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Stokes’ Second Problem for Magnetohydrodynamics
Flow in a Burgers’ Fluid: The Cases y=1%/4 and y>1%/4
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Abstract

The present work is concerned with exact solutions of Stokes second problem for magnetohydrodynamics (MHD) flow of a
Burgers' fluid. The fluid over a flat plate is assumed to be electrically conducting in the presence of a uniform magnetic field
applied in outward transverse direction to the flow. The equations governing the flow are modeled and then solved using
the Laplace transform technique. The expressions of velocity field and tangential stress are developed when the relaxation
time satisfies the condition y¥=2A%/4 or y>%/4. The obtained closed form solutions are presented in the form of simple or
multiple integrals in terms of Bessel functions and terms with only Bessel functions. The numerical integration is performed
and the graphical results are displayed for the involved flow parameters. It is found that the velocity decreases whereas the
shear stress increases when the Hartmann number is increased. The solutions corresponding to the Stokes’ first problem for
hydrodynamic Burgers’ fluids are obtained as limiting cases of the present solutions. Similar solutions for Stokes’ second
problem of hydrodynamic Burgers’ fluids and those for Newtonian and Oldroyd-B fluids can also be obtained as limiting

cases of these solutions.
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Introduction

Magnetohydrodynamics is the study of flow of electrically
conducting fluids in electric and magnetic fields. This phenom-
enon is essentially one of the mutual interaction between the fluid
velocity and electromagnetic field i.e. the motion of the fluid affects
the magnetic field and the magnetic field affects the fluid motion.
Basically, magnetohydrodynamics is a research area that involves
the study of motion of electrically conducting fluids such as plasma
and salt water. MHD flows are found to have influential
applications in many natural and man made flows. They are
frequently used in industry to heat, pump, stir and levitate liquid
metals. Another application for MHD is the magnetohydrody-
namic generator in which electrically conducting fluid is used to
generate electric power. The flows of an electrically conducting
fluid in the presence of a magnetic field have important
applications in various areas of technology such as, accelerators
centrifugal separation of solid from fluid, purification of crude oils,
astrophysical flows, petroleum industry, polymer technology, solar
power technology, nuclear engineering applications and other
industrial areas [1,2].

The literature on the study of MHD viscous fluid is abundant
(see for example [3-10] and the references therein). However, such
studies for non-Newtonian fluids are limited. To the best of
author’s knowledge, MHD flow of non-Newtonian fluids was first
studied by Sarpkaya [11]. Subsequently, several other investiga-
tions considering the MHD flow of non-Newtonian fluids were
carried out and currently this field has become an active area of
research. Ersoy [12] examined the MHD flow between eccentric
rotating disks for an Oldroyd-B fluid. Hayat and Hutter [13]
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obtained exact solutions for flows of an electrically conducting
Oldroyd-B fluid over an infinite oscillatory plate in the presence of
a transverse magnetic field. Khan et al [14] developed exact
solutions of Stokes second problem for MHD Oldroyd-B fluid. Liu
etal [15] and Zheng et al [16] and [17] analyzed the MHD flow of
generalized Oldroyd-B fluid for different fluid motions using
frictional derivatives. On the other hand, studies on MHD flow of
Burgers’ fluid are very limited. Therefore, any MHD analysis of
this model will be genuine contribution towards the enhancement
of the theory of non-Newtonian fluid mechanics. Hayat et al. [18]
studied the MHD flow of Burger’s fluid whereas with heat transfer
analysis was investigated by Siddiqui et al. [19,20]. Very recently,
Khan et al [21] studied MHD flow of Burger’s fluid and obtained
exact solutions of Stokes’ first problem by using the Laplace and
Fourier sine transforms. The MHD flows of these fluid models and
some other well known non-Newtonian fluids models such as
second grade fluid [22-27], third grade fluid [28], Maxwell fluid
[29,30], generalized Burgers’ fluid [31,32], Micropolar fluid
[33,34], Walters-B liquid fluid [35], Jeffery fluid [36] and
Nanofluid [37] are used to describe stress relaxation, shear
thinning or shear thickening, normal stress effects, earth’s mantle,
asphalt and asphalt mixes, food products and soil, dilute polymeric
solutions, hydrocarbons, paints and several other industrial and
geomechanical fluids.

Khan et al [38] extended the work of Fetecau et al [39] to the
MHD flow of an Oldroyd-B fluid induced by the impulsive motion
of a plate between two side walls perpendicular to the plate. The
analytical solutions are carried out by using the Fourier sine and
Laplace transforms. Vieru et al [40] determined exact solutions
corresponding to the flow of a Burgers’ fluid over a suddenly
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moved flat plate when the relaxation times satisfy the condition
y=22/4 or y>)?/4. They used the Laplace transform technique
to find the expressions for velocity and shear stress fields which
were reduced to the similar solutions for Newtonian and Oldroyd-
B fluids as limiting cases. Recently, Khan et al [41] extended the
work of Vieru et al [40] to the flow of a Burgers’ fluid over an
oscillatory moved flat plate. They used a similar method of
solution and obtained the exact solutions.

From the literature survey, it is found that there are very few
problems of Newtonian fluids for which the exact solutions are
available. However, these solutions become even more rare if the
constitutive equations of non-Newtonian fluids are considered.
The importance of exact solutions is not only that they can explain
the physics of some fundamental flows but also that such solutions
can be used as checks against complicated numerical codes that
have been developed for much more complex flows. Moreover,
one of the most common mistakes that has been overlooked for the
last coupled of decades has been identified by Christov [42].
Christov pointed out that in the case of Stokes first and second
problems, the plate’s velocity is given by v(y,f) =¥(#)H(¢), where
H(") denotes the Heaviside step function, and %(¢) is some smooth
function. This inclusion of Heaviside step function was ignored
previously. There are several comments and errata published in
the literature for the modification of such erroneous results. It is
important to mention here that such type of mistakes reported by
Christov [42] are avoided in the present communication.

The main purpose of the present investigation is to extend the
work of Vieru et al. [40] and Khan et al. [41] for the MHD flow of
an electrically conducting Burgers’ fluid past an oscillating plate
when the magnetic field is acting perpendicular to the flow
direction. It is also interesting to study the flow of non- Newtonian
fluids with externally imposed magnetic fields which control the
boundary layer and increase the performance of many systems.
For example, when we use the electrically conducting fluid in
MHD power generators, their performance increase in compar-
ison to conventional electric generators where solid conductors are
used to generate electric power. The present work can also be
helpful to study underground oil, where there is a natural magnetic
field and the motion of blood through arteries [43,44].

The rest of the paper is arranged as follows. The governing
equations of the problem are given in section 2. The mathematical
formulation of the problem is given in Section 3. The solution of
the problem is given in section 4 where the Laplace transform
technique is used and the expressions for velocity and shear stress
fields are obtained when the relaxation time satisfies the condition
ﬂ/=/12/4 or y>),2/4. Limiting solutions are given in section 5.
Graphical results are displayed in section 6 and discussed for the
embedded flow parameters. This paper ends with some conclu-
sions given in section 7.

Governing Equations

The unsteady incompressible flow of an electrically conducting
fluid is governed by the following equations

divv =0, (1)

p(%)szp+diVS+J><B, (2)

PLOS ONE | www.plosone.org

Stokes’ MHD Flow in a Burgers’ Fluid

divB=0, CurlB=p,J, CurlE=— g—]?, J=0¢[E+VxB] (3)
where V is the velocity vector, p is the density of the fluid, p is the
pressure, S is the the extra stress tensor, J is the current density,
B =By +b is the total magnetic field where By denotes the applied
magnetic field and bis the induced magnetic field, g, is the
magnetic permeability, E is the electric field and ¢ is the electrical
conductivity of the fluid.

The extra stress tensor S for non-Newtonian Burgers’ fluid
constitutes the following equation [40,41]

S, 'S SA
in which g is the dynamic viscosity, A=L-+L7, is the first Rivlin
Ericksen tensor, L is the velocity gradient, LT is the transpose of
the velocity gradient,A and /, (<A) are the relaxation and retar-
dation times respectively and y is the material constant of Burgers’
fluid multiplies the upper second order convected time derivative
of S defined as

S 5 (3S\. S dS
—=—|=); —=——-LS-SL’, 5
or? 5t(bt) ot dt )
where d/dt is the material time derivative.

For the problem under consideration, we are looking for
velocity and stress fields of the form

V:V(y’t)i’ S:S(yat)a (6)
where v is the x-component of velocity field V and iis the unit
vector in the x-direction.

In order to calculate Lorentz force, it is assumed that the
polarization effects are zero (E=0), the magnetic field B is applied
in outward perpendicular direction to the flow and the induced
magnetic field b is negligible compare to the applied magnetic field
By =(0,B0,0) under the assumption of small magnetic Reynolds
number, By is the strength of applied magnetic field. Thus in view
of these assumptions and using Eq. (3), the Lorentz force becomes

(21]

JxB=—0gB}V. (7

Thus using Eq. (6), the continuity Eq. (1) is identically satisfied
and the momentum Eq. (2) in the absence of a pressure gradient in
the flow direction and Eq. (4) after using Egs. (5) and (7) and
having in mind the initial conditions S(y,0)=0S/0r=0, give the
following governing equations

v(y,))  IdT(p,0)
ot 0Oy

—aBv(nt); y.t>0, (8)

0o & d\ ov(y.1)
(H—ﬂ,az—f—/atz)T(y,t)-,u(l—l—/l,at) oy »t>0, (9)

where T'=T(y,t) =S, (»,t) is the non-trivial shear stress.
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Mathematical Formulation of the Problem

We consider the unsteady incompressible flow of an electrically
conducting Burgers’ fluid occupying the upper half space of
xy —plane over a rigid flat plate. The x —axis is taken parallel to
the flow direction whereas y —axis is taken normal to the plate.
The magnetic field is applied in outward transverse direction to
the flow. Initially, we assume that both fluid and plate are at rest.
After time =07, the plate begins to oscillate in its own plane and
the fluid is gradually moved as shown in Fig. 1.

For such type of motions the governing equations are (8) and (9)
with the following initial and boundary conditions

aT (»,0)
ot

v(1,0)=0, T(y,0)= =0; y>0, (10)

v(0,1)=UpH (t) cos(wt) or v(0,)=Upsin(@t); >0, (11)

where U is the characteristic velocity, @ is the imposed frequency
of the velocity of the plate and H(¢)={0, <0, 1, 1>0} is the
Heaviside step function.

Moreover, the natural conditions

v(n,t), T(y,t)—»0 as y—oo, (12)

which are the consequences of the fact that the fluid is at rest at
infinity and there is no shear in the free stream, have to be also
satisfied.
Solution of the Problem

Introducing the following non-dimensional variables

t T
y L i
pcUy

w=ont, (13)

with the constant ¢= %, the governing Eqs. (8) and (9) take
Vo

the following forms

R P 0\ UE)
<1+E+ﬁm)5(g,1)_(1+a5>a—é, &r>0,  (14)

y-axis § B"T
Wy

X-axis

v(0,7) = UgH(t)cos(®t)
v(0,2) = Upsin(@t); t>0

Figure 1. Physical model and coordinates system.
doi:10.1371/journal.pone.0061531.g001
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aU(¢r)  0S(¢n)

= —MPU(r);  &1>0 15
= (0 =0, (19)
where
2
u:if, =% and MQZiM.
7 A 14
The corresponding initial and boundary conditions
(10) — (12) become
0S(&,0
Ue0=se0="5N 20 &0 9
U(0,r)=H(t)cos(wt) or U(0,7)=sin(wr); >0, (17)
U(¢,1),S(¢,0)—0 as E—>co. (18)
In order to solve the initial and boundary-value problem
2
(14)—(18), we consider two different cases =7 and

2
y> y and use the Laplace transform.
’ 1
Case-I: Solution of the problem for y=— (ﬂ = 7>
In order to determine exact solutions for our problem, we

1
substitute ff= T into Eq. (14), apply the Laplace transform to

Eqs. (14) and (15) and use the initial conditions (16). We find
that

_ 00 s
@ +2 S0 =400 +1) T, (19)
_ oS _
o= "0 iU, (20)

where ¢ is the transform parameter. In view of the boundary

conditions, the Laplace transforms U(¢,g)and  S(&,q) of
U(¢&,r) and S(&,7) have to satisfy the conditions
_ q _ 1)
U(0,q)= ma or U(0,9)= m,
U(&q), S(Eq—0 asi-o, (21)

where

U.q)= | exp(—qr)U(E0dr, S(Eq)

exp(—q1)S(¢,7)dr.

o8 o3

The solutions of Egs. (19) and (20) satisfying the boundary
conditions (21), are
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Se(Cq)=

_zqmem(—g(ﬂz) qo;;flz), 2
Si(&.q) =

T ),

where the subscripts ¢ and s denote the solutions corresponding to
the cosine and sine oscillations of the boundary, respectively.

In order to find U.(¢,1)= 71{[76(5,51)}, we follow a similar
procedure to [40,41], and write Eq. (23) in the product form

Oc(éaq): f]I (Q)Uz(fﬂ)fJ?,(fﬂL (27)
where
g HgM?
Ul (q) qz +w2 5
< doy? 28
exp[—z—\/a (q—l—?) —bé} (28)
U2(éaq) - >

M?
exp{oclé 9+
_ 1 ag+1
U3(é>q) = 5 (29)
Ve q+M?
og+1
1 a2 M? 200—1
=M2 — o hy=(=) —— = 30
ao +a, 0 <2> 7 o 2 (30)

Of course, in view of Eq. (27) we have
Ue(&t)=(U * Uy * Us)(1) = J Us(t =) * (Uy * Us)(,5)ds,(31)
0

where the denotes the convolution product and Uj(7),
Uy(&,7) and Uz(&,7), are  the inverse Laplace transforms of

Ui(q), Un(&,q) and Us(.q), respectively.
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Applying the inverse Laplace transform to Egs. (28) and
(29), we find that

Ui(t)=H(7) [6(t) — wsin(wt) + M? cos(wr)]. (32)

V(¢ )= —3 ) (33)
exp(— )1, (bo 72— (2—\‘/&) ); >,

) [ 22
J Varexpl ) J exp ( % - Z) LQyuar)ds — (34)
0

a|l=———, (1)

where Iy(+) and I;(-) are the modified Bessel functions of the first
kind of order zero and order one respectively.

Now using Egs. (32) —(34), into Eq. (31), and by the definition
of Heaviside step function, we get

U&=

0 0<t< 3%,

_4%r N2\ % 282
+exP(\/ﬁ2)Io<b0 T (ﬁ) ) i iuexp<f = U)du

0
ay exp _%7) @ I (2 /uays 1252 u aps
IJ«(_nZ)-! J](V\/}l)exp S
Va
2 exn(_%07) T o
><10<b(] (r—s)z—(ﬁ;) )dud (EP§H2) i J%sm((m)

2 2
><Io<bo (Tfs)zf(zfﬁ) )exp<7 1 7§+¥>duds

(35)
o JF _ayT T 5 © ) = 22 ans
o) | e an( ATt o)
NG
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Similarly for the sine part of velocity, we get the following
expression

Us(i»r) =

.\2
h(% (r—ﬂz—(i%)>ld2wﬁﬂﬁ) (36)

2\ 2
><I] (2\/ua10)10 (bo S)2 <ﬁ§) )
du do ds; > 2—5/;

In order to find the dimensionless shear stress, we write

S(&,9), given by Eq. (25) in the form

where
« 2 (qlg+ M) (ag+1)
so-—Z (s ) 0
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exp { sz]
Sx(éq) = , (39)
V(g+%9)* —p
_ 2
S3(¢,q) = exp [—ali ]::q:lq : (40)

For S(&,1)=""{S(¢,9)}, we employ

S(ED)=(S) # S * S)(1) = J(Sl ¢ S)()Sa(Et—s)ds, (1)
0

with B
Si(0=""{Si(g)},
e N —lio sz
$H(&1)=""{S2¢9)} )
and
Sy(én)=""{S:(&q)}.

The Laplace inverse transforms of Egs. (38) —(40) yields

S1(1) = —2v/ad(t) — by exp(—21) — by cos(wt) + bs sin(wr) (43)
0; 0<t< ﬁ,
S2(&0)= (44)
exp(— ( 01/ 2 )
oclc&('c u i é\Jay
SRV 7 ( - ) N
x exp(—uag1) % ( Z) 1 (2\/uait)du, (45)
where

—2[—2aa|w2+M2(2+ocw2)}
V(o +4)

SuvA(M=2)

b= b=
! 44 w? ’

2w [2 +2M o0 + occuz]

bae 4oy /o (M? —2)
Vadte?)

44+ w?

by =

s

2w [2+2M2aa1 +ocw2}
VTR
2[— 2000 0% + M* (24 0e?) |
Vet o)

bs =

be=
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The convolution product of Eqs. (43) — (45) gives Similarly for sine oscillation we obtain
Se(é0)= Ss(&1)=
0; 0<T<zfs 0; 0<‘c<ﬁ,
\/'xlgexp(—for) ¢ 2 baon & _ 49 T
el 3D gy oy (25) i3 e
i 25
j u\/_e p( 414 g)du 2.
. exp(—}‘—;—%—b-&-%)
o &by cxp( ) J J 1
A Re
v Io| boy/(t—s)" — (2—\/;) du ds
b ¢)’
Io( boy/(t—5) (m) alchscxp(—azo ) P 1
. v IR
exp<7%7ﬂf2s+"g‘>duds NG
wyébyexp(-Fe) L% 2 s\ 2
_ul 2723,(; ) | (J]“% 10<b0 (t—s) 7(7) )
23
22 p cos(ws) exp| — 42y + 2% du ds
exp( 77§+%>10<ho (rfs)zf(z%/;) ) ) €Xp W a2 8
¢ T oo
cos(ws)du ds _% [ ] 512(;;)
a T 0 ¢ 0
L 115h362x5£—70r) f J #; 2
o
o 22 5 N2
22 - exp(— . —@-&-%)Io(bo (t—s) —<ﬁ;> du ds (48)
exp( T %) sin(ws)
o1 &by \/at exp B I
s RLLLS N
I boy/(e—s) 7(7) du ds s 00
_vmearen(-9) &% 47) 1, (2yarm) . /2
2/x i E! /s s Iy bo (T—S) — (2;\/;)
2Va
22 222
exp<7 A u st )1] (2 /ars) X exp<f % — 25— opo+20+ 2 )du do ds
Vd e)
x Iy <bo (Tfs)zf(ﬁ>2>du ds “1"”5\/@3{;( ) f f i Il(zuv‘l{}l”")
: 00
b ( ) T s ®© ZL‘/&
PR T [ 2 A,
00 exp<7}‘—7571 a+%) cos(w(s—a))
N2
. (bo (17&)27(2;“) >I] (2vaii) x Iy <b0 (t—s)*— (Lf) >du do ds— —algbw_z\e/)?( 2
222
xexp(f%7§72sfao(r+2r+ >dud(rds s W 22
LCXP du T w
j‘1sb2\/_“"l’( f) j J{ T 1 Lj I J we —ago+ 2
e P00 2 :
o 2
28 ST VT
exp<7%*5710g+ )Il (2v/aus) <Jo (bo (e=9) (2\/5> )Il (2varus)
B sin(w(s—o))du do ds; 1> =5~
x cos(w(s—a))ly (bo (1—s5)*— ( ﬂ>z> du do ds (o ) 2V
N angg\/_exp(—ﬁr) JE j f n 2\/m Furthermore, it is noted that the expressions (47) and (48) are valid
: 1
37 00 only for o« # . Therefore, we are separately considering the case when
2 ans 1 . . .
exP(‘ At %) o= —. Hence, Eq. (25) can successively be written in the form
2
x sin(w(s—a))lo | boy/(t—s5)* — _a _ _ _
o=t =o'~ ) 5:E0)=Si@S:(Ca). (49)
dudo ds; > 2\/- h
where
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2
Sip=—vat e (50)

ool - o 5]

(g+%9)" 8}

Sa(éq)=

(51)

M>+2)?

ay=M*+2, boz( 2 —2M?, (52)

The inverse Laplace transforms of Egs. (50) and (51) are given as
Si(1)= —V2[8(1) + M? cos(w1) — wsin(wr)] (53)

. 4
0; 0<T<TE

Sz(éar) = (54)

Y 2 ,
exp(—21) 1o bo 12—(?9 : r>%.

Now taking the convolution product of Egs. (53) and (54), we
finally obtain

v (55)

In the same way we find that

0; 0<‘C<%,
V2m? “) [ Il b 2 (5
_ exp(—Tr)Cj ol boy/(z—3) _<ﬁ>
V2

S.Y(Cvfr) = exp (a70 S) Sil’l((,l)S)dS

T 2\ 2
—V2wexp(— Q1) f I (bo (1—s)*— (%) >
%

exp(Ls) cos(ws)ds, ; > \/%
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Now, in order to find the associated expressions for velocity, we

1
directly put o= 3 into Egs. (35) and (36), make the change of

2

variable % =u in the first integral, and finally we get

U(0)=

o= iy~ (5)

N

exp(_z(u+s)+%10<bo (1—s)*— (\%))duds

\/_ u)exp( %)
7%

]
<
V2
IO <b0 (T—S)2 — (%

_w\/fﬁe;;(—‘%r) jfacm) (57)
£ 00

~——
5]

) exp(—2u+ “Y)du ds

exp(—2u—20+* )10<b0 (rs)2<\/§§>2>

exi (IOT
x sin(w(s—o))du do ds+ ou2en( )

77
T ®© 2
2 (¢
CI 6|" L cos(ws) Iy (bo (t—ys) 7<ﬁ) >
%
X IOT
x exp(—2u+ “Y)du ds +\/—M+p(2)

TN
%
x I (2/ua;o) cos(w(s— o))

2 ()2 £
o[ boy/(t—s) —(7§> dudo ds; v> 55
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and
Ur(ésf)z
0; O<t< %,
\/—wexp( LT) To 5 2\ 2
2 j J” ) 1o [ boy [ (t—) 7(%>
&
V2
exp(—2u+ “Q)du ds

oy/Zaren(-) 1 5 T n(Qymr)
e | ey

<
V2

exp(—2(u+o) +% cos(w(s—a))

X] OT
><Io<b0\/(rs du do ds+ vav? e\/pﬁ( ¥) (8

T 0 . > S\ 2
X “;[ (J]“\/i-sm (0$)Io | boy/ (z—s) —(%)
V2
exp(—2u+ “Q)du ds
2a M2exp a0 s © 1, (2 uaie
L e Gy
£ 00
7

exp(—2(u+o)+ %

x sin(w(s—o))du do ds; ©> zf

Equivalent expressions for the velocities Uc(£,7) andUy(&,7) can
also be derived from Egs. (23) and (24). For example, decom-
posing U.(&,q) given by equation (23) under the form

we can write
U(&,9)= U1 Ua(&q)+ Ua(,9), (59)

where

(0 3) (o= 3] ) 1}

Ui(¢.q)= {exp <%
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f ¢
Ua(eq)= qzﬁwzexp@ﬁ(w %)). (61)

Applying the inverse Laplace transforms to Egs. (59) —(61), we
find that

U(&1)= (Ui * Us) (1) + Ua(n). (62)

Ui(¢r)= Bt o <— ﬂ) b (bo Tz—Hé\/z) (63)
R N
0; O<t<
Uz(Cf,T): (64)

<.
oo )l ) s

Consequently, introducing Egs. (63) and (64) into Eq. (62), we
obtain

0; O<rt< %,
exp(— *—\/05) cos (w(r \%))
Ud(é0)= +% { eXp( %Os’z%) (65)
V2
N (bgV/s2 +52v2)
cos(w(rfs)f %)ds; > %

Following a similar way, we also obtain

. ¢
0; 0<r<7§,

bt a . Sag
UEn=q TV ﬂ °Xp< ( +8)
Va
% I (bo .v2+s€\/§)
V52 +58v2
sin(w(r—s)—%)d > \/%

22
Case-II: Solution of the problem for y> — ([3 > >
Let us now consider the expressions of Veloc1ty fields and

. 1
tangential stresses when > —.

4
(14)—(18), we obtain

From the system of equations
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Figure 2. Profiles of the dimensionless velocity corresponding to relations (65) and (66) for different values of M.
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Figure 3. Profiles of the dimensionless velocity corresponding to relations (35) and (36) for different values of M.
doi:10.1371/journal.pone.0061531.g003
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Figure 4. Profiles of the dimensionless velocity corresponding to relations (35) and (36) for different values of o.
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Figure 5. Profiles of the dimensionless velocity corresponding to relations (65) and (66) for different values of 7.
doi:10.1371/journal.pone.0061531.9005
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Figure 6. Profiles of the dimensionless velocity corresponding to relations (65) and (66) for different values of w.
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Moreover, the Laplace inverse transform of Eq. (73) yields

Ua(én)= o) TT (—Z—i)h (2\/§_Z>dz du +2ul s(t—s)
00 Re[\/ﬁexp(—bo(r—s)—Mzs)Jl (ZW)P’A

NG . ]
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72Re{ azue —bo1)J) (2\/aour)} 00 o(s=a)(z =)

x Jq (2\/210u(s—a))J1 (2\/a7u(r—s))do ds, (77)
where 0(*) is the Dirac delta function, J)(*) is the Bessel function
of the first kind of order one and
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Figure 7. Profiles of the dimensionless velocity corresponding to relations (79) with Eqs. (74) and (80) for different values of /.
doi:10.1371/journal.pone.0061531.g007
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In view of the relations (74) and (76), it clearly results
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Adopting a similar procedure for the sine oscillation of the
boundary, we get an expression similar to Eq. (79), with

Ui(t)=as exp(— M’t)
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Figure 9. Profiles of the dimensionless velocity corresponding to relations (74) and (80) for different values of j.

doi:10.1371/journal.pone.0061531.9g009
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Figure 10. Profiles of the dimensionless shear stress corresponding to relations (55) and (56) for different values of M/
The corresponding expressions for the shear stresses are given

doi:10.1371/journal.pone.0061531.g010
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Figure 11. Profiles of the dimensionless shear stress corresponding to relations (47) and (48) for different values of M.
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Figure 12. Profiles of the dimensionless shear stress corresponding to relations (47) and (48) for different values of o.
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Figure 13. Profiles of the dimensionless shear stress corresponding to relations (82) and (83) for different values of M
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a0 = —

Limiting Solutions

In this section, for the accuracy of results, we consider a limiting
case of our solutions. More exactly, we substitute M = =0 into
equations (35) and (47) and recover the solutions

0; 0<t< ﬁ,

U=y ramer(—3) I ] ®7)

PLOS ONE | www.plosone.org 15

SEn)=
0; 0<T<m’
N2
L (= ) (% 2= () )
0 2.2
R
0
202 \Ja . -
() | | it
<
N
1 2 A%
10 P (’L’—S) —(m)
xexp(—}‘—u—%—%)duds—%
. (58)
exp(— 5) %f [ st Gvim)
2\
282 N2
<o~ % —%j‘)h(ﬁ <f—s>2—(ﬁ;.)>
242¢
du ds+ —Lexp(— 5
o T § 0 LIO
e
2V
2
L= = (55) )h(%ﬁi)
><exp(f%7m72(576)+ﬁ>dud0'ds,
>,

May 2013 | Volume 8 | Issue 5 | e61531



M=2 0=021=15 a=0.3

oy

Stokes’ MHD Flow in a Burgers’ Fluid

M=20=0.21=15 a=0.3

0.2
0.15
5
¥
vy 01
0.05
o
0 0.5 1 1.5 2 25 3
3

Figure 15. Profiles of the dimensionless shear stress corresponding to relations (82) and (83) for different values of w.
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obtained by Vieru et al. [40, Egs. (17) and (27)]. Similarly, we
can also obtained the solutions of Khan et al. [41] from the present
solution as special cases by taking the magnetic parameter M =0.
Furthermore, the solutions corresponding to Newtonian and
Oldroyd-B fluid also appear as the limiting cases of the present
solutions.

Results and Discussion

The objective of the present paper is to study the unsteady

MHD flow of a Burgers’ fluid over an oscillating plate when the
2

. . . .. A
relaxation time satisfies the conditions y> 1 The closed form

solutions involve integrals of Bessel functions, terms with only
Bessel functions and other integrals are obtained using the Laplace
transform technique. These solutions of velocity and shear stress
are plotted using the symbolic computational software Mathema-
tica by performing the ordinary numerical integrations. The
profiles of velocity fields and shear stresses for both sine and cosine
oscillations of the plate are presented in Figs. 2, 3, 4, 5,6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17 for different values of the embedded
flow parameters. These parameters include the magnetic param-
eter, also called Hartmann number M, fluid parameters o and
B, oscillating frequency @ and dimensionless time 7.

Figs. 2, 3, 4, 5, 6 are drawn so as to show the velocity profiles
2

when the relaxation time satisfies the condition y= T equiva-

p=08 0=02,7=03,M=2

a=03

-1.25 4
, .’." s @=06
-1.5 .0’ @ = 09
&
0 0.2 0.4 0.6 0.8 1

lently f=0.25. The influence of the Hartmann number M and
then of the magnetic field on the fluid motion is shown in
Figs. 2and 3 for a=0.5and 0.9. The magnetic field has a
significant influence on the velocity field. It is clearly seen from
these figures that the velocity of the fluid and the boundary layer
thickness decrease if M increases for both types of oscillations of
the boundary. This is not a surprise as the transverse magnetic
field produces a resistance force (Lorentz force) that is similar to
the drag force that tends to oppose the flow and to reduce the
velocity of the fluid. It is further concluded from the comparison of
Figs. 2(a) and 3(a) that when a=0.9, the velocity profiles decay
early compare to «=0.5. The influence of the parameter o on the
velocity profile is shown in Fig. 4. The velocity of the fluid is an
increasing function of afor both types of oscillations of the
boundary. However, as expected, for large values of & the velocity
of the fluid tends to zero.

Figs. 5 & 6 show the periodic nature of the flow. In Fig. 5, the
velocity profiles for different values of t are shown. It is observed
that the velocity is developing and fluctuating around zero. For
both types of oscillations of the boundary, the velocity has its
maximum value at the boundary with gradual decay in its
amplitude of oscillation and tends to zero away from the plate.
Fig. 6 depicts the variation of velocity with oscillating frequency
. This figure displays the periodic response of the flow to the
cosine and sine oscillations of the plate. For =0, it is clear that
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Figure 16. Profiles of the dimensionless shear stress corresponding to relations (82) and (83) for different values of «.

doi:10.1371/journal.pone.0061531.g016
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the velocity corresponding to the cosine oscillations of the
boundary has its maximum value whereas for the sine oscillations
it is zero. This fact also results from the imposed boundary
conditions (30). However, for large values of ¢, the fluctuation

reduces and the velocity approaches zero.
12
A
Figs. 7, 8, 9 are displayed for the velocity profile when y > 7o

equivalently >0.25 for both the cosine and sine oscillations of
the plate. From first two Figs. 7 & 8, we noticed that the effects of
M and o on the velocity profiles are qualitatively similar to those
observed in Figs. 3 & 4 for f=0.25. However, these results are
different quantitatively. It is further observed from these figures
that the velocity profiles decay early for f>0.25 compare to
p=0.25. Physically, it is due to the fact that for large values of
rheological parameter f>0.25, the fluid motion retards and the
velocity profiles approaches to zero before than =0.25 for which
the velocity changes are more moderately. Fig. 9 shows the
variation of velocity for different values of f. It is found that the
velocity and boundary layer thickness decrease when f increases.
However, it is observed that the decrease in the boundary layer
thickness for the cosine oscillations of the plate is more visible than
the sine oscillations of the plate.

Figs. 10, 11, 12, 13, 14, 15, 16, 17 are prepared to discuss the
variations of the shear stress for both cosine and sine oscillations of
the plate. The first three figures (10, 11, 12)are plotted
for f=0.25 and the last five (13, 14, 15, 16, 17) are displayed
for #>0.25. As expected, the behaviors of the velocity and shear
stress with respect to o (Figs. 4 & 12 and 8 & 16), 7 (Figs. 5 & 14),
o (Figs. 6 & 15) and f (Figs. 9 & 17) are qualitatively the same.
Their behavior with respect to M (Figs. 2 & 10,3 & 11 and 7 &
13) are opposite near the plate and the same elsewhere. The
velocity of the fluid decreases with respect to M in the whole flow
domain while the shear stress increases near the plate and
decreases everywhere else.

References

1. Andersson HI (1992) MHD flow of a viscoelastic fluid past a stretching surface.
Acta Mechanica 95: 227-230.

2. Hammouch Z (2008) Multiple solutions of steady MHD flow of dilatant fluids.
Eur J Pure App Math 1: 11-20.

3. Siddiqui AM, Irum S, Ansari AR (2008) Unsteady squeezing flow of a viscous
MHD fluid between parallel plates, a solution using the homotopy perturbation
method. Math Model Anal 13: 565-576.

4. Srecharireddy P, Nagarajan AS, Sivaiah M (2009) MHD flow of a dusty viscous
con-ducting liquid between two parallel plates. J Sci Res 1: 220-225.

PLOS ONE | www.plosone.org

17

Conclusions
In this paper, we have studied the MHD flow of Burgers’ fluid
12
when the relaxation time satisfies the conditions y= % and

2
V> e The governing equations are modelled and the closed

form solutions are obtained using the Laplace transform
technique. The analytical results are displayed graphically and
the effects of various emerging flow parameters on the velocity and
shear stress are shown. It is found that the magnetic parameter and
the rheological fluid parameters have strong influence on the
velocity and shear stress fields. It is observed that for large values of
rheological parameter > 0.25, the fluid motion retards and the
velocity profiles approaches to zero early than f=0.25 for which
the velocity changes are more moderately. Furthermore, these
solutions also show the periodic nature of the flow. The existing
solutions in the literature are recovered as a special case of the
obtained solutions. Hence we are confident at the accuracy of our
presented results. For future studies, we have planned to extend

this work to the case when the relaxation time satisfies the
22

condition y < % The present problem can also be extended to

the MHD flow of Burgers’ fluid over a plate embedded in a porous
medium. There are several other directions where the present
work can be continued.
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