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Abstract

Several approaches have been proposed for near real-time detection and prediction of the spread of influenza. These
include search query data for influenza-related terms, which has been explored as a tool for augmenting traditional
surveillance methods. In this paper, we present a method that uses Internet search query data from Baidu to model and
monitor influenza activity in China. The objectives of the study are to present a comprehensive technique for: (i) keyword
selection, (ii) keyword filtering, (iii) index composition and (iv) modeling and detection of influenza activity in China.
Sequential time-series for the selected composite keyword index is significantly correlated with Chinese influenza case data.
In addition, one-month ahead prediction of influenza cases for the first eight months of 2012 has a mean absolute percent
error less than 11%. To our knowledge, this is the first study on the use of search query data from Baidu in conjunction with
this approach for estimation of influenza activity in China.
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Introduction

Seasonal influenza epidemics result in an estimated three to five
million cases of severe illness and 250,000 to 500,000 deaths
worldwide each year [1]. In order to prepare for the next severe
pandemic and better control seasonal influenza epidemics,
researchers have proposed several approaches to achieve near
real-time surveillance of the emergence and spread of influenza.
Some novel approaches for rapid disease outbreak detection and
surveillance include online surveillance systems utilizing informal
sources such as news reports [2], social media data [3-16], and
search query data [17-20]. The idea of using search query data for
detecting outbreaks was first introduced in 2006 [17]. Ginsberg
et al [18] later discussed how monitoring search queries on Google
could be used to detect influenza outbreaks in the United States.
Several studies followed, which pointed to the effectiveness and
limitations of detecting influenza epidemics using search query
data [19], [20]. Although there are limitations, such as the lack of
Internet access in some regions of the world and the noise of
irrelevant information, Internet search query data is being
explored as a low-cost approach to estimating disease activity in
near real-time.

Besides influenza surveillance, search query data has also been
widely used for research in fields such as, economics and finance.
In the same year as the Ginsberg’s publication [18], several studies
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investigated the usefulness of Google searches for forecasting
unemployment in various countries [21-25]. Several papers also
used search query data to predict consumption [26], [27], house
pricing and sales [28], and travel and consumer confidence [27].
Though studies using web search query data have achieved good
results in empirical practice, the field is still young and rapidly
developing, with room for discussion and improvement.

We introduce a novel method for estimating influenza activity
using search query data from Baidu. Data on Internet searches are
available on a daily basis, while routine surveillance data from
China’s Ministry of Health (MOH) are typically reported with a
one to two-weeks lag. The objective is therefore to estimate present
influenza activity based on previously observed laboratory
surveillance data plus timely search query data before official
reports from China’s MOH. Beyond the use of search query data
in a new geographic region and the use of a different search
engine, this study is an improvement on other research in this area
in that, the keyword selection and composition approach
presented is more economical in terms of computational resources
and cost compared to the original method by Ginsberg et al [18].
Unlike the United States, in China alternative search engines such
as Baidu are more widely used than Google. The market share of
Google in China is less than 20%, while that for Baidu is more
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than 80% [29]. The wide use of Baidu in China makes it a more
representative search query source for this analysis.

Several methods have been proposed for detecting and
predicting trends of influenza epidemics in China [30-32].
However, most of these techniques solely use influenza-like-illness
(ILI) or influenza case data. In this study, we use a combination of
influenza case counts and real-time search query for modeling and
detection of current influenza activity. Improving methods for
surveillance, modeling, detection and prediction of influenza
epidemics in China is extremely important. Two of the three
pandemics of the 20™ century are thought to have started in China
[38], [39]. In addition, the severe acute respiratory syndrome
(SARS) of 2002 had its origins in the Guangdong Province of
China. Therefore, refining approaches for rapid detection of

outbreaks of influenza and other respiratory illnesses in China
should benefit global public health.

Approach

Given data on influenza activity from an official source, the
approach in this paper can be summarized as follows: (i) search for
keywords or terms which might be related to influenza; (ii) process
keywords by eliminating those unrelated to influenza epidemics,
those with an interrupted time-series representing search query
volume and those not correlated to the influenza epidemic curve;
(ii) define weights and composite search index, and (iv) fit
regression model using selected keyword index to influenza case
data. Whereby, the fitted model uses both the influenza case data
and the search index.

Methods

Data Sources

Official case counts. 'The counts shown in Table 1 reflect
monthly aggregated influenza case counts from March 2009 to
August 2012 for China. The data is publicly available on China’s
Ministry of Health (MOH) site (http://www.moh.gov.cn/) and
typically released 1-2 week after the end of each month. A
network of physicians report laboratory confirmed cases to the
MOH on a daily basis. However the data is only released to the
public at a monthly resolution. The data is solely laboratory
confirmed influenza cases and does not include ILI cases.
Furthermore, during the 2009 HINI pandemic, infections
resulting from the new influenza strain were reported separately
from cases resulting from circulating seasonal influenza strains in
China [40]. The data in this study is solely for seasonal influenza.
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Table 1. Influenza case data from China’s MOH.

Month ICD* Month ICD Month ICD Month ICD Month ICD
2009-03 8015 2009-12 29977 2010-09 5114 2011-06 3065 2012-03 21625
2009-04 6794 2010-01 10415 2010-10 4121 2011-07 2654 2012-04 10707
2009-05 7769 2010-02 6595 2010-11 5323 2011-08 3243 2012-05 8520
2009-06 7999 2010-03 8488 2010-12 6529 2011-09 4360 2012-06 6195
2009-07 7791 2010-04 6357 2011-01 6072 2011-10 5525 2012-07 6738
2009-08 14548 2010-05 3865 2011-02 5930 2011-11 7055 2012-08 6793
2009-09 43596 2010-06 2642 2011-03 7299 2011-12 11631

2009-10 25132 2010-07 2627 2011-04 5727 2012-01 10046

2009-11 43018 2010-08 3588 2011-05 4130 2012-02 17421

*|CD is the abbreviation for influenza case data.

doi:10.1371/journal.pone.0064323.t001

No ethics committee approval is required to obtain the data since
it is publicly available. In addition, only count data is presented, no
personal information is revealed, thereby maintaining confidenti-
ality.

Search query data from baidu. Baidu’s database (http://
index.baidu.com/) contains logs of online search query volume
submitted from June 2006. However, since the influenza case
count data is available from March 2009, we use Baidu’s data
from March 2009 to August 2012. Unlike the case data from the
Ministry of Health, Baidu’s search query data is available on a
daily basis. The data is therefore converted to monthly counts for
analysis. User confidentiality is also maintained, since only the
combined term frequency data is available. In addition, Baidu
releases search query volume for the entire country.

Keyword Selection and Filtering

Different keywords have different search frequency and can
therefore produce diverse modeling outcomes. So keywords are
carefully selected to reflect terms most likely associated with
influenza epidemics. Note, observations from previous studies such
as Ginsberg et al [18], have indicated that more keywords do not
necessarily assure better model fit. The marginal contribution of
adding terms to a “‘saturated” model is limited, but costly.
Ginsberg et al [18] only selected 45 significant keywords from 50
million. The method of exhaustion employed by Ginsberg et al
[18] is computationally expensive and not easily reproducible by
researchers with limited resources [27]. In some cases, researchers
have solely relied on keywords recommended by Google [23],
[24], [26]. Keywords recommended by search engines tend to be
comprehensive, but not always relevant to the subject. Therefore,
further analysis is required to extract keywords, which are most
pertinent to the study.

Keywords used in this study are obtained from the following
Chinese website: http://tool.chinaz.com/baidu/words.aspx (here-
after referred to as keyword tool). Keywords suggested by the
keyword tool include recommendations from Baidu, and others
mined using semantic correlation analysis from portal websites,
blogs, and online reports. “Flu” (“i/#%” in Chinese) is the core
keyword in this study. Upon entering “#t/E” into the keyword
tool, we obtain 94 related keywords (Table 2). Although
recommended by the keyword tool, some of the 94 keywords
are not related to influenza epidemics in China. We therefore filter
the keywords as follows: (i) the selected keywords should represent
factors that might influence the influenza epidemic. (i1) The search
query data for each keyword should be represented as a sequential
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Figure 1. Influenza case data and composite search index.
doi:10.1371/journal.pone.0064323.g001

time series with a daily, weekly or monthly resolution. (iii) Lastly,
the time series of selected keywords should have a maximum cross-
correlation coefficient of at least 0.4 with the influenza case data.

Keywords that remain after the filtering analysis are considered
for inclusion in the composite search index. The goal of search
index composition is to build the most correlative and stable
indicator for the influenza case data based on the available
information. The search index is composed in two steps. First, we
define synthetic weights for each of the keywords. Next, we
combine the weighted time series for the keywords.

Search Index Composition

We consider two approaches for defining synthetic weights: the
method of systematic assessment and the strength of the
correlation coefficient. The method of systematic assessment
[34], [33] mnvolves rating the selected indicator according to the
principle of prior evaluation and defining the ratings as weights.
The method is comprehensive but highly subjective. Alternatively,
the correlation coefficient between the influenza epidemic curve
and the keyword frequency curve can be used to represent the

Table 3. Keywords in composite index.

weight [18], [33]. This approach is usually combined with
Analytic Hierarchy Process (AHP) [36] for better performance.
However, solely using the correlation coefficient without adjust-
ments appears to be sufficient for this study.

The search index is defined as: indexj= Zji:l w,-x,-l, where w;

is the weight of the i keyword and xf represents the sequence
after alignment. Although the definition of the composite index
allows for alignment, it is not required for combining the time
series in this study since maximum correlations are observed at lag
0. The final set of keywords is selected using the following model:

(1)

y=0g+orindex;+¢

In (1), index; represents the search index for j keywords, y
denotes influenza case counts, op,%1,6 denote the intercept,
coefficient and error term respectively.

Using a stepwise approach generally used in the selection of
variables in a multiple regression framework, keywords are

Chinese i S il PR FIAEIR FR TR SRR TLBER

English (prevent influenza) (the influenza symptom) (type a influenza vaccine) (flu symptom)
Correlation 0.93 0.92 0.90 0.87

Chinese PPN YL 7 WLERIAT alld il

English (Flu epidemic) (influenza virus) (influenza pandemic) (type a influenza)
Correlation 0.85 0.63 0.57 0.40

doi:10.1371/journal.pone.0064323.t003
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Table 4. Statistical results for model [2].

Chinese Influenza Epidemic

Variable Coefficient Std. Error t-Statistic Prob. R-squared Durbin-Watson stat
index(t] 0.253 0.015 17.455 <0.001 0.950 1.887
index[t-1] —0.138 0.044 —3.159 0.0036
ICD[t-1] 0.555 0.157 3.534 0.0013
residual ADF MacKinnon threshold Prob* result
t-Stat 1% 5% 10%
—5.685 —3.654 —2.957 —2.617 <0.001 stationary

doi:10.1371/journal.pone.0064323.t004

selected based on their contribution to the model’s goodness of fit.
Partial F test is used to evaluate the goodness of fit after adding
data for each keyword to the index. A significant F-statistics
implies that the keyword should be added to the composite index,
and vice versa. The search index is defined based on the model
with the best goodness of fit statistics.

The initial model is based on the keyword with the highest
correlation with the influenza case data. In this case, “Wit/E ;>
(prevent influenza) has the highest correlation at 0.93 at lag 0.
Keywords are then added sequentially based on the correlation
coefficient and the partial I test is examined for improved fit. The
process is repeated until the goodness of fit can no longer be
improved.

Note: ADF is the abbreviation for augmented Dickey-Fuller Test. ICD represents influenza case data.

Model

As stated, the objective of this paper is to present a method for
faster detection of influenza activity in China using search query
data. China’s MOH typically releases monthly influenza case data
1-2 weeks into the next month. We therefore aim to provide
estimates of case data before the MOH data is publicly available.

The most significant correlations between the composite index
and the case data are observed at lag 0 (P =0.959) and lag 1
(P=0.658). Correlations at lags 2 and 3 are 0.491 and 0.227
respectively. We therefore fit the following model:

ICD[t] =By x ICD[t— 1]+ B, * index][{]
+ B, x index[t—1]+¢
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Figure 2. Plot of influenza cases, fitted values and prediction based on model [2].

doi:10.1371/journal.pone.0064323.g002
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Table 5. Predicted values and error.
Month Actual value Predicted value Absolute error Percent absolute error
01-2012 10046 10230 184 1.8%
02-2012 17421 14578 2843 16.3%
03-2012 21625 18429 3196 14.8%
04-2012 10707 11785 1078 10.1%
05-2012 8520 8618 98 1.2%
06-2012 6195 6621 426 6.9%
07-2012 6738 5240 1498 22.2%
08-2012 6793 5983 810 11.9%
doi:10.1371/journal.pone.0064323.t005

ICD represents influenza case data, f3,f;,0, are the coeffi- Discussion

cients, index is the composite search index and &is the error term.
The model estimates ICD at time t based on ICD at time t-1 and
the composite search index at time t and t-1. For example, case
counts for February 2012 are estimated at the end of February
based on the composite search index for February and January,
and the case count for January. We also examine the residuals to
evaluate the adequacy of the model.

The influenza case data is divided into a fitting and validation
set. Data from March 2009 to December 2011 is used for model
fitting, while data from January 2012 to August 2012 is used for
validation. We also consider models with second and third order
lags. Models are evaluated based on R-squared, AIC and
significance of the coefficients. Studies have suggested that solely
using an extrapolation of the influenza activity curve for
predictions usually results in a higher error rate [32], [33]. The
analysis is performed using the Eviews software.

Results

Based on the filtering analysis, 14 out of the 94 keywords are not
related to influenza epidemics, 20 keywords do not have sequential
time series due to low search volume and only 40 keywords are
significantly correlated to the case data (see Table 2). With the
stepwise approach, only 8 of the 40 keywords are used in the
composite search index (see Table 3). The estimated cross-
correlation coeflicient between the search index and influenza case
data is 0.96 at lag O (Figure 1). Influenza epidemics are observed in
the spring and winter as expected. Note that the search index
clearly captures the peaks and troughs of the influenza time series
curve, thereby making it a good indicator for influenza activity in
China.

The coefficients fyf; 5 for model (2) are 0.56 (P=0.001), 0.25
(P<0.001) and —0.14 (P = 0.004) respectively. Note the model’s R-
squared 1s 0.95 and the AIC is 18.50. In addition, the Durbin-
Watson test statistic is 1.89 suggesting that autocorrelation is not
an issue (see Table 4). The null hypothesis of the Durbin-Watson
test is that the autocorrelation parameter is zero.

The model is validated by predicting influenza cases one month
at a time, from January 2012 to August 2012. The results are listed
in Figure 2 and Table 5. The mean absolute percent error of
prediction for the consecutive eight months is 10.6% (see Table 5).
We also consider models with second order lags and third order
lags but neither of their statistical results are better than that of

model [2] (see Tables S1 and S2).

PLOS ONE | www.plosone.org

We develop a comprehensive method for pre-processing
Internet search data for modeling and detecting influenza
epidemics in China. The combined keyword index is significantly
correlated to the case data and mean absolute percent error of
predicting 2012 monthly influenza cases is less than 11% based on
one-step predictions for eight months. Although the monthly
search query data and influenza case data are almost synchronous,
the search query data can still be used in detecting influenza cases
because of the time delay of official reports.

This study contributes to the pool of novel sources of data, such
as web-based data, used as early indicators for disease outbreaks.
To our knowledge, this is the first study utilizing Baidu search
query data in conjunction with this approach for estimating
influenza activity in China. Baidu has a significantly higher market
share than Google in China, thereby making it a better search
query source for this study. The proposed approach is not meant
to replace actual estimates of influenza cases, rather it is an
indicator of influenza activity, which is freely available in near
real-time. This is especially relevant for a country such as China,
which has been coined the “epicenter of influenza” [39] by some.

However, there are several limitations to using search query
data. Although the selected keywords perform well at capturing
the temporal trend of the epidemic curve, there is no guarantee
that this would be consistent in future dates. Individual behavior is
constantly changing and different factors influence keywords
queried by individuals. Another limitation is the unavailability of
Internet access in rural regions. The China Internet Network
Information Center (CNNIC) currently estimates Internet pene-
tration in China at 39.9%. Surveillance using web-query data
depends on adequate Internet access. In addition, not all searches
on influenza-related terms are necessarily linked to influenza
morbidity. Search queries can be a result of panic during a novel
respiratory outbreak, coverage of influenza-related deaths in the
media, fear or curiosity. Using several years of data in modeling
should hopefully mitigate occurrences of panic induced searches
since the weight of various keywords is likely to deviate from one
influenza season to another. Furthermore, correlation does not
imply causation, which suggests that predictions made using such
novel data sources should be carefully evaluated.

Limitations also exist in the data used in this study. Influenza-
like-illness data might be a better indicator of influenza activity
since influenza cases are not always confirmed and case data might
underestimate the true burden of the disease. However, China’s
Ministry of Health only releases influenza case data for the entire
country. In addition, there are likely to be major differences in
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timing and duration of epidemics from province to province.
Analysis at the province level would therefore be more beneficial.
Unfortunately, both the case data and search query volume are
only available for the entire country. Though, the model can be
casily extended to detect influenza activity at a province level.

Although limitations exist, having more methods and resources
geared towards infectious disease surveillance provides a step
towards rapid detection and control of emerging and re-emerging
outbreaks. Public health scientists and epidemiologists could use
observations from such approaches as an indicator for further
investigations. These tools are freely available in near real-time
and can be especially valuable in regions where official reports of
case counts are delayed.
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