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Abstract

The difficulty in developing a diagnostic assay for Creutzfeldt - Jakob disease (CJD) and other transmissible spongiform
encephalopathies (TSEs) stems in part from the fact that the infectious agent is an aberrantly folded form of an endogenous
cellular protein. This precludes the use of the powerful gene based technologies currently applied to the direct detection of
other infectious agents. To circumvent this problem our research objective has been to identify a set of proteins exhibiting
characteristic differential abundance in response to TSE infection. The objective of the present study was to assess the
disease specificity of differentially abundant urine proteins able to identify scrapie infected mice. Two-dimensional
differential gel electrophoresis was used to analyze longitudinal collections of urine samples from both prion-infected mice
and a transgenic mouse model of Alzheimer’s disease. The introduction of fluorescent dyes, that allow multiple samples to
be co-resolved and visualized on one two dimensional gel, have increased the accuracy of this methodology for the
discovery of robust protein biomarkers for disease. The accuracy of a small panel of differentially abundant proteins to
correctly classify an independent naı̈ve sample set was determined. The results demonstrated that at the time of clinical
presentation the differential abundance of urine proteins were capable of identifying the prion infected mice with 87%
sensitivity and 93% specificity. The identity of the diagnostic differentially abundant proteins was investigated by mass
spectrometry.
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Introduction

Transmissible spongiform encephalopathy (TSE) diseases are

untreatable, uniformly fatal degenerative syndromes of the central

nervous system that can be transmitted both within as well as

between species. The infectious agent is generally recognised as a

misfolded isoform of the host encoded prion protein. Propagation

occurs through a not as yet understood posttranslational process,

resulting in the conversion of cellular prion protein, PrPc, into the

misfolded disease associated isoform, PrPd [1,2]. An accumulation

of PrPd in the central nervous system coincides with disease

progression and consequently definitive diagnostic tests rely upon

the detection of the disease associated isoform in brain tissue post-

mortem.

While high concentrations of PrPd accumulate in the CNS,

the detection of the low amounts of PrPd present in other

tissues makes ante mortem tests based on the presence of the

etiologic agent problematic. One solution to this challenge has

been the development of cell free techniques that exploit the

ability of PrPd to seed the conformational conversion of a PrPc

substrate [3,4]. Similar to the amplification of mRNA by PCR

this procedure results in the generation of greatly increased

amounts of PrPd facilitating subsequent detection by traditional

immunologic methods. One of the more recent iterations of

such an assay is real-time quaking-induced conversion (RT-

QuIC) [5,6]. In RT-QuIC recombinant PrP is used as the

substrate and the dye thioflavin T is added to the reaction

mixture. The binding of thioflavin T to aggregates of PrPd

causes a change in its emission spectrum that can be monitored

in real time.

Analysis of CSF samples from patients with suspected CJD

has demonstrated RT-QuIC to be both highly sensitive and

specific [7,8]. Thus, in a clinical context the addition of RT-

QuIC would improve the differential diagnosis of neurodegen-

erative diseases with similar presentation. Despite this success

the invasive nature of a CSF based test is not suitable for large

scale screening of an asymptomatic population. Thus RT-QuIC

is unable to address concerns regarding the prevalence of

subclinical infections that could compromise the safety of

surgical instruments or the blood supply. In these instances an
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ante-mortem TSE test based on a matrix or body fluid that

would permit easy access and be amenable to repeated sampling

is required. Despite the demonstration that plasma samples from

preclinical hamsters infected with scrapie can be identified using

an enhanced RT-QuIC protocol no non-invasive ante mortem

test has yet been validated [9].

An alternative approach to the development of ante-mortem

tests focussed on PrP detection has been to identify host

encoded proteins whose abundance, in an easily accessible

tissue or body fluid, is modulated in a characteristic fashion in

response to TSE infection. Altered protein profiles in CSF in

response to TSE infection have been observed, however, due to

the aforementioned reasons CSF is not a suitable sample for

large scale screening [10–15]. Previously, we demonstrated that

the differential abundance of a panel of proteins found in urine

was sufficient to identify BSE infected cattle at the clinical

stage of the disease with a high degree of accuracy irrespective

of the presence of confounding factors such as breed, gender or

age [16]. To extend these findings we have used scrapie

infected mice and a transgenic mouse model of Alzheimer’s

disease to identify prion disease specific proteins exhibiting

differential abundance in urine. The resulting biomarkers

demonstrated sensitivity and specificity similar to that of CSF

samples analyzed using RT-QuIC when applied to a naı̈ve

sample set.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance of the guidelines

of the Canadian Council on Animal Care. The protocols were

approved by the Animal Care Committee of the Canadian Science

Centre for Human and Animal Health (permit numbers: H-10-

006, H-11-004). All surgery was performed under inhaled

isoflurane anaesthesia, and all efforts were made to minimize

suffering.

Scrapie Mice
Female C57BL/6 mice were intracerebrally infected with a 1%

brain homogenate of scrapie strain ME-7 prepared as previously.

Control mice were inoculated with a prion free 1% brain

homogenate in PBS. The first clinical sign of prion disease in

this scrapie mouse model was the cessation of nesting which

started approximately 16 weeks post infection. Following the

cessation of nesting the mice progressed rapidly to terminal disease

[17].

Chilled urine was collected overnight by placing individual mice

in modified metabolic cages with free access to water but

withholding food to avoid contamination. The same biological

replicates (4 infected and 4 control animals) were used at 2 week

intervals over the course of the disease. This generated 8 samples

Figure 1. Principle Component analysis of the 14 scrapie infected (red) and 15 control samples (green) collected from 4 control and
4 infected mice at 4 time points: 11, 13, 15 and 17 weeks post infection (wpi). Samples not collected were one infected sample at both 11
and 15 wpi and one control sample at 13 wpi. A classifier based on 2 features was able to correctly classify the 29 samples of the training set with
100% accuracy. (PC1 = 87.4, PC2 = 12.6).
doi:10.1371/journal.pone.0064044.g001
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at each of the 9 time points (wk1–wk17). All urine was stored at

280C until processing. Thawed samples were concentrated and

dialyzed by rinsing in Amicon 5K MWCO filtration units with

361 ml PBS. Samples were concentrated to a volume of not more

than 250 ml then soluble protein was extracted and purified using

GE Healthcare’s 2D Clean up kit, and quantified with the Plus

One 2D quant kit [18].

Urine for glomerular filtration rate (GFR) determination was

collected as above. Mice were weighed when placed in metabolic

cages and following the 16 hr overnight urine collection. Urine

was stored at 280uC until use. Blood from the same mice was

collected the following morning by heart puncture under inhaled

isoflurane anaesthesia into 2 mL lithium heparin Vacuette tubes

(Grenier Bio-one #454237). The blood was separated by

centrifugation at 50006 g for 30 minutes with the plasma layer

moved to fresh 1.5 ml microfuge tubes for storage at 280uC until

use. The IDEXX Vettest instrument was used to measure

creatinine levels and total protein in both the blood and the urine

with the appropriate chip chemistries (Urine P:C Ratio or CREA

and TP. IDEXX Laboratories, Markham ON). Testing with each

chip was done as per manufacturers recommendations.

Alzheimer’s Mice
The transgenic Alzheimer’s disease model(B6SJL-Tg(APPSwFl-

Lon, PSEN1*M146L*L286V)6799Vas/J, JL #006554) originated

from a C57BL/6 * SJL background and has been reported to

display a steady increase of markers of neurological disease starting

at 10 weeks of age that become marked by 28 weeks of age.

Terminal stage disease for this transgenic model occurred at 40–44

weeks and matched endpoints reported previously for females of

this genotype [19]. The control mice were produced by crossing a

C57BL/6J female with a SJL/J male. The F1 control mice are

heterozygous for B6 and SJL alleles at all loci in their genome and

mice used in this study were female. The same biological replicates

(4 affected and 4 control animals) were used at 2 week intervals

over the course of the disease. This generated 18 time points of

which 9 monthly sets of 8 samples were used. All urine was

collected in chilled adaptors for metabolic cages and stored at

280uC until processing. Protein extraction and quantitation was

performed as described above [17].

2D DIGE
Two dimensional difference in gel technology (2D-DIGE) was

employed for the differential protein expression analyses. The

main attributes of DIGE are the capability to resolve multiple

samples on one gel, and the use of an internal standard for cross

gel normalization. The internal standard is critical for the removal

of gel to gel variation, accurate quantitation and reproducibility

[20]. The internal gel standard was created by pooling equivalent

amounts of protein from biotypes of scrapie and Alzheimer’s

Figure 2. Representative Cy-2 labelled internal standard gel image illustrating the proteins resolved in the pH 4 to pH 7 range. Each
green dot represents a feature identified by the DeCyder software. The absence of green dots in the PI 4.5/25 kDa range indicates the location of
saturated features that were excluded from the analysis. The Disease Discriminant Classifier was constructed from the 20 features circled in yellow.
The positions of the two features utilized to generate the PCA plot in Figure 1 and create a classifier able to discriminate between scrapie infected
and age matched control mice with 100% accuracy from 11 weeks post-infection onward are marked with a red dot.
doi:10.1371/journal.pone.0064044.g002
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disease as well as their corresponding controls at each time point.

This pooled sample was labelled with Cy2 minimal dye while

infected, diseased and control samples were randomly labelled

within each time point with either Cy3 or Cy5 minimal label to

avoid dye bias as per [18]. Samples were resolved on 24 cm

Immobiline drystrips pH 4–7 and 12–18% Tris-based pre-cast

gels (Jule Inc., Milford, CT)

Gel image acquisition
Gels were scanned by a Typhoon 9410 Variable Mode Imager

(GE HealthCare). Photomultiplier tube (PMT) voltage settings

were adjusted to maximize utilization of the dynamic range of the

imager. Despite the large dynamic range of the imager (105), the

presence of major urinary proteins (MUPs) in milligram per

millilitre quantities in mouse urine posed a problem [21]. PMT

Figure 3. Principle component analysis of the 11 Alzheimer’s disease model (red) and the 12 control samples (green) collected from
4 diseased and 4 control mice at 3 time points: 32, 36, and 40 weeks of age. A sample from one of the diseased mice was not obtained at 32
weeks of age. A classifier based on 84 features was able to correctly classify the 23 samples of the training set with 100% accuracy. (PC1 = 62.0,
PC2 = 11.9).
doi:10.1371/journal.pone.0064044.g003

Table 1. Alzheimer’s Disease Model Classifiers.

Weeks of Age # of Spot Maps # of Proteins Calculated Accuracy Misclassified Spot Maps

9–40 67 133 95.766.4 Alz6-13 Alz6-9 AlzCtl15-17

13–40 62 123 96.764.6 Alz6-13 Alz4-21

17–40 54 102 96.068.9 Alz6-24 Alz6-21

21–40 46 92 96.068.9 Alz6-24 Alz6-21

24–40 38 78 97.565.6 Alz6-24 Alz6-40

28–40 30 82 93.369.1 Alz6-28

32–40 23 84 100.060

Classifiers were generated using the features present on 80% of the gels and exhibiting a significant differential abundance (ANOVA, p#0.01) for the range of samples
indicated in the first column. The number of features present in the classifier, the calculated accuracy and the particular samples misclassified are given for each sample
set as the earlier time points are progressively removed. The particular mouse is indicated by the number immediately adjacent to the disease indicator and the number
separated by a hyphen indicates the age of mouse from which the sample was obtained.
doi:10.1371/journal.pone.0064044.t001
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settings that provided higher signal resolution at the low end,

where small changes in signal are more critical, also resulted in

signal saturation at the high end. It was decided to let the MUP

proteins, which clustered in the PI 4.5/25 kDa range, to saturate.

The saturated spots were then manually excluded in the

DeCyderTM Differential In-gel Analysis (DIA) module and not

copied into DeCyderTM Biologic Variation Analysis (BVA)

module during the import of DIA gel images. The exclusion of

the saturated spots allowed quantitative analysis of the remaining

proteins.

Scrapie samples were resolved on 34 gels. Each gel was

comprised of the internal standard and two biological samples.

From the 34 gels, 68 gel images each representing a biological

replicate were acquired for analysis. The acquired gel images were

analyzed using the BVA and DeCyderTM Extended Data Analysis

(EDA) software modules. This resulted in the detection, quanti-

fication, and matching of an average of 1330 of the 1938 features

detected on the master gel across the 34 scrapie gels, normalized

by the internal standard.

Alzheimer’s samples were resolved on 36 gels. Each gel was

comprised of the internal standard and two biological samples.

From the 36 gels run 67 gel images of suitable quality, each

representing a biological replicate were acquired for analysis.

Using the scrapie Master Gel as a template DeCyderTM DIA and

BVA analysis resulted in the detection, quantification, and

matching of an average of 1655 of the 1938 master features

across the 36 Alzheimer gels, all normalized by the same internal

standard.

Principle Component Analysis (PCA)
In DeCyderTM PCA is used as a descriptive and exploratory

tool. PCA is essentially an unsupervised method for reducing the

dimension of the variables in a multidimensional space by

describing all features selected by a single eigenvalue. After the

PCA analysis, one tries to interpret the first few principal

components in terms of the original variables, and thereby get a

greater understanding of the data. To reproduce the total system

variability of the original p variables, all principle components are

needed. However, the 1st component will represent the largest

source if the variability, the 2nd component, the next largest, and

so forth. Hence, if the first few PCs account for a large proportion

of the variability (80–90%), the objective of dimension reduction is

achieved. The PCA implementation in DeCyderTM uses the

NIPALS algorithm for calculation of the principal components

since it is not as memory demanding as other algorithms such as

Single Value Decomposition (SVD) [22].

PCA analyses were used to generate an overview of the

relationship between spots maps where each spot map represents

the spotmap features of a urine sample obtained from a particular

mouse at a particular time point. In most cases, the features

selected correspond to all spots matched among $80% of the gels

and exhibiting statistically significant (ANOVA p#0.01) changes

in abundance. Corresponding PCA analyses were performed to

examine whether any of the proteins were outliers. In this instance

each dot represents a protein. The further from the origin a dot is,

the larger the variance in calculated abundance between the spot

as matched between gels. The circle on the plot represents a 95%

Figure 4. Principle component analysis of the 169 feature classifier applied to the 7 scrapie infected (red) and the 8 corresponding
scrapie control samples (yellow with red boarder) obtained from 4 infected and 4 control mice at 15 and 17 weeks post infection
combined with the 11 Alzheimer’s diseased (blue) and the 12 corresponding Alzheimer’s disease control samples (yellow with blue
boarder) obtained from 4 diseased and 4 control mice at 32, 36 and 40 weeks of age. (PC1 = 27.9, PC2 = 24.5).
doi:10.1371/journal.pone.0064044.g004
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confidence interval and any dot falling outside this circle is

considered an outlier. As an outlier could be either a mismatched

spot, or a protein that varied dramatically in expression between

different samples, dots that fell outside this interval were checked

in BVA to make sure that they were properly matched and had the

characteristics of a true protein. If they were correctly matched,

these outliers can potentially help in the identification of

biomarkers.

Spot Picking
Features of interest were manually excised using a Gilson P1000

Pipetman from silver stained preparative gels and stored in 1%

acetic acid. The ART pipet tips were cut with a razor blade to

increase the pore size. Silver stained gel cubes were destained with

a 1:1 solution of 30 mM Potassium Ferric cyanide/100 mM

Sodium Thiosulfate in water and washed with water and 200 mM

Ammonium Bicarbonate for 1 hour prior to reduction (10 mM

dithiothreitol, Sigma) 30 minutes at room temperature and

alkylation (100 mM iodoacetamide, Sigma) 30 minutes at room

temperature. Modified sequencing grade porcine trypsin solution

30 mL (20 ng/mL, Promega, Madison,WI) was added to the gel

slice enzyme/protein ratio 1:50 and then digested for 16 h at

37uC. The peptides were extracted out of the gel slices with

400 mL (50/40/10 v/v acetonitrile/water/formic acid). The

sample was then dried by speed vac and stored at 280uC until

analysis.

LC-MS/MS analysis
Peptide mixtures were separated by on-line reversed phase

chromatography using a Thermo Scientific EASY-nLC II system

with a reversed-phase pre-column Magic C-18AQ (100 mm I.D.,

2 cm length, 5 mm, 100 Å,, Michrom BioResources Inc, Auburn,

CA) pre-column and a reversed phase nano-analytical column

Magic C-18AQ (75 mm I.D., 15 cm length, 5 mm, 100 Å,

Michrom BioResources Inc, Auburn, CA) both prepared in-house

at the University of Victoria Genome BC Proteomics Centre, at a

flow rate of 300 nl/min. The chromatography system was coupled

to an LTQ Orbitrap Velos mass spectrometer equipped with a

Nanospray II source (Thermo Fisher Scientific). Solvents were A:

2% Acetonitrile, 0.1% Formic acid; B: 90% Acetonitrile,

0.1%Formic acid. After a 249 bar (,5 mL) pre-column equilibra-

tion and 249 bar(,8 mL) nanocolumn equilibration, samples were

separated by a 55 minute gradient (0 min: 5%B; 45 min: 45%B;

2 min: 80%B; 8 min: 80%B).

The LTQ Orbitrap Velos (Thermo Fisher Scientific, Bremen,

Germany) parameters were as follows: Nano-electrospray ion

source with spray voltage 2.2 kV, capillary temperature 225uC.

Survey MS1 scan m/z range 400–2000 profile mode, resolution

60,000 @400m/z with AGC target 1E6, and one microscan with

maximum inject time 200 ms. Lock mass Siloxane 445.120024 for

internal calibration with preview mode for FTMS master scans:

on, injection waveforms: on, monoisotopic precursor selection: on;

rejection of charge state:1. The fifteen most intense ions charge

state 2–4 exceeding 5000 counts were selected for CID ion trap

MSMS fragmentation (ITMS scans 2–16) and detection in

centroid mode. Dynamic exclusion settings were: repeat count:

2; repeat duration: 15 seconds; exclusion list size: 500; exclusion

duration: 60 seconds with a 10 ppm mass window. The CID

activation isolation window was: 2 Da; AGC target: 1E4;

maximum inject time: 25 ms; activation time: 10 ms; activation

Q: 0.250; and normalized collision energy 35%.

Data Analysis Parameters
Peak lists were generated from LTQ Orbitrap Velos raw files

using the Thermo Finnigan LCQ/DECA Raw file import filter

option implemented in Mascot Daemon v2.3 (Matrix Science

London). For the Mascot (2.4.1) search of the Mouse IPI_v3.85

database using trypsin digestion, parent ion mass tolerance was set

to 20 ppm and fragment ion tolerance was set to 0.5 Da. One miss

cleavage was allowed. Carbamidomethylation was set as a fixed

modification while methionine oxidation and acetyl-n-terminus

were set as variable modifications. Resulting .dat files were loaded

into Scaffold 3.6.5 (Proteome Software, Portland, OR) with

independent analysis settings. Peptides were accepted if they

exhibited a greater than 80% probability under Peptide Prophet.

Proteins were considered identified if they exhibited greater than

99% probability under protein prophet and additionally included

2 or more peptides. With these settings, the protein false discovery

rate was ,0.1%. Proteins containing similar peptides were

grouped according to parsimony.

Results

Gel image analysis of urine proteome of scrapie infected
mice

Multivariate analyses of protein expression data derived from

the BVA were performed using the DeCyderTM Extended Data

Analysis Software (EDA). EDA is designed to identify the smallest

subset of features able to accurately discriminate between

experimental groups. The 4 scrapie infected and 4 control mice

provided 8 biological samples at each of the 9 time points

Figure 5. Flow chart depicting the development of the Disease
Discriminant Classifier based upon 20 identified proteins from
the 169 proteins that were present in 80% of the 38 gel images
representing the clinical stage Alzheimer and scrapie sample
sets exhibiting significant differential abundance (ANOVA
p#.01).
doi:10.1371/journal.pone.0064044.g005
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throughout the course of the disease. In total the 4 control and 4

infected mice generated 34 control and 34 infected usable gel

images respectively. Power analysis for 2D-DIGE has demon-

strated statistical power of .0.8 for detecting 2-fold changes at

p#0.01 with 4 biological replicates [23,24].

Spots on a 2D gel may or may not represent individual proteins.

To make this distinction gel spots are referred to as features until

an associated protein is identified. The data were initially filtered

so that only the 135 features present in $80% of the gels and

exhibiting statistically significant (ANOVA p#0.01) changes in

abundance were considered. Regularized discriminant analysis

(RDA) and principle component analysis (PCA) were used to

generate an overview of the ability of the 135 features to

discriminate between the two experimental groups. Each data

point in the PCA analysis represents the set of all 135 features

based on variance. Hence, two data points in close proximity to

one another indicates that the selected 135 features are very

similar in the two samples. A subset of features, able to

discriminate accurately between control and infected samples

over the entire course of the disease, was not found. Nonetheless,

the analysis suggested that a classifier might emerge as the disease

evolved. To test this hypothesis infected and age matched samples

from earlier time points in the disease course were progressively

removed from the analyses.

After the removal of each time point, an overview of the new set

of features present in $80% of the remaining gel images and

exhibiting statistically significant (ANOVA p#0.01) changes in

abundance was generated by RDA and PCA. Following the

removal of the fifth time point 79 features were present in $80%

of the 29 remaining gel images and exhibited statistically

significant changes in abundance (ANOVA p#0.01). PCA based

on these 79 features segregated the two groups into different

quadrants of the PCA chart and the RDA calculated accuracy of a

classifier containing the 79 features was 100%. To identify the

smallest subset of the 79 features best able to discriminate between

control and infected samples, the 79 features were searched by the

forward selection (FS) and RDA algorithms. An RDA generated

disease specific classifier, based on two identified features, was able

to correctly classify the 15 control and 14 infected samples with

100% accuracy. The two features were also used to calculate a

PCA of the 14 biological replicates of infected and 15 biological

replicates of control samples illustrated in Figure 1. The positions

of the two features used in these calculations are illustrated in

Figure 2.

Gel image analysis of urine proteome of a transgenic
Alzheimer’s mouse model

Multivariate analyses of protein expression data derived from

the Alzheimer’s disease BVA were performed using the DeCy-

derTM EDA Software. The biological samples were grouped

according to disease state resulting in two groups each represent-

ing either 34 samples produced by the diseased mice or 33 samples

produced by age matched controls.

The data was filtered so that only the 133 features present in

$80% of the gels and exhibiting statistically significant (ANOVA

p#0.01) changes in abundance were considered. Discriminant

Figure 6. Principle component analysis of 7 scrapie infected samples (red) at 15 and 17 weeks of age, 11 Alzheimer’s disease
samples (green) at 32, 36 and 40 weeks of age, and the 20 corresponding control samples (blue) when analyzed by the 20 protein
Disease Discriminant Classifier. Samples were produced by 4 scrapie infected mice, 4 Alzheimer diseased mice and the 8
corresponding control mice. Thirty seven of the 38 samples were correctly classified. The 32 week old control sample, misclassified as having
Alzheimer’s disease, is identified by an arrow.
doi:10.1371/journal.pone.0064044.g006
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analysis and PCA, were used to generate an overview of the

capacity of the 133 features to discriminate between the two

experimental groups. This analysis demonstrated that a classifier

based on the 133 features was able to discriminate between control

and infected samples over the entire disease course with a high

degree of accuracy (95.7%66.4). Classifier subsets, generated by

discriminant analysis based on the FS and RDA, containing fewer

than 133 features had decreased accuracy. It is important to note

that in this and subsequent analyses, the subset of features

considered as part of the classifier was dependent upon the

training sets selected.

To determine whether a classifier with 100% accuracy would

emerge as the disease evolved samples from earlier time points in

the disease course were progressively removed from the analysis.

After the removal of each time point an overview of the new set of

features present in $80% of the remaining gel images and

exhibiting statistically significant (ANOVA p#0.01) changes in

abundance was generated by RDA and PCA. Following the

removal of six time points, 84 features were present in $80% of

the 23 remaining gel images and exhibited statistically significant

changes in abundance. PCA based on these 84 features segregated

the 11 diseased and 12 control samples into different quadrants of

the PCA chart (Figure 3) and RDA calculated the accuracy of the

disease specific classifier containing the 84 features to be 100%.

Classifier subsets containing fewer than 84 features had decreased

accuracy.

Interestingly, 85% of the misclassified samples at earlier time

points were generated by one particular diseased mouse and the

misclassified samples produced by this mouse occurred at all time

points excepting 32 and 36 weeks of age (Table 1).

Identification of Disease Specific Markers
The scrapie model and Alzheimer’s disease model BVA results

were imported together into EDA. Because the same internal

standard Master gel was employed in both BVA analyses the

results from the two experiments could be compared directly to

one another. The biological samples were grouped according to

disease state resulting in three groups. One comprised of the 34

scrapie infected samples; one comprised of the 34 Alzheimer’s

disease samples; and a third group comprised of both the 34

scrapie control and the 33 Alzheimer’s disease control samples.

The data was filtered so that only features present in $80% of

the gels and exhibiting statistically significant (ANOVA p#0.01)

changes in abundance were considered. This screen resulted in the

identification of 284 features. Discriminant analysis and PCA of

the 284 features were used to generate an overview of the capacity

of the 284 features to discriminate between the three experimental

groups. The PCA plot showed that no one group was able to

separate itself from the other two and the accuracy calculated by

discriminant analysis was 33% (not shown). This indicated that an

analysis of the differential abundance of the features did not

improve the classification of the samples above what would be

expected from a random assignment of the samples to one of the

three groups.

The analysis was then restricted to those samples acquired

around the time that the animals started to exhibit clinical signs of

the disease. This cohort consisted of the 15 and 17 weeks post

Table 3. Classification results applying the 20 protein Disease
Discriminant Classifier to 20 naı̈ve samples acquired from
earlier in the disease course.

Blind # Alz Me-7 Normal

1 !

2 !

3 * X

4 * X

5 !

6 !

7 * X

8 * X

9 * X

10 !

11 X *

12 * X

13 !

14 * X

15 X *

16 X *

17 * X

18 !

19 !

20 * X

! indicates correctly classified samples.
X indicates incorrectly classified samples.
* indicates the correct classification for the misclassified samples.
doi:10.1371/journal.pone.0064044.t003

Table 4. Classification results applying the 20 protein Disease
Discriminant Classifier to 20 naı̈ve samples obtained when the
disease stage of the test set mirrored that of the training set.

Blind # Alz Me-7 Normal

1 !

2 * X

3 !

4 !

5 !

6 !

7 !

8 !

9 !

10 !

11 * X

12 X *

13 X *

14 !

15 !

16 !

17 !

18 !

19 !

20 !

! indicates correctly classified samples.
X indicates incorrectly classified samples.
* indicates the correct classification for the misclassified samples.
doi:10.1371/journal.pone.0064044.t004
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infection (wpi) scrapie samples and the 32, 36 and 40 weeks of age

Alzheimer’s disease samples and their corresponding controls. The

data of the new set was filtered so that only the 169 gel features

present in $80% of the gel images and exhibiting statistically

significant (ANOVA p#0.01) changes in abundance were taken

into account. The RDA calculated the accuracy of the disease

discriminant classifier, based on the 169 features was 100%. PCA

based on the same 169 features revealed that not only was a clear

separation of the 7 scrapie and 11 Alzheimer’s samples observed,

but a clear separation between the 8 scrapie and 12 Alzheimer’s

disease control samples was also observed (Figure 4).

The disease discriminant classifier generated, comprised of

169 features, appeared to be influenced to a certain extent by

confounding factors. To limit the confounding strain bias and

the presence of general markers of neurological disease, pairwise

comparisons were performed. To identify features reflecting

strain differences, only the gel images of the 8 scrapie control

and 12 Alzheimer control samples were analyzed. 47 features,

exhibiting statistically significant (ANOVA p#0.01) changes in

abundance between the two different mouse strains, were

considered strain sensitive features. These 47 strain sensitive

features were removed from the 169 features of the disease

discriminant classifier reducing the number of features in the

disease discriminant classifier to 122.

To identify general markers of neurological disease, two pair

wise comparisons were performed. In one, the gel images of the

7 scrapie infected samples and the 8 scrapie control samples

were analyzed. This identified 70 disease specific features

present on $80% of the gels and exhibiting statistically

significant (ANOVA, p#0.01) changes in abundance. Similarly,

a pair wise comparison of the gel images of the 11 Alzheimer’s

disease samples and the 12 Alzheimer’s disease control samples

identified 75 disease specific features present on $80% of the

gels and exhibiting statistically significant (ANOVA, p#0.01)

changes in abundance. The 15 features common to both disease

specific lists were considered general markers of neurological

disease. When the 122 features remaining in the disease

discriminant classifier were scrutinized, 5 of the features

considered to be general markers of disease were found and

removed. The RDA calculated accuracy of the 117 features

remaining in the disease discriminant classifier was 100%.

An additional pairwise comparison of the 7 scrapie infected

samples and the 11 Alzheimer’ disease samples was made. The

features present on $80% of the gel images and exhibiting

differential abundance (ANOVA, p#0.01) were identified. Select-

ing features common to this list and the disease discriminant

classifier resulted in the selection of 55 of the remaining 117

features of the disease discriminant classifier. These proteins were

arguably those best able to discriminate between the control and

diseased groups. The RDA calculated accuracy of the 55 features

remaining in the disease discriminant classifier to discriminate

between the Alzheimer diseased, scrapie infected and the

combined control group was 100%.

The gel images of the 55 features remaining in the disease

discriminate classifier were manually inspected and only the 20

features deemed sufficiently intense to permit isolation and

identification of the associated protein/peptide were selected

(Figures 2+5). The RDA calculated accuracy of the 20 feature

disease discriminant classifier was 98%63.7 in classifying the

samples of the training set. The 11 Alzheimer’s disease and 7

scrapie samples were correctly identified as well as 19 of the 20

control samples. The misclassified sample was an Alzheimer’s

disease sample at 32 weeks of age. PCA provides a visual overview

of this analysis (Figure 6).

Eleven of the 20 features of the disease discriminant classifier

excised from a preparative gel were subsequently analysed by an

LTQ Orbitrap Velos mass spectrometer (Table 2). The column

number heading in Table 2 relates to the similarly numbered

feature observed in Figure 2. The greater resolution of the mass

spectrometry analysis demonstrated that, despite visually having

physical characteristics expected of singular proteins (Figure S1),

most features represented a mixture of proteins. A limitation of the

mass spectrometry analysis was an inability to determine how

much each of the proteins associated with a particular feature

contributed to the differential abundance observed. The sensitivity

of the mass spectrometry analysis makes contamination an

addition potential source of the features apparent complexity.

For example, the presence of junction plakoglobin in 10 out of 11

features seems unlikely.

Nonetheless, an ongoing question is whether or not proteins

identified in urine are indicative of the pathogenesis occurring in

the CNS or other organs. For example, in addition to its

involvement in neurodegeneration transthyretin as well as napsin

A have been associated with renal dysfunction [25–31]. To

determine if the presence of transthyretin and napsin A in the

urine were indicative of renal dysfunction in scrapie infected mice

the glomerular filtration rate of scrapie infected mice was

measured (Table S1). This demonstrated that at 120 days post

infection a significant (p = 0.012) reduction in the glomerular

filtration rate of infected mice relative to age matched controls was

observed (Table S2).

Classifier Validation and Characterisation
In order to get a true measure of the accuracy of the 20 features

of the disease discriminate classifier, its ability to correctly classify a

blind panel consisting of 40 naı̈ve urine samples, was determined.

The 40 naı̈ve samples consisted of 20 samples collected during the

current study, but not used in the generation of the classifier, as

well as an additional 20 samples that were generated by different

mice during a separate study.

The 40 naı̈ve test samples were divided into 2 groups. Group A

consisted of 20 samples produced by animals at time points earlier

in the disease course than the samples used to generate the

classifier. The panel was composed of urine samples representing 8

disease free, 9 Me-7 infected, and 3 Alzheimer diseased mice. The

identification of Me-7 infected samples by the 20 feature disease

discriminate classifier was 11% sensitive and 91% specific.

Specifically, 1 false positive and 8 false negatives (Table 3).

The 20 samples of Group B were produced by animals at points

in time where the diseased animals were beginning to exhibits

signs of the clinical disease. This put these samples at the same

stage of disease progression as the samples used to generate the

classifier. The panel was composed of urine samples representing 6

disease free, 7 Me-7 infected and 7 Alzheimer diseased mice. In

this instance the identification of Me-7 mice by the 20 protein

disease discriminant classifier was 87% sensitive and 93% specific.

Specifically, with respect to the identification of the Me-7 infected

samples there were 1 false positive and 1 false negative (Table 4).

Significantly, the identification of the Alzheimer diseased mice by

the 20 protein disease discriminate classifier was also 87% sensitive

and 93% specific.

Discussion

Previously, the differential abundance of a panel of bovine urine

proteins was found sufficient to identify BSE infected cattle at the

clinical stage of the disease irrespective of the presence of

confounding factors such as breed, gender or age [16]. In order
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to further validate the utilization of urine as the basis of a novel test

for TSE disease the present study was conducted. The object was

to determine whether a panel of urine based biomarkers, specific

for TSE disease as opposed to generic indicators of infection or

disease, could be identified.

In order to make this determination urine samples derived from

other neurologically diseased, TSE negative animals were

required. To meet this requirement we took advantage of the

availability of a transgenic murine model of Alzheimer’s disease. A

prerequisite for the use of murine models of neurodegenerative

disease for this project was a demonstration that TSE disease

induced changes in the urine proteome occurred in mice as well as

cattle. A scrapie specific classifier based on the differential

abundance of two proteins, able to discriminate between control

and scrapie infected mice when applied to the samples of the

training set ($11 wpi), was 100% (Figure 1). It was expected that

the true accuracy of the classifier when applied to an independent

data set would be lower. Nonetheless, these experiments demon-

strated that, in a mouse model of scrapie, differential protein

abundance in urine was modulated by TSE infection.

In the transgenic Alzheimer’s disease model the diseased

animals and their prescribed controls were not isogenic. This

suggested that the consistently high degree of accuracy of the

classifiers identified prior to the appearance of disease symptoms

might have been indicative of the genetic drift that can occur in

inbred mouse colonies in the absence of selective pressure. Sub-

strains can be generated in as few as 10 generations (Table 1,

http://jaxmice.jax.org/genetichealth/drift.html). However, once

the mice had reached 32 weeks of age, where presumably disease

specific changes dominated the differential abundance observed in

the urine protein profile, an Alzheimer’s disease specific classifier

with a calculated accuracy of 100% was identified (Figure 3).

When the clinical stage samples and age matched controls of the

two neurodegenerative disease models were combined, a disease

discriminant classifier was defined that was able to correctly

identify all 38 samples. However, the presence of strain influenced

features within this classifier was made abundantly apparent by the

clear separation of the two different control sample cohorts into

different quadrants of a PCA plot (Figure 4). The inability of EDA

to distinguish the difference between strain and disease specific

classifiers precluded its use to define a disease discriminant

classifier between the three groups. Instead the DeCyder software

was used to make pairwise comparisons between the four groups.

The results of these discriminant analyses were then used to both

exclude and select from the initial 169 features of the disease

discriminant classifier features a subset of 55 features that

remained able to discriminate between the two diseases and the

combined controls with a calculated accuracy of 100% (Figures 5

and 6).

Due to the necessity of excising spots in order to identify the

associated proteins a reduced disease discriminant classifier based

on the 20 easily visualized features on a stained gel were chosen.

The excision and mass spectrometry analysis of 11 of the 20

features of the disease discriminant classifier lead to the

identification of 22 proteins (Table 2). In addition to their role

as putative biomarkers, the 22 proteins can be associated with a

variety of physiologic functions. Two are abundant urine proteins,

albumin responsible for maintaining osmotic pressure and MUP 1

that slows the release aromatic compounds used for identification

and the marking of territory [32–34]. Many of the remainder are

either associated with the formation of desmosomes [35–39] or

can be linked to neurodegenerative disease processes [25,40–49].

Further study is needed to confirm whether the differential

abundance of these proteins in the urine is indicative of diseases

processes occurring in the primary site of TSE biology, the brain,

or other organs. For example, possible renal dysfunction was

suggested by the presence of napsin A and transthyretin [50,51] in

the urine. The observed significant (p#0.012) decrease in the

glomerular filtration rate indicated that in this mouse model renal

dysfunction coincides with the onset of clinical disease. Whether

this effect is due to the infection or an indirect consequence of the

disease is not known. However, it does indicate that in addition to

being disease biomarkers further investigation of the proteins

associated with the features may provide insight into pathways and

mechanisms related to the observed pathology.

The calculated accuracy of the reduced (20 feature) classifier

when applied to the training set was 98.363.7% (Figure 6).

Independent data sets, of 20 preclinical and 20 clinical samples,

not involved in the determination of the classifier parameters, were

used to measure the true accuracy. The sensitivity of the reduced

classifier when applied to preclinical samples was only 11%

(Table 3). The classification of the 8 false negatives as normal

supported the suggestion that disease specific changes to the urine

proteome only emerge in the late stages of the disease.

The second set of naı̈ve samples, derived from mice of both

disease models at the clinical stage of the disease, mirrored the

disease stage of the training set. The sensitivity and specificity of the

reduced classifier on this set of samples was 87% and 93%

respectively (Table 4). Importantly, the classifier not only correctly

identified the 12 diseased samples, but placed them into the correct

disease category (scrapie or Alzheimer) 100% of the time. This result

compares favourably with the current ‘‘state of the art’’ RT-QuIC

assay that is in the process of being validated for the diagnoses of

human CJD cases where the sample used is cerebral spinal fluid

(CSF) [6,7]. Thus, in the context of a clinical evaluation the

differential abundance of urine proteins may be useful in

distinguishing TSE from other neurodegenerative diseases.

Supporting Information

Figure S1 Diagrammatic representation of raw spot
feature data. A) This is a limited view of the same gel image as

Figure 5. The brightness settings have been adjusted to increase

the visibility of individual spots that appear saturated in Figure 5.

The spots that are truly saturated and excluded from the analysis

have grey spot boundaries. B) This is a 3 dimensional

representation of the image in A. Note that the saturated spots,

again identified by the grey boundary all reach a maximum value

where their peaks become flat topped. Three proteins that are part

of the disease discriminate classifier and indicated by arrows. Their

maximum intensity is much below the level of saturation. C) Is a

magnified view of the 3 dimensional representation of the data

shown in B to make the individual peaks more visible. The view of

peak 776 is partly obscured by the two larger peaks in the

foreground of the image. D) The histograms represent the relative

average abundance of the spots in the 7 samples produced by 4

scrapie infected animals at 15 and 17 wpi, the 11 samples obtained

from 4 Alzheimer’s disease model animals at 32,36 and 40 weeks

of age and the 20 age matched control samples produced by the 8

corresponding control mice. The error bars indicate the standard

deviation. The average abundance of the protein(s) represented by

spot 895) in the urine of the three groups were all significantly

different from one another. In contrast, the abundance of the

protein(s) represented by spots 776 and 786 were similar in the

control and scrapie infected animals both of which had

significantly higher levels than that observed in the Alzheimer’s

disease model mice.

(TIF)
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Table S1 Glomerular filtration rate calculations.

(XLSX)

Table S2 Statistical analysis of glomerular filtration rate.

(XLSX)
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