)
according to Equation 4. This figure shows directly that for each value
of w the variance is minimal if ACF(1) = 0.
doi:10.1371/journal.pone.0064332.g002
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Certus system (Northern Digital, Waterloo, Ontario). Since the

pointing device was pre-calibrated, this allowed us to determine

the three-dimensional position of the dart with an accuracy of

0.1 mm.

For the Reach task, participants were seated on a chair and used

their right hand to move a stylus on a horizontally-oriented

Wacom UD-1825-A drawing tablet (63.5645.7 cm) that recorded

the stylus tip position at 200 Hz with a resolution of 0.1 mm. The

participant’s arm was not supported against gravity. An LCD

projector generated images (10246768 pixels, 85 Hz) that were

displayed on a projection screen above the tablet. Participants

looked down onto a mirror that was placed midway between the

tablet and the projection screen. They could therefore not see their

hand and the stylus, and all images appeared in the plane of the

tablet.

Procedure
Each participant performed the Dart task first, followed by a

break of 5 to10 minutes, and then performed the Reach task. In

the Dart task, each participant made 180 right-hand throws

towards the bullseye (the centre of the dartboard). The dart of the

previous throw was left in the dartboard during the next throw so

that participants could clearly see the error of the previous throw

while planning the next one. After the next throw, the position of

the previous throw was recorded, after which that dart was

removed from the dartboard. This task took about half an hour to

complete.

In the Reach task, participants made 180 reaching movements

of the stylus to a visual target. We made this task in several aspects

comparable to the Dart task. First, participants did not receive

visual feedback about the stylus and their hand during the

movements. In this way, participants could not use online visual

feedback to control their movement, which is roughly comparable

to the ballistic movement of a dart after its release. Second, we

gave participants visual feedback about the movement endpoint

immediately after each movement, which is similar to seeing

where the dart landed on the dartboard.

At the beginning of a trial, a yellow disk (5 mm diameter)

appeared against a black background at a fixed location about

35 cm straight in front of the trunk in the mid-sagittal plane. To

allow participants to place the stylus quickly and accurately at this

starting location and to prevent drift of the felt finger location [35],

a red disc (3 mm diameter) was shown at the current stylus

location. Once the participant held the stylus still at the starting

location, the stylus-location feedback went off and the target

appeared. The target was another yellow disk (5 mm diameter)

that appeared also in the mid-sagittal plane exactly 10 cm behind

the starting location. Participant thus had to move their hand

forward, so that participants moved their hand in both tasks in the

same direction. The task was to move the stylus as accurately as

possible to the target in a single movement. There were no timing

constraints. Movements took typically about 400 ms, which is

longer than a dart-throwing movement, which takes less than

150 ms [9]. The movement endpoint was determined online as the

first location since the start of the movement at which the stylus

location was the same in two consecutive frames. From this

moment, the movement endpoint was shown for 1 s as a red disc

(3 mm diameter) alongside the target. To motivate participants, a

score was displayed based on the distance between the endpoint

and the centre of the target. The score was inversely proportional

to this distance, with a maximum of 100 points that was awarded if

the error was less than 1 mm. After the 1 s interval, the target, the

score and the endpoint were extinguished, and the starting

location and the cursor displaying the current stylus location

appeared to start the next trial. Before starting the actual

experiment, all participants made ten practice movements (to

other targets) to familiarize themselves with the task. This task

lasted about 10 minutes.

Analysis
For both tasks, we analyzed the endpoints of the movements to

estimate their lag-1 autocorrelation ACF(1) and variability. For the

Dart task, 13 movements (0.42%, 2 of Experts, 11 of Beginners)

were excluded from the analysis because their endpoints were not

recorded correctly (their recorded positions were more than 5 mm

in front of the dartboard). For the Reach task, all endpoints were

included in the analysis.

The two-dimensional endpoints will be denoted by (x(t), y(t)),

where t is the trial number (1, …, 180), and x and y are the two

Cartesian components: For the Dart task, x and y represent the

horizontal and the vertical component, respectively, whereas for

the Reach task, x and y represent the forward and the lateral

component. The lag-1 autocorrelation for the x component was

determined as:

ACFx(1)~

Pn{1

t~6

x(t)x(tz1){
1

n{6

Xn{1

t~6

x(t)

 ! Xn{1

t~6

x(tz1)

 !

Pn{1

t~6

x(tz1)ð Þ2{ 1

n{6

Xn{1

t~6

x(tz1)

 !2

where n = 180 is the number of trials in the series. A similar

equation was used for the y component ACFy(1). The first 5

movements of a series were not included because correction for a

large error in the first movement in the series could occur in these

movements [32]; including these movements would lead to an

overestimate of the steady-state autocorrelation. The method

developed by Marshall [36] was used to deal with missing values.

For each participant, we averaged the lag-1 autocorrelations of the

two components to obtain the overall lag-1 autocorrelation:

ACF(1) = (ACFx(1)+ACFy(1))/2.

We used the standard equation for the variance to determine

the variance of the x and y components. The (total) variance was

the sum of the variances of these two components.

Results

Dart task
Figure 3 shows all the positions where the dart landed on the

dartboard, for all participants, and Figure 4 shows representative

examples of the vertical positions of the dart as a function of the

trial number. Figure 3 shows that the mean endpoint was close to

the bullseye for all participants from both groups. This figure also

shows that the Experts had a smaller variance than the Beginners

(p = 3.1026, one-tailed t test; see also Figure 5A). This confirms

that the Experts were better at this task than the Beginners. For the

representative Expert (Figure 4A), there is no clear relation

between the positions of consecutive throws, comparable to

Figure 1D. This is confirmed by the ACF(1) that was close to

zero (0.011). In contrast, for the Beginner (Figure 4B), not only was

the variability larger than for the Expert, but there was also a

tendency that a positive error was followed by a negative one and

vice versa, as in Figure 1F. In agreement with this, the ACF(1) was

negative (20.135). These examples are representative for the two

groups (Figure 5C) as the ACF(1) was significantly (p = 0.018, two-

tailed t test) smaller for the Beginners (mean 6 SE:

20.08660.024) than for the Experts (mean 6 SE:

Autocorrelation and Motor Variability
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0.00560.025). The ACF(1) was not significantly (p = 0.84, two-

tailed t test) different from zero for the Experts, which suggests that

the Experts had near-optimal learning rates for trial-by-trial motor

learning. In contrast, the ACF(1) of the Beginners was significantly

(p = 0.007, two-tailed t test) smaller than zero, which indicates that

the learning rate used by the Beginners was larger than the

optimal learning rate. In other words, the trial-by-trial behavior of

the Beginners was such that they over-corrected for observed

errors, often jumping over the target (as in Figure 1E, F), giving

rise to unnecessarily large endpoint variance. Thus, part of the

difference in the variance between the groups (Figure 5A) can be

explained by the different groups adopting different learning rates.

Note that the two groups differed not only in dart experience

(p = 4.1026, one-tailed t test) but also in age (p = 0.0044, two-tailed

t test), with the Experts on average being older than the Beginners.

One could therefore argue that the difference in autocorrelations

might not be related to dart experience but to age. To examine

whether this is the case, we looked at the results of the two

youngest Experts. These were 19 and 23 years old, well within the

age range of the Beginners group. They both had 8 years of darts

experience. Figure 6A shows the ACF(1) of each participant as a

function of his variance. The data points of the two youngest

Experts (indicated by rings) fall within the cluster of data points of

the other Experts and are far away from the Beginners’ data

points. This indicates that it is dart experience, not age, that

determines the ACF(1).

We can also look at Figure 6A to examine whether, as suggested

above, the variance and ACF(1) are related, such that small

variances are found for ACF(1)s near zero and larger variances for

ACF(1)s further away from zero. This pattern is visible in the

figure, as the largest variances were found for Beginners who had

negative ACF(1)s, whereas variances were smaller for Experts, who

had near-zero ACF(1)s. The correlation between variance and

ACF(1) for the pooled data from both groups in Figure 6A is

therefore negative (20.675) and significantly different from zero

(p = 0.003). This is however not surprising because we already

knew that the two groups had different variances and ACF(1)s.

The correlations were not significantly different from zero for the

individual groups (Experts: r = 20.261, p = 0.53; Beginners:

r = 20.579, p = 0.102).

Reach task
All participants conducted the Reach task to allow us to

examine whether the differences found in the Dart task are the

result of their differential dart experience or of other differences

between the groups. For instance, the Experts could have had an

‘‘innate’’ smaller-than-average learning rate, and therefore have

become proficient dart players. If this were the case, this would be

evident in a task in which both groups are inexperienced. We

chose for reaching with the unseen hand to visual targets because

this is, like dart throwing, an approximately ballistic movement

that is produced by movement of the dominant arm. Although all

participants had a lifelong experience of reaching with their seen

hand, they were inexperienced with moving their unseen hand to

visual targets.

Figure 5D shows that both groups had a small, positive ACF(1)

in the Reach task; the difference between the groups was not

significant (p = 0.32, two-tailed t test). The endpoint variance in

this task (Figure 5B) did not differ between the groups either

(p = 0.52, two-tailed t test). These findings suggest that the different

ACF(1)s found in the Dart task result from the different amounts of

experience with that task and not from other differences between

the groups. The observation that the variance in the Reach task

did not differ between groups also suggests that the Experts did not

have a lower level of ‘‘natural’’ motor variability than the

Beginners.

Figure 6B shows the ACF(1) of each participant as a function of

his variance in the Reach task. We determined the correlation

between these measures to examine whether also in this task a

smaller variance corresponds to an ACF(1) nearer to zero. Since

all ACF(1)s in this task were positive, the prediction is that the

variance and the ACF(1) are correlated positively. This was indeed

Figure 3. All endpoints of all participants in the Dart task. The
circles denote the edges of the concentric rings on the dartboard, dots
indicate the positions where the dart landed and red ellipses represent
95% confidence ellipses of the endpoints. All participants hit the
dartboard in every trial.
doi:10.1371/journal.pone.0064332.g003
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the case (r = 0.645, p = 0.005). The correlation was also significant

for the Expert group separately (r = 0.811, p = 0.015), but not for

the Beginners group (r = 0.452, p = 0.222).

Correlation between tasks
In a final analysis, we examined whether, across participants,

the performance variables were correlated between the two tasks.

Figure 7A shows the variance in the Reach task as a function of the

variance in the Dart task. The correlation between these two

variances was not significantly different from zero for the pooled

data from both groups (r = 0.292, p = 0.272), and not for the

individual groups either (Experts: r = 0.594, p = 0.120; Beginners:

r = 0.415, p = 0.306). The ACF(1) in the Reach task is shown as a

function of the ACF(1) in the Dart task in Figure 7B. The

correlation between these two ACF(1)s was also not significantly

different from zero (pooled data from both groups: r = 0.084,

p = 0.750; Experts: r = 20.537, p = 0.170; Beginners: r = 0.474,

p = 0.235). These results imply that the performance in the two

tasks was independent of one another.

Discussion

Our main finding is that the lag-1 autocorrelation of the

endpoints of repeated dart throws was about zero for experienced

darters and negative for beginners. The near-zero value for the

Experts suggests that these players used the optimal learning rate

for translating an observed error into a correction of the motor

plan. The Beginners did not do this, as the negative autocorre-

lation found for this group implies that these players made larger

corrections than would have been optimal for minimizing the

endpoint variability. Since no differences between the groups were

found in the performance of the Reach task, these findings

demonstrate that the learning rate of our motor system is not hard-

wired and therefore not automatically optimal, but it is optimized

through experience. Learning is task specific as the performance in

the two tasks was uncorrelated.

One could argue that the near-zero lag-1 autocorrelation of the

Experts does not necessarily mean that they made near-optimal

trial-by-trial corrections. An alternative explanation could be that

their planning did not change from trial to trial at all and was

always accurate. The observed variability would then be entirely

due to noise in movement execution, which would lead to a zero

autocorrelation of movement endpoints, as observed. There are

several reasons why this possibility is unlikely. First, this idea has

been refuted for reaching movements (Experiment 2 in [32]). That

experiment was similar to the Reach task in the present study, but

there, participants did not see their actual movement endpoints, as

they thought, but they saw endpoints corresponding to half their

actual errors. If they did not make trial-by-trial corrections, the

autocorrelation would be the same (about zero) as when they saw

their actual errors. The observed autocorrelation was however

larger when they saw halved errors, suggesting that they did make

trial-by-trial corrections, even for very small errors. It seems

reasonable to assume that this also applies to throwing by experts

as even experts have considerable kinematic variability in their

movements [10,37,38]. More direct evidence against the idea that

Figure 4. Representative examples of errors as a function of trial number in the Dart task. The vertical component of each endpoint is
shown. A value of 0 denotes the bullseye. A Data from an Expert. B Data from a Beginner.
doi:10.1371/journal.pone.0064332.g004

Figure 5. Mean variance and autocorrelation in the two tasks.
A Variance in the Dart task. B Variance in the Reach task. C ACF(1) in the
Dart task. D ACF(1) in the Reach task. In all panels, bars indicate the
mean of all participants per group, and error bars denote the between-
participant standard error. *: p,0.05, **: p,0.01, ***: p,0.001, NS:
p.0.05.
doi:10.1371/journal.pone.0064332.g005
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expert darters do not change their motor planning from trial to

trial is the observation that expert darters make larger errors when

feedback about their performance is precluded than when they do

get such feedback [38]. This directly demonstrates that they use

their seen errors to improve planning of future movements. We

conclude that experienced darters do make error-driven trial-by-

trial planning corrections, and they do this using a near-optimal

learning rate.

The Beginners tended to have negative lag-1 autocorrelations in

the Dart task. This was not expected. We expected that Beginners

could have autocorrelations further away from zero than the

Experts, but we had no expectations about the sign. They could be

positive for all Beginners, they could be negative for all, but they

could also be highly variable across the population, with some

having a positive and others having a negative value. We found

that eight out of nine Beginners had a negative autocorrelation,

whereas the remaining one had a very small (0.01) positive value.

Negative autocorrelations correspond to a learning rate that is

larger than the one that minimizes the variance [32]. This leads to

over-corrections for observed errors, so that one often jumps over

the target (as in Figure 1E,F). The observation that the mean

endpoint was close to the target for all Beginners is also consistent

with them making substantial trial-by-trial corrections. A possible

explanation for the over-corrections is that Beginners attribute too

large a part of the error to incorrect motor planning, while

underestimating the contribution of noise in motor execution

[1,3,6]. Ideally, one should correct only for the error arising in

motor planning as that will, if left uncorrected, persist in future

movements [34], whereas the effects of noise in motor execution

are unpredictable and uncorrelated between movements. A

negative autocorrelation thus amounts to correcting for (part of)

the random effects of execution noise, which is obviously

counterproductive. Experienced darters apparently do not do this,

but correct, on average, only for the errors arising from inaccurate

planning.

Can the between-group difference in the autocorrelation in the

Dart task explain the difference in the variance in this task

(Figure 5A)? As derived in Materials and Methods, the variance is

expected to be lowest if the lag-1 autocorrelation vanishes, and it

will increase if the autocorrelation gets smaller or larger than zero

(see also Figure 2). The results of both the Dart task (Figure 6A)

and the Reach task (Figure 6B) confirm that this relation between

autocorrelation and variance exists. However, the difference

between the autocorrelations was about 0.1 (Figure 5C), whereas

the variance of the Beginners was about 5 times as large as that of

the Experts (Figure 5A). Although it is unclear whether the model

of van Beers [32] applies to dart throwing, the relation between

autocorrelation and variance predicted by this model (Figure 2)

suggests that it is highly unlikely that such a small difference in

autocorrelation can explain such a large difference in variance.

Figure 5B implies that the large between-group difference in the

dart variance does not result from differences in the level of

‘‘natural’’ motor variability either, as the variance in the Reach

task did not significantly differ between the groups. We therefore

conclude that extensive experience with throwing darts not only

optimizes the learning rate for trial-by-trial motor learning, but it

also reduces the performance variability in other ways. As

mentioned in the Introduction, this could be achieved by

Figure 6. Observed relation between variance and autocorrelation. A ACF(1) as a function of variance for the Dart task. Each data point
represents a participant. Dots surrounded by a circle indicate the two youngest Experts, who were in the age range of the Beginners. B ACF(1) as a
function of variance for the Reach task.
doi:10.1371/journal.pone.0064332.g006

Figure 7. Observed relation between the performance in the two tasks. A Variance in the Reach task as a function of variance in the Dart
task. Each data point represents a participant. B ACF(1) in the Reach task as a function of ACF(1) in the Dart task.
doi:10.1371/journal.pone.0064332.g007
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optimizing the kinematics of the limb movement [2,8–11,13,15]

and/or by improving the coordination of release parameters

[10,11,22–28].

Our results do not reveal how the optimal learning rate is

learned, how many hours of dart throwing are required before

one’s learning rate begins to change, and how this compares to

improvements in other aspects of dart throwing. A longitudinal

study is required to address these issues. Note that it is not

necessary for a dart player to know the amount of endpoint

variability that is caused by motor planning and by movement

execution to be able to find the optimal learning rate. One could

simply vary the learning rate to see how that affects the

performance. If this is tried extensively, the optimal learning rate

will be found, as here the average performance will be best. Our

results also suggest a strategy for quickly improving a beginner’s

dart performance. Since a beginner’s trial-by-trial corrections tend

to be too large, a rapid improvement could be obtained by simply

reducing the size of these corrections. Future research could

examine whether this strategy leads to an immediate improvement

in dart performance.

We conclude by emphasizing the usefulness of the lag-1

autocorrelation as an index of performance in motor-skill learning.

Since a lag-1 autocorrelation of zero corresponds to a minimal

variance [32], measuring the autocorrelation will directly reveal

whether a participant makes optimal trial-by-trial planning

corrections, or whether these corrections are suboptimal, leading

to unnecessarily large variability. The lag-1 autocorrelation can

therefore be used as an index of the optimality of trial-by-trial

motor planning. This index can be used in experiments on

precision sports, but also in laboratory tasks that study motor-skill

learning [39]. In all cases, an autocorrelation of zero indicates

optimal performance, whereas a departure from zero implies that

performance can be improved. In the latter case, the sign of the

autocorrelation indicates whether the size of trial-by-trial correc-

tions should be decreased or increased to improve performance.
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