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Abstract

Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation.
In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length
based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable
parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling
function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix,
MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number
of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of
the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects:
solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.
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Introduction

Favored by increasing information, people can enjoy an

abundant life. However, people are also brought into a quandary

decision of getting what they actually prefer. For example, how to

select a satisfactory dress from various dress brands, or get an

interesting book to read from the book sea. As a powerful tool,

recommendation engine emerges to help people out of the

overloaded information [1]. With the need of personalized

recommendation, developing efficient recommendation methods

has become one of the central scientific programs.

A great many algorithms have been proposed, and have led to a

considerable progress, such as the collaborative filtering (CF)

algorithms [2,3] which can be further divided into memory-based

[4–6] and model-based methods [7–10], content-based algorithms

[11–14], and the relevant extensive studies [15–21]. Recently,

favored by the fruitful achievements of complexity theory,

complex-network-based recommendation algorithms have been

proposed [21,22], which directs a promising way for the

personalized recommendation [23–35]. Meanwhile, concepts from

traditional physical domain have been introduced into the

algorithm design, e.g., the introduction of the thought of mass

diffusion [24,28] and heat conduction [23,28], which greatly

promotes recommendation accuracy and diversity, respectively.

Among these numerous physical-concept-based recommenda-

tion algorithms, a representative work is a hybrid algorithm of heat

conduction and mass diffusion (HHP) [28]. Generally, improving

the recommendation accuracy usually inhibits the recommenda-

tion diversity. However, the need of personalized recommendation

resorts to a powerful engine that is not only accurate but also

personalized. Whereas improving the recommendation accuracy,

the HHP method simultaneously elevates the recommendation

diversity, which therefore greatly contributes to solving the long-

standing dilemma between the recommendation accuracy and

diversity for the network-based recommender systems. Inspired by

this work, extensive methods have been proposed in various

disciplines, such as the integrated weighted tags [36] and the

target-drug prediction [37]. A promising direction of improvement

is to consider the heterogeneity of users or objects [38], which

might lead to a more personalized recommendation matching

individual tastes.

However, for a number of different algorithms, the algorithm

performance is usually controlled by some ‘tunable parameter’.

What challenges these algorithms in common is how to find out

the optimal value of the tunable parameter. By far, most

algorithms take a one-evaluator-based parameter selection,

namely, choosing the optimal value of the tunable parameter

according to the recommendation performance of one evaluator

[28,35,39,40]. For instance, one can take the value of the tunable

parameter as its optimal value, with which parameter the system

leads to its best recommendation accuracy. Nevertheless, without

bias, different recommendation focuses might prefer different

evaluator performance. Consequently, a challenging question

emerges: which evaluator is the best one to be used as the

reference of searching for the optimal value of the tunable

parameter? Even though the recommendation accuracy is widely

accepted to be the most important evaluator in personalized

recommendation, the cold start problem or the recommendation

diversity and novelty also raises a central interest [28,41,42]. The

cold start problem refers to how to recommend the new object or

recommend the interesting object to new users due to the lack of

activity records. The diversity and novelty also significantly mark

the vitality of a system. Explicitly, one can hardly find out the same

optimal value of the tunable parameter according to different
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recommendation focal purposes. Moreover, even when evaluating

the recommendation accuracy, different indicators might reach

different optimal values of the tunable parameter. For example,

the ranking score [24] and the precision [43] are both indicators

which are used to evaluate the recommendation accuracy.

However, the optimal value of the tunable parameter obtained

from the ranking score and the precision are usually not consistent

for the same method.

Motivated by the explicit dilemma to choose a proper reference

of the algorithm optimization, in the present paper, for the first

time, we introduce a scaling-based algorithm (SCL) independent

of the recommendation list length, based on the hybrid method of

heat conduction and mass diffusion (HHP). By testing our

algorithm on three real datasets, Netflix, MovieLens and RYM, we

here report two results:

(1) A single curve independent of the recommendation list length

is obtained by rescaling the tunable parameter and the object

average degree, and we describe it by a scaling function. The

optimal value of the tunable parameter can be abstracted

from the scaling function, which is heterogeneous for the

individual object.

(2) The present algorithm shows a high accuracy in recommen-

dation. More importantly, it greatly improves the personalized

recommendation in three other challenging aspects: solving

the accuracy-diversity dilemma, presenting a high novelty,

and solving the cold start problem.

The remainder of this paper is organized as follows. In the next

section, we detail the bipartite network and the investigated

recommendation algorithms. Some popular indicators to evaluate

the recommendation algorithm performance are introduced in the

section of metrics, and followed by the description of the datasets

in the data section. Then, we compare the results of the present

algorithm with a highly accurate mass diffusion algorithm, the

original both highly accurate and diverse hybrid method, and even

an improved version of the hybrid method which well resolves the

cold start problem in the section of results and discussion. Finally

comes to the conclusion.

Materials and Methods

A recommendation system can be described by a bipartite

network composed of a user set and an object set. The user set

includes m users U~fu1,u2,:::ui,:::,umg, and the object set

includes n objects O~fo1,o2,:::,oa,:::,ong. If an object oa is

collected by a user ui, then add a link between them. The adjacent

matrix which links the users and the objects is A~faiag. If the

object oa is collected by the user ui, then aia~1, otherwise, aia~0.

In the following algorithms, a so-called ‘‘resource’’ is introduced

to objects. At first, objects are assigned an initial resource f, with

f i~ff i
1,:::,f i

a ,:::,f i
ng for a particular user i. If an object is collected

by the user i, its initial resource is assigned to be 1, otherwise, to be

0. That is to say, for the user i, the initial resource f i
a of the object a

equates the value of the adjacent matrix element aia, i.e., f i
a~aia.

After a resource reallocation process via a transformation matrix

W, objects obtain a final resource f’ formulated by f’~Wf. For

each user, rank his/her uncollected objects in the decreasing order

of the final resource, and then recommend the top L objects to the

user. The formula of the transformation matrix W, i.e., how to

redistribute the resources, therefore plays a key role in the

recommendation process.

PBS and HTS Methods
The mass-diffusion based algorithm, referring to the probability

spreading (PBS) process based algorithm, is reported as a highly

accurate method [24]. An example is illustrated in figure 1 (a) to

show the process of the resource reallocation. Initially, the four

objects are assigned a resource. At first, each object distributes the

Figure 1. An illustration of the resource reallocation process. (a)
for the PBS method, and (b) for the HTS method.
doi:10.1371/journal.pone.0063531.g001

Figure 2. The tunable parameter l on the object average
degree �kk. The black, red, green, blue and dark yellow lines are for the
recommendation list lengths of L~10, 20, 30, 40 and 50, respectively.
doi:10.1371/journal.pone.0063531.g002
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resource to its neighboring users with an equal probability. For

example, for the particular user indicated by the solid circle with

two neighboring objects, i.e., the first and the fourth object. The

first object transits
1

2
resource to the user, and the fourth object

also transits
1

2
resource to the user. Therefore, the user can get the

total resource of 1 from his/her neighboring objects. Then the user

again redistributes the total resource of 1 to his/her neighboring

objects with the equal probability, i.e., the first and the fourth

objects both get
1

2
resource from the user. By summing up all the

resources from their neighboring users, the objects then obtain

their final level of resources. The resource transformation matrix

of the PBS is formulated as,

W PBS
ab ~

1

kb

X
j[U

aajabj

kj

, ð1Þ

where kb is the degree of object ob, and kj is the degree of user uj

(Degree is denoted as the number of links owned by the user or the

object). We assume an object to be popular if the object has a high

degree, otherwise, the object to be cold. In the last step of the PBS,

due to objects receiving resources from all their neighboring users,

it greatly upgrades the resources of objects with high degrees.

Henceforth, the PBS assigns more priority to the popular objects,

leading to a good recommendation accuracy, yet a relatively low

diversity.

By incorporating heat-conduction analogous process, the heat

conduction (HTS) method is proposed, with an illustration of how

resources are reallocated shown in figure 1 (b). Firstly, the user gets

the average resource from all his/her neighboring objects. For

example, for the particular user indicated by the solid circle, he/

she receives 1 resource from the first object and 1 resource from

the fourth object. Taking an average over the two objects, the user

therefore gets the total resource of 1. Then the object again gets

the average resource from all its neighboring users. The

transformation matrix then reads,

W HTS
ab ~

1

ka

X
j[U

aajabj

kj

, ð2Þ

where ka is the degree of object oa. In the last step of the HTS, due

to the resources of objects divided by their degree, the rank of

objects with high degrees is greatly depreciated. Therefore, the

HTS assigns more priority to the cold objects, leading to a good

performance in recommendation diversity, but at the cost of the

recommendation accuracy.

Hybrid Method and an Improved Version
To achieve a high accuracy and diversity of recommendation, a

hybrid method (HHP) is proposed [28], by elegantly combining

the heat conduction and the mass-diffusion method as,

W HHP
ab ~

1

k1{l
a kl

b

X
j[U

aajabj

kj

, ð3Þ

where l[½0,1�. When tuning the parameter l to a suitable value,

the HHP method shows an apparent advantage in both the

recommendation accuracy and the diversity.

Based on the HHP method, an improved object-oriented hybrid

method (OHHP) is proposed [38], focusing on resolving the cold-

start problem. In the OHHP, an object-degree-dependent tunable

parameter is introduced, with its resource transformation matrix to

be,

W OHHP
ab ~

1

k
1{lOHHP
a k

lOHHP
b

X
j[U

aajabj

kj

, ð4Þ

where lOHHP~(
kb

kmax

)f, kmax is the maximal degree of all the

object degrees, and f is a tunable parameter. The OHHP actually

optimizes the probability spreading factor in the transformation

matrix of equation (3) according to the individual object degree

level, therefore it greatly enhances the recommendation accuracy

of cold objects, whereas keeping a high recommendation accuracy

of the overall objects.

Scaling-based Method
The common question in most algorithms is how to find out the

optimal value of the tunable parameter. For example, the optimal

value obtained by utilizing the ranking score as the reference is

usually different from that obtained by utilizing the diversity as the

reference. Moreover, diversity performance varies with the

recommendation list length. We show the tunable parameter l

on the object average degree �kk for different recommendation list

length L in the HHP algorithm in figure 2, where l[½0,1�. For

three real datasets, the Netflix, MovieLens, and RYM (Details of the

datasets will be introduced in the Data section), l on �kk exhibits

different behavior for different recommendation list length. It

indicates that, for different recommendation list length, one can

obtain different value of the tunable parameter for the same object

Figure 3. The rescaled tunable parameter l vs. the rescaled

object average degree k’. The black, red, green, blue and dark yellow
lines are for the recommendation list lengths of L~10, 20, 30, 40 and
50, respectively.
doi:10.1371/journal.pone.0063531.g003
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average degree. If the scaling behavior independent of the

recommendation list length can be found, the tunable parameter

on the object average degree for different recommendation list

length can be then described in a universal way.

In order to obtain an L-independent scaling function, we

analytically investigate the recommendation result for the HHP

algorithm. On average, the probability that a user ui collects an

object ob is directly proportional to ob’s degree, kb, that is to say,

aib!
kb

n
, where n is the number of objects. Hypothesize that the

probability of aib is independent of other links. For the particular

user i, the resource fia of the object a can be calculated according

to the transformation matrix, which reads,

fia~
X

b

W HHP
ab aib

~
X

b

aib

k1{l
a kl

b

X
j[U

aajabj

kj

*
X

b

kb

k1{l
a kl

b

X
j[U

kakb

kj

*kl
a

X
b

k2{l
b

*kl
a

ð
p(k)k2{ldk,

ð5Þ

where p(k) is the probability distribution function of the object

degrees. As suggested in Ref. [38], p(k) obeys a power-law

distribution from the empirical study, i.e., p(k)*k{n. Then, one

Table 1. The performance of the PBS, HHP, OHHP and SCL methods.

r rk#10 P Pk#10 R Rk#10 NL DInter DInner

NET PBS 0.051 0.484 0.054 0.0000 0.420 0.0003 2336.0 0.637 0.423

HHP 0.045 0.417 0.062 0.0006 0.470 0.0176 1843.7 0.720 0.672

OHHP 0.044 0.350 0.058 0.0009 0.437 0.0255 2048.3 0.691 0.575

SCL 0.046 0.357 0.060 0.0012 0.426 0.0340 1497.5 0.792 0.768

MOV PBS 0.105 0.562 0.074 0.0000 0.477 0.0000 233.5 0.645 0.616

HHP 0.083 0.408 0.085 0.0011 0.527 0.0441 157.2 0.717 0.839

OHHP 0.083 0.364 0.084 0.0015 0.528 0.0527 170.6 0.707 0.818

SCL 0.087 0.326 0.080 0.0028 0.469 0.0928 128.2 0.762 0.881

RYM PBS 0.069 0.480 0.042 0.0002 0.497 0.0080 465.7 0.829 0.874

HHP 0.048 0.250 0.050 0.0024 0.557 0.0924 329.7 0.850 0.940

OHHP 0.050 0.189 0.047 0.0048 0.542 0.1578 374.8 0.849 0.919

SCL 0.050 0.168 0.048 0.0055 0.539 0.1835 317.9 0.862 0.941

The overall ranking score r, the object-degree dependent ranking score rkƒ10 , the overall precision P, the object-degree dependent precision Pkƒ10 , the overall recall R,
the object-degree dependent recall Rkƒ10 , the novelty NL, the inter-diversity Dinter and the inner-diversity Dinner of the PBS, HHP, OHHP and SCL methods are shown
for the Netflix(NET), the MovieLens(MOV) and the RYM, with L~50.
doi:10.1371/journal.pone.0063531.t001

Table 2. The improvement percentage of the SCL against the PBS, HHP and OHHP methods.

r rk#10 P Pk#10 R Rk#10 NL DInter DInner

NET dPBS 9.8% 26.2% 11.1% 1.4% 11233.3% 35.9% 24.3% 81.6%

dHHP 22.2% 14.4% 23.2% 100.0% 29.4% 93.2% 18.8% 10.0% 14.3%

dOHHP 24.5% 22.0% 3.4% 33.3% 22.5% 33.3% 26.9% 14.6% 33.6%

MOV dPBS 17.1% 42.0% 8.1% 21.7% 45.1% 18.1% 43.0%

dHHP 24.8% 20.1% 25.9% 154.5% 211.0% 110.4% 18.4% 6.3% 5.0%

dOHHP 24.8% 10.4% 24.8% 86.7% 211.2% 76.1% 24.9% 7.8% 7.7%

RYM dPBS 27.5% 65.0% 14.3% 2650.0% 8.5% 2193.8% 31.7% 4.0% 7.7%

dHHP 24.2% 32.8% 24.0% 129.2% 23.2% 98.6% 3.6% 1.4% 0.1%

dOHHP 0.0% 11.1% 2.1% 14.6% 20.6% 16.3% 15.2% 1.5% 2.4%

The improvement percentage of the SCL against the PBS, HHP and OHHP in the overall ranking score r, the object-degree dependent ranking score rkƒ10 , the overall
precision P, the object-degree dependent precision Pkƒ10 , the overall recall R, the object-degree dependent recall Rkƒ10 , the novelty NL, the inter-diversity Dinter and
the inner-diversity Dinner are shown for the Netflix(NET), the MovieLens(MOV) and the RYM, with L~50. To guide the eyes, if the indicator of the SCL outperforms other
methods, we show the improvement percentage as a positive value, otherwise, as a negative value. The blank in the form indicates an infinite value owing to the zero
value of the PBS’s precision and recall.
doi:10.1371/journal.pone.0063531.t002

Information Filtering via a Scaling-Based Function

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e63531



can calculate fia as,

fia*kl
a

ð
k2{l{ndk

*kl
a(k3{l{nDkmax

kmin
)

*(
ka

kmax{kmin

)l,

ð6Þ

where kmax and kmin are respectively the maximum and the

minimum of the object degrees.

Inspired by the above theoretical analysis, we propose the

Scaling-based (SCL) algorithm, making use of the formula in

equation (6) to collapse the data into a single curve characterized

by the scaling form,

l~D�kk{ch((�kk{�kkmin)D�kkd), ð7Þ

where h(x) is a universal function, D�kk~�kkmax{�kkmin, with �kkmax and
�kkmin to be the maximum and minimum of the object average

degree �kk for the overall range of l[½0,1�. We rescale the axes l and
�kk according to the transformation l’~lD�kkc and

k’~(�kk{�kkmin)D�kkd, and obtain c~0 and d~{1 to make all the

curves roughly collapsed to a single curve. Therefore, l’~l and

k’~
�kk{�kkmin

�kkmax{�kkmin

. As shown in figure 3, the major part of the curves

is well collapsed. However, due to the fluctuations of empirical

data, a small part of the curves is only approximately collapsed.

The procedure to obtain the optimal value of the tunable

parameter in the SCL is as follows:

Figure 4. The object-degree dependent ranking score rk vs. the
object degree. The black, red, green and blue lines are for the HHP,
PBS, OHHP and SCL methods, respectively.
doi:10.1371/journal.pone.0063531.g004

Figure 5. The degree distribution p(k) of the objects in the top
L~50 recommendation list. The black, red, green and blue lines are
for the HHP, PBS, OHHP and SCL methods, respectively.
doi:10.1371/journal.pone.0063531.g005

Figure 6. The tunable parameter l on the object degree

k
0

b~
kb{kmin

kmax{kmin
. The black and red lines are for the SCL and OHHP

methods, respectively.
doi:10.1371/journal.pone.0063531.g006
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1. Make the polynomial fit g(x)~
Pn

i~1 bix
i for the single curve,

so that one can obtain a set of fitting coefficients bi, where n is

the number of polynomial fitting order. Here we take n~10 to

obtain the coefficient set fb1,:::,bi,:::,bng.
2. Having the coefficients fb1,:::,bi,:::,bng, compute the optimal

value of the tunable parameter lbfor a particular object ob

according to the formula lb~g(k’b)~
Pn

i~1 bi(k’b)i, where

k’b~
kb{kmin

kmax{kmin

, with kb being the degree of the examined

object ob, Dk~kmax{kmin, and kmax(kmin) being the maximal

(minimal) degree of all the objects.

3. Having the optimal value of the tunable parameter lb for a

particular object ob, calculate its resource transformation

matrix as

W SCL
ab ~

1

k
1{lb
a k

lb
b

X
j[U

aajabj

kj

, ð8Þ

Henceforth, the optimal value of the tunable parameter in the

SCL is no longer accessed according to any specific evaluator, but

abstracted from the scaling function acquired from the single

curve.

Metrics
Recommendation accuracy is with no doubt one of the most

important indicators to evaluate the performance of an algorithm.

As an adjunct to accuracy, recommendation diversity and novelty

are addressed to be important evaluators to quantify the

personalized recommendation. In our study, we take the ranking

score, precision and recall to quantify the recommendation

accuracy, the object average degree to quantify the novelty, the

inter-diversity and inner-diversity to quantify the recommendation

Figure 7. The novelty NL on the recommendation list length L.
The black, red, green and blue lines are for the HHP, PBS, OHHP and SCL
methods, respectively.
doi:10.1371/journal.pone.0063531.g007

Figure 8. The inter-diversity Dinter on the recommendation list
length L. The black, red, green and blue lines are for the HHP, PBS,
OHHP and SCL methods, respectively.
doi:10.1371/journal.pone.0063531.g008

Figure 9. The inner-diversity Dinner on the recommendation list
length L. The black, red, green and blue lines are for the HHP, PBS,
OHHP and SCL methods, respectively.
doi:10.1371/journal.pone.0063531.g009
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diversity. Moreover, to specifically investigate the recommenda-

tion accuracy of cold objects, we further study an object-

dependent ranking score, an object-dependent precision, and an

object-dependent recall.

1. Ranking score (r) [24]. The ranking score rai for the

object oa to the user ui is defined as,

rai~
pa

n{ki

: ð9Þ

where n is the number of all objects, ki is the degree of the user ui,

and pa is the position of the recommended object oa located in all

the uncollected objects of the user ui. Generally speaking, users

collect the objects which they prefer. Namely, for a user ui, if the

deleted link with an object oa is in a higher rank of ui’s all deleted

links, the algorithm is more accurate. The average ranking score r

is then defined as the average of rai over all the deleted links. The

smaller the r, the more accurate the algorithm.

To focus on the recommendation accuracy of cold objects, we

define an object-degree dependent ranking score rk as the average

ranking score over objects with the same value of degrees [39].

2. Precision (P) [43]. The recommendation precision P is

defined as

P~
1

m

Pm
i~1 qiL

L
, ð10Þ

where qiL is the number of the user ui’s deleted links contained in

the top L recommended object list. The larger the P, the higher

accuracy the algorithm.

Similarly, to better understand the recommendation accuracy of

the cold objects, we define an object-degree dependent precision

by,

Pk~
1

m

Pm
i~1 qiL

L
, ð11Þ

where qk
iL is the number of the user ui’s deleted links for objects

with degree k in the top L recommended object list.

3. Recall (R) [43]. The recall R is defined as

R~
1

m

Xm

i~1

qiL

li
, ð12Þ

where qiL is the number of user ui’s deleted links contained in the

top L recommended object list, li is the number of user ui’s deleted

links in the test set.

The object-degree dependent recall is analogously defined as,

Rk~
1

m

Xm

i~1

qk
iL

lk
i

, ð13Þ

where qk
iL is the number of user ui’s deleted links for objects with

degree k in the top L recommended object list, and lk
i is the

number of user ui’s deleted links for objects with degree k in the

test set.

4. Novelty (NL). The average degree of objects in the

recommendation list is widely used to identify the novelty of a

recommender system, which is defined by,

NL~
1

mL

Xm

i~1

X
oi
a[Oi

R

k
oi

a
, ð14Þ

where Oi
R is the object set of user ui’s recommendation list. If NL

is small, it indicates that, on average, the degree of the

recommended objects is small, i.e., more cold objects are

recommended, which is therefore more novel to users; otherwise,

if the recommended objects are on average with high degree, i.e.,

the popular objects, it is less novel to users.
5. Inter diversity (DInter). DInter quantifies the difference

between different users recommendation list by

D�i�n�t�e�r~
2

m m-1ð Þ
Xm

i~1

Xm

j~iz1

1{
i

T
j

L

� �
, ð15Þ

where i

T
j

� �
is the number of common recommended objects

for user ui and uj in the top L recommendation list. Generally, the

greater the DInter, the more personalized the recommendation for

different users, and vice versa.
6. Inner diversity (DInner). DInner calculates the difference

within a specific user recommendation list by

DInner~
1

mL(L{1)

Xm

i~1

X
a=b

(1{Sab), ð16Þ

where Sab~
1ffiffiffiffiffiffiffiffi

kakb
p Pm

i~1 aaiabi is the cosine similarity between

objects oa and ob in a single user’s top L recommended object list.

Generally, the greater the DInner, the higher diversification of the

recommendation list for a specific user, and vice versa.

Data
We test the algorithm performance on three datasets, the Netfilx,

MovieLens and RYM. The Netflix and MovieLens are movie rating

systems with a five-level rating and the RYM is a music rating

system with a ten-level rating. The Netflix dataset is obtained by

randomly selecting from the huge dataset of the Netflix Prize, and

the MovieLens is downloaded from the web site of GroupLens

Research (http://grouplens.org), and the RYM dataset is down-

loaded from the music rating web site RateYourMusic.com. Due

to the different level of ratings, we perform a coarse-graining

mapping to a unary form for all the three datasets. If the rating is

no less than three for the Netflix and MovieLens, and six for the

RYM, we argue that the object is collected by a user. The Netflix

contains 9999 users, 5870 objects and 815917 links, and the

MovieLens contains 943 users, 1682 objects and 100000 links, and

the RYM contains 10159 users, 5250 objects and 559634 links.

The sparsity of the datasets, defined as the number of links

proportional to the total number of the user-object links, is 1:39%,

6:30% and 1:05% for the Netflix, the MovieLens and the RYM,

respectively.

We divide a dataset into two subsets of the training set and the

test set. We randomly delete 10% links as the test set, and remain

the rest 90% links as the training set. We utilize the training set to

make predictions for users, and the test set to test the algorithm

performance.

Results and Discussion

To provide a solid investigation of the performance of the SCL

algorithm, we compare the performance of the SCL with three

Information Filtering via a Scaling-Based Function
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typical and excellent algorithms, the PBS, the HHP, and the

OHHP. The PBS is highly accurate, and the HHP well resolves

the great challenge of accuracy-diversity dilemma, and the OHHP

further outperforms the HHP in resolving the cold start problem.

A summary of the performance of the PBS, the HHP, the OHHP

and the SCL is presented in table 1, with the results being the

average over six runs.

To detect how much the SCL outperforms the other three

algorithms, we define an improvement percentage dALG by,

dALG~(QSCL{QALG)=QALG, ð17Þ

where the subhead ALG refers to the investigated algorithm, and

the QALG is the value of the indicator, i.e., the value of r, rkƒ10, P,

Pkƒ10, R, Rkƒ10, NL, DInter and DInner. The improvement

percentage dALG of the SCL against the PBS, the HHP and the

OHHP is summarized in table 2.

From table 1 and table 2, for all the three datasets, the SCL

shows a great advantage in recommendation accuracy of the low-

degree objects, as well as novelty and diversity, while simulta-

neously keeping a high recommendation accuracy.

For the recommendation accuracy, we focus on the overall

recommendation accuracy and the recommendation accuracy of

the cold objects. Compared with the highly accurate PBS method,

the SCL outperforms the PBS for almost all the metrics. Taking

the Netflix as an example, the SCL outperforms the PBS as much

as 26:2% and 11233:3% for the recommendation accuracy of the

low-degree objects rkƒ10 and Rkƒ10; 9:8%Rkƒ10 11:1% and 1:4%
for the overall recommendation accuracy r, P and R; 35:9% for

the novelty NL; 24:3% and 81:6% for the inter-diversity Dinter and

the inner-diversity Dinner. Due to the zero value of the Pkƒ10 of the

PBS, the improvement of the SCL against the PBS leads to an

infinite value for the Pkƒ10. Similar outstanding performance of

the SCL against the PBS is also observed for the MovieLens and the

RYM. It indicates the SCL is highly accurate.

The HHP is excellent in both the accuracy and the diversity at

the optimal value of the tunable parameter. Compared with the

HHP at the optimal value of the tunable parameter evaluated by

the ranking score, the SCL presents a very little lower overall

recommendation accuracy, but a much greater advantage in the

recommendation accuracy of the cold objects. Moreover, the SCL

outperforms the HHP in the novelty NL, as well as both the inter-

diversity Dinter and the inner-diversity Dinner for all the three

datasets. Taking the Netflix as an example, the HHP is 2:2% more

advantageous than the SCL in the overall ranking score. However,

the ranking score for the cold objects rkƒ10 of the SCL is 14:4%
more advantageous than the HHP, and the improvement of the

SCL against the HHP is as high as 100:0% and 93:2% for the

precision Pkƒ10 and recall Rkƒ10 for the cold objects. It also

suggests that the SCL is outstanding in the cold start problem,

while keeping a high recommendation accuracy. To be significant,

the improvement of the SCL against the HHP in the novelty NL,

the inter-diversity Dinter and the inner-diversity Dinner reaches

18:8%, 10:0% and 14:3%, respectively.

The OHHP method has been reported to be more advanta-

geous in the cold start problem than the HHP. Compared with the

OHHP at the optimal value of the tunable parameter defined by

the ranking score, the SCL method further improves the

recommendation accuracy of the cold objects. Also, the SCL

outperforms the OHHP in the novelty, the inter-diversity and the

inner-diversity for all the three datasets.

The cold start problem is a long-standing challenge in

traditional recommendation system, since it is difficult for users

to be aware of the cold objects due to the lack of sufficient

accessorial information [42]. Basically, the cold start problem can

be divided into two categories [44]: i) cold user start [45] and ii.) cold

object start [46]. The former focuses on recommending objects for

new users, while the latter tends to design algorithms to push new

objects, which is exactly what we are trying to solve in this paper.

Most of researches in this area try to generate recommendation by

using additional information, such as trust relationship [47], social

network structure [48], tags [21,30,31,41,49,50], etc [51].

However, it increases the system complexity. In addition, for

most systems, the cold objects occupy a big proportion. In the

Netflix, Movielens and RYM, the cold objects whose degrees are no

more than 10 are as much as 49:59%, 41:26%, and 21:73%.

Developing effective information filtering techniques is essentially

required to solve the cold start problem. Without any additional

information, the SCL greatly improves the recommendation

accuracy of the cold objects.

To further understand the cold start efficiency of the four

algorithms, we investigate the object-degree-dependent ranking

score rk vs. the object degree k. As shown in figure 4, it is observed

that, the rk of the low-degree objects of the SCL is much smaller

than that of the PBS and the HHP for all the three datasets, and

even a little smaller than that of the OHHP for the MovieLens and

the RYM, while keeping a close value for the popular objects with

high degrees. It suggests that the SCL significantly elevates the

recommendation accuracy for cold objects.

We then study the degree distribution p(k) of the objects in the

top L~50 recommendation list in figure 5. It is observed that the

p(k) of the cold objects of the SCL is much greater than the PBS,

the HHP and the OHHP, which indicates that the SCL indeed

contributes greatly to the recommendation efficiency of the cold

objects.

Besides the cold start problem, diversity and novelty are also

significant to mark the vitality of personalized recommendation.

Recommendation accuracy and diversity has been addressed to a

dilemma pair, as well as accuracy-novelty. Typical examples are

the PBS and HTS algorithms, where the PBS is more accurate but

less diverse and novel, whereas the HTS is more diverse and novel

but less accurate.

Intuitively, the improvement of recommendation accuracy of

the cold objects would meanwhile upgrade the recommendation

novelty and diversity. However, by comparing the OHHP with the

original HHP, we find that the novelty, the inter-diversity and the

inner-diversity of the HHP outperform those of the OHHP for all

the three datasets, though the OHHP greatly improves the

recommendation accuracy of the cold objects. To better under-

stand the observed phenomena, we show the optimal value of the

tunable parameter on the object average degree of the OHHP and

the SCL in figure 6, where the curve of the SCL is obtained from

the empirical study. It is observed that the curve obtained from the

SCL is more heterogeneous than that obtained from the OHHP,

which can partially explain why the OHHP method unilaterally

improves the recommendation accuracy of the cold objects, but

not simultaneously enhances the recommendation novelty and

diversity. Compared with the OHHP, the SCL not only further

improves the recommendation accuracy of the cold objects, but

also elevates the recommendation novelty and diversity.

To manifest how the novelty evolves with the recommendation

list length, we then study the novelty NL on the recommendation

list length L. As shown in figure 7, for all the three datasets, the

NL of the SCL is much smaller than that of the PBS, the HHP

and the OHHP for all the investigated range of the recommen-

dation list length. Also, the novelty of the SCL keeps quite stable

with the recommendation list length for all the three datasets. It

supports that the novelty of the SCL is quite advantageous.
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Further investigation of the inter-diversity Dinter on the

recommendation list length L suggests that, for all the four

methods, the inter-diversity decreases with the recommendation

list length L, as shown in figure 8. It is reasonable since the

difference between different users’ recommendation list would

decrease with the augment of the recommendation list length L.

Compared with the PBS, the HHP and the OHHP, the SCL

exhibits a much higher value. Moreover, the inter-diversity of the

SCL shows a slower decay for the overall range of the

recommendation list length L for the Netflix and the MovieLens.

For the RYM, the inter-diversity Dinter of the SCL is also higher

than that of the PBS and the OHHP, and similar to the HHP with

the recommendation list length evolving. It also indicates that the

recommendation diversity of the SCL is advantageous.

Similar advantage of the SCL is also found for the inner-

diversity Dinner, as shown in figure 9. It is observed that the Dinner

increases with L for all the four algorithms for the Netflix, the

MovieLens, and the RYM, and the Dinner of the SCL is higher than

the other three methods.

Taken together, while not searching for the optimal value of the

tunable parameter according to any particular evaluator, but

abstracting it from the scaling function, the SCL remarkably

outperforms the PBS, the HHP, and the OHHP in the

recommendation accuracy of cold objects, as well as the

recommendation novelty and diversity, and simultaneously keeps

a high overall recommendation accuracy.

Conclusion
In conclusion, we have proposed a scaling-based (SCL)

recommendation algorithm, in which the optimal value of the

tunable parameter can be abstracted from the scaling function

independent of the recommendation list length via a rescaled

procedure. Based on three real datasets, Netflix, MovieLens and

RYM, the optimal value of the tunable parameter is observed to be

heterogeneous for the individual object in the SCL algorithm.

Experimental results show that, the SCL algorithm not only shows

a high accuracy, but also significantly promotes the performance

in three other important aspects of personalized recommendation:

improving the novelty, solving the long-standing cold start

problem, as well as the accuracy-diversity dilemma.

The dilemma existing most in common in a number of

algorithms is how to find out the proper value of the tunable

parameter for different recommendation focuses, e.g., the accu-

racy, the diversity, or the cold start problem. It is with no doubt

that recommendation accuracy is one of the most important

evaluators of the algorithm performance. However, even using the

recommendation accuracy as the reference to search for the

optimal value of the tunable parameter, the optimal value might

also be different for using different accuracy evaluators. By finding

out a scaling function independent of the recommendation list

length based on empirical data, we resolve the explicit dilemma of

the optimal value selection of the tunable parameter for the

complex contradiction among different recommendation focuses.
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