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Abstract

Evidence of antibody isotype/subtype switching may provide prognostic value regarding the state of immune responses to
therapeutic proteins, e.g. anti-factor VIII (FVIII) antibodies that develop in many hemophilia A patients, clinically termed
‘‘inhibitors’’. A sensitive, high- information-content surface plasmon resonance (SPR) assay has been developed to quantify
IgG subtype distributions and the domain specificity of anti-drug antibodies. Plasma samples from 22 subjects with an allo-
or auto-immune reaction to FVIII were analyzed. Pre-analytical treatment protocols were developed to minimize non-
specific binding and specific matrix interference due to von Willebrand factor-FVIII interactions. The dynamic range for IgG
quantification was 0.2–5 mg/ml (,1–33 nM), allowing characterization of inhibitor-positive samples. Subtype-specific
monoclonal antibodies were used to quantify the IgG subtype distribution of FVIII-specific antibodies. Most samples
obtained from multiply-infused inhibitor subjects contained IgG4 antibodies. Several distinct phenotypes were assigned
based on the IgG subtype distribution: IgG1, IgG4, IgG1 & IgG4, and IgG1, IgG2 & IgG4. An IgG1-only response was found in
mild/moderate HA subjects during early FVIII infusions, and analysis of serial samples followed antibody class switching as
several subjects’ immune responses developed. Competition studies utilizing a recombinant FVIII-C2 domain indicated 40–
80% of FVIII-specific antibodies in most samples were directed against this domain.
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Introduction

The development of anti-FVIII allo-antibodies (‘‘inhibitors’’)

occurs in a significant proportion of congenital Hemophilia A

(HA) patients receiving exogenous FVIII, thereby rendering

protein replacement therapy ineffective [1]. Additionally, anti-

FVIII auto-antibody responses, though rare, can also occur,

primarily in the elderly, postpartum or following traumatic injury.

Allo antibodies develop as an anti-drug antibody response to FVIII

infusions used to treat HA, and earlier detection and character-
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ization of these responses may be useful to clinicians, e.g. as they

tailor FVIII infusion schedules or consider immunosuppression

regimes based on the perceived risk of a given patient developing a

higher-titer response. In contrast, FVIII autoantibodies are

virtually always diagnosed after they have reached a high titer,

as testing is carried out after a non-hemophilic patient presents

with unexplained bleeding and/or bruising. Clinical diagnosis of

inhibitors is based on the Bethesda assay, a functional measure-

ment of the inhibition of FVIII-mediated clotting of normal

human plasma by antibodies in test plasma [2,3]. An inhibitor titer

of 1 Bethesda Unit (BU)/ml inhibits FVIII activity in normal

pooled plasma by 50%. Non-inhibitory anti-FVIII antibodies are

not detected by the Bethesda assay and quantification of inhibitors

becomes unreliable when responses are ,1 BU/ml; alternative

assays are required to accurately quantify low-titer anti-FVIII

antibodies. Although inhibitory antibodies are the primary

concern when attempting to restore hemostatic function, both

inhibitory and non-inhibitory antibodies provide information

about the immunological state of a patient. A number of sensitive

immunoassays have been developed to allow the screening of

clinical samples for total (inhibitory+non-inhibitory) anti-FVIII

antibodies and to provide complementary information to the

Bethesda assay [4–9].

Early stages of alloimmune responses to FVIII include

stimulation of helper T cells, which secrete cytokines leading to

production of anti-FVIII antibodies by plasma cells, antibody class

switching, affinity maturation, and generation of antibodies

recognizing specific epitopes on the FVIII surface [10]. The

complexity of these responses, for example the immunoglobulin

isotypes and subtypes involved, the number of epitopes recog-

nized, the clonality (polyclonal, oligoclonal, monoclonal) of the

response, and the antibody affinities, provides important informa-

tion as to the phenotypes of developing immune responses.

Detailed characterization of the early stages of anti-drug antibody

responses may provide information needed to design new clinical

assays and may also indicate mechanisms leading to high-titer

inhibitors versus immune tolerance (defined operationally for HA

patients as having either no anti-FVIII antibodies or a low-titer

response that does not seriously compromise hemostasis).

Comprehensive characterization of complex anti-FVIII anti-

body responses can be time- and resource intensive and numerous

technical challenges, including inadequate sensitivity, exist. Sur-

face Plasmon Resonance (SPR) offers a detection platform that is

versatile, robust, and amenable to complex, multiplexed measure-

ments of plasma samples. The relative speed with which SPR

sensorgrams can be generated and analyzed also makes this

technique suitable for medium- to high-throughput analysis of

multiple samples. This report describes the use of an SPR assay to

define phenotypes of allo- and autoimmune antibody responses

based on antigen-specific IgG subclass distribution and epitope

(FVIII domain) specificity. Plasma samples were collected from

18 HA and four acquired HA (autoimmune) patients with

developing or persistent immune responses. Serial samples were

collected from one young HA subject as he received initial FVIII

infusions, and from one mild HA subject and two autoimmune

HA subjects beginning with their initial inhibitor diagnosis.

Although correlation of phenotypes with clinical outcomes is not

definitive due to the small set of ADA-positive samples analyzed

herein, the current study lays groundwork for analyzing plasma/

serum samples from larger studies, including prospective studies.

The stability and sensitivity of the SPR assay platform is

demonstrated, and specific measurements containing clinically

relevant information are identified, e.g. the quantitative distribu-

tion of antigen-specific IgG subtypes and the domain specificity of

human anti-FVIII antibodies, specifically the fraction directed

against the FVIII-C2 versus other domains.

Materials and Methods

Ethics Statement
This study was approved by the Seattle Children’s Hospital IRB

(SCH IRB#13018). Written informed consent was obtained from

all adult subjects and from the next of kin, caretakers, or guardians

on the behalf of the minors/children participants involved in this

study, according to the principles expressed in the Declaration of

Helsinki.

Reagents
Expired Recombinatetm (Baxter) was reconstituted as directed

and used without further manipulation as the source of full-length

human FVIII. Amino-terminally His10-tagged FVIII-C2 domain

was produced as a soluble cytoplasmic protein in E. coli

OrigamiB(DE3)pLysS (EMD Chemicals, Gibbstown, NJ).

Caprylic acid, carboxy methyl dextran, 99.5% L-arginine and

other reagents were from Sigma (St. Louis, MO). CM5 sensor

chips, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl

(EDC), N-hydroxysuccinimide (NHS), ethanolamine, HBS-P+
buffer (10 mM HEPES, 150 mM NaCl, 0.05% (v/v) surfactant

P20, pH 7.4) and sodium acetate pH 5.0 were from GE

Healthcare Life Sciences (Piscataway, NJ).

Antibodies
Mouse anti-human FVIII-A1 domain specific mAb (clone

GMA-8004) was generously provided by Green Mountain

Antibodies. An additional FVIII-C2 domain specific antibody

(ESH4) was from American Diagnostica (Stamford, CT). Mono-

clonal anti-huIgG1 (clone HP6188) was obtained from Fitzgerald

Industries International (Acton, MA). Anti-huIgG2 (clone

HP6002), anti huIgG3 (clones HP6050 and HP6047), and anti-

huIgG4 (clone HP6023) were from Southern Biotech (Birming-

ham, AL). Anti-huIgA (clone 8203) and anti-huIgM (clone 7408)

were from Medix Biochemica (Finland). The human anti-FVIII-

C2 mAb B02C11, both the IgG4 and Fab forms, were generously

provided by Dr. M. Jacquemin [11]. Antibody concentrations

were measured using a nominal extinction coefficient of

e280 nm,0.1% = 1.38.

Plasma Samples
Blood samples from subjects with HA and with autoimmune

responses to FVIII (acquired HA) were collected as part of a cross-

sectional study (NIH 1RC2HL101851) or were obtained from a

Repository maintained by the Pratt laboratory. Plasma samples

from subjects with and without a recently measured inhibitor titer

in BU/ml were characterized using the SPR assay. Two types of

samples were studied: sodium citrate anti-coagulated plasma

(citrated plasma) and diluted heparin-anticoagulated plasma

retained following isolation of peripheral blood mononuclear cells

(‘‘Ficoll plasma’’).

Pre-analytical Treatment
Pre-analytical treatment of plasma samples was performed using

caprylic acid (CA) to precipitate non-IgG proteins and other

interfering substances, including von Willebrand factor and hence

baseline circulating FVIII (‘‘CA treated plasma’’). Citrated plasma

samples (100–500 mL) were treated by mixing 1 part plasma with 2

parts 40 mM sodium acetate pH 4.0 and adding CA to a final

concentration of 2.5% v/v (158 mM). Following 60 min incuba-

tion at room temperature with occasional mixing, samples were

Phenotypes of Anti-Factor VIII Antibodies by SPR

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e61120



centrifuged for 5 minutes at 16,0006g to pellet the precipitate and

filtered using a 0.2 mm Spin-X filter (Corning). The transparent

filtrate was neutralized by adding 1 part to 9 parts 800 mM

HEPES pH 8.0, 4 M NaCl and 5% carboxy methyl dextran.

Ficoll plasma (typically 2–6 fold diluted) was treated similarly,

however initial acidification was performed by adding 1 part to 9

parts 400 mM sodium acetate pH 4.0 to minimize further

dilution. Nominal pre-analytical dilution factors were calculated

for each sample.

SPR Method
SPR measurements were carried out using a Biacore T-100

instrument (GE Healthcare Life Sciences) with binding measure-

ments taken at 25uC. Murine anti-FVIII-A1 (GMA-8004) capture

antibody was immobilized covalently onto a CM5 sensor chip

from a 100 mg/ml solution in 10 mM sodium acetate pH 5.0

using a mixture of 0.4 M EDC and 0.1 M NHS. After

immobilizing the capture antibody, the remaining active sites on

the sensor chip were blocked by treatment with 1 M ethanol-

amine. A final immobilization signal of 9000 RU was targeted.

Binding experiments were performed in HBS-P+ containing

5 mM CaCl2 (HBS-P+/Ca2+). All injection and binding steps were

performed at a slow flow rate (5 ml/min) to minimize FVIII, test

plasma and secondary mAb consumption. FVIII (2000–3500 RU)

was captured on the GMA-8004 antibody surface by injecting

undiluted drug product for 300–600 sec. The dissociation of FVIII

from this mAb was slow enough that the effect on RU signals

measured at the report points was negligible (Figure S1). CA-

treated plasma samples were injected for 300 sec followed by

sequential 120 sec injections of 25–50 mg/ml secondary (isotype-

specific) mAbs. Regeneration of the capture surface was achieved

with three 20 sec injections of 2 M arginine pH 3.0 at 30 ml/min.

To confirm that CA treatment did not alter the anti-FVIII IgG

content of the test plasma, independent samples of untreated

inhibitor negative HA plasma containing 1 mg/ml B02C11

(human IgG4) were prepared, CA treated, and the RU signals

were compared.

To measure the fraction of the antibody response specific for the

FVIII-C2 domain, paired plasma samples from four inhibitor

subjects were tested by SPR with and without the addition of

increasing concentrations of recombinant FVIII-C2 protein (the

CA-treated plasma samples were added to either FVIII-C2 or the

same volume of PBS as a negative control). Plasma samples were

diluted first if necessary to bring the total anti-FVIII IgG titer

below 5 mg/ml (,33 nM). Samples were vortexed, centrifuged,

and the supernatants stored at 4uC until analysis by SPR.

Data Analysis
The SPR experiments were carried out under saturation

binding conditions for the secondary mAbs to determine the

maximum signal from each secondary mAb. This should

correspond to stoichiometric binding of the secondary mAbs to

the primary IgGs from plasma. Since the nominal molecular

weights of human plasma anti-FVIII IgG and mouse anti-human

IgG mAbs are comparable (,150 kDa), the binding signal (RU)

for both primary (binding of human anti-FVIII antibodies to the

captured FVIII) and secondary (binding of subtype-specific mouse

mAbs to human IgG captured from plasma) events should be

directly comparable. Quantitative measurements (report points) of

FVIII capture level, primary human IgG binding level, and

secondary mAb binding levels were recorded 30 sec after the end

of each sequential injection step.

Singly referenced binding curves were recorded as the signal

from an active flow cell (with captured FVIII) minus the signal

from a reference flow cell (without FVIII). Each assay sequence

contained mAb B02C11 calibrators (0, 0.2, 1.0, 2.0, and 5.0 mg/

ml prepared using CA-treated inhibitor negative HA plasma).

Since the FVIII capture level declined slowly over the course of

each sequence of samples (due to gradual degradation of the

capture mAb following multiple regeneration cycles) and subse-

quent binding of plasma Abs and secondary mAbs scaled with the

FVIII capture level, all binding signals were first normalized to a

nominal capture level of 3000 RU FVIII. Calibrators and test

samples were typically tested in blocks of 5 injections that were

bracketed by a complete injection cycle in which assay buffer was

substituted for the test sample. The average binding signals for the

bracketing buffer injections were subtracted from the test sample

signals to correct for minor signal variations due to incomplete

regeneration and/or sensor degradation. Binding signals were

converted from RU to mg/ml IgG using the secondary binding

levels for the B02C11 calibrators. The ratios of the total

cumulative secondary mAb binding signal to the primary human

antibody binding signal were also calculated.

Results

Assay Performance
Acceptable assay performance was typically achieved for 100–

150 cycles with a single sensor chip. FVIII capture capacity

declined slowly, but this was not typically a limitation. A more

significant limitation was a progressive increase in non-sample-

specific secondary antibody binding signal, necessitating the

frequent inclusion of bracketing injections of buffer before and

after the injection of plasma samples. Therefore, subtraction of

reference RU values sometimes caused apparent negative refer-

enced binding signals for samples with very low measured RU

binding signals, e.g. the % anti-IgG2 signals from several plasma

samples (Tables 1–3). If the response (in RUs) of bracketing

buffer injections was reproducible, sample signals were corrected

by subtracting the mean signals from the bracketing buffer

injections. If not, samples were retested using a new sensor chip.

The use of affinity-captured FVIII antigen placed limits on the

dynamic range of quantitative measurements. Although normal-

ized calibration curves using the patient-derived inhibitory

antibody BO2C11 were highly reproducible across multiple days

and sensors (Figure 1A) the dynamic range for the SPR assay was

narrow, with a range of quantification from 0.2 mg/ml (,1 nM) to

5 mg/ml (,33 nM). Below 0.2 mg/ml, signal to noise ratios were

too low to obtain reliable information. BO2C11 binds to FVIII

with an apparent dissociation constant KD , 2610211 mol L21

and inhibits its pro-coagulant activity with a specific activity of

,7,000 BU/mg [11]; these spike-recovery assays indicated the

lower limit for detection of this unusually high-affinity neutralizing

antibody by SPR was 0.2 mg/ml ,1.4 BU/ml. Above 5 mg/ml,

accurate concentration measurements could not be obtained due

to saturation of the affinity-captured FVIII, but the IgG subtype

distribution could still be measured. The spike-recovery experi-

ment in which 1.0 mg/ml (,7 nM) B02C11 was added to plasma

from a HA subject that contained no FVIII or anti-FVIII

antibody, and then measured before and after CA treatment,

demonstrated a recovery of 109616% (Figure 1B). As expected

for B02C11 (human IgG4), this response was IgG4–restricted and

the ratio of secondary (anti huIgG1+ anti huIgG2+ anti huIgG3+
anti-huIgG4 signals) to primary (human anti-FVIII antibodies

from the test plasma) binding RU signals was close to stoichio-

metric (94610%). In addition to satisfactory recovery of B02C11

following CA treatment, the behavior of independently treated

and tested samples from a given subject, including both citrated

Phenotypes of Anti-Factor VIII Antibodies by SPR
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Table 1. Antibody subtypes and estimated titers by SPR.

Subject
IgG1+2+3+4 (RU)a/
polyclonal IgG (RU) % IgG1 % IgG2 % IgG3 %IgG4

Total anti-FVIII IgG from
SPR (mg/ml)

Predominantly IgG1 Response

17A (n = 2) b 1.11(.02)c 95%(2%) 0%(1%) 21%(0%) 5%(1%) 3.11(0.62)

17A+FVIII-C2 NDd ND ND ND ND ,0.2

N-008 0.98 104% 26% 1% 1% 5.45

N-008+ FVIII-C2 1.01 106% 210% 3% 0% 2.4

L-006-001 0.87 92% 4% 4% 0% 11.85

L-006-001+ FVIII-C2 0.83 88% 7% 5% 21% 4.89

Predominantly IgG4 Response

F-014 (n = 2) 1.26(.07) 16%(1%) 21%(0%) 0%(1%) 85%(1%) 2.67(0.53)

F-014+ FVIII-C2(n = 2) 1.49(.13) 14%(1%) 217%(0%) 2%(2%) 101%(3%) 1.09(0.18)

B-002 1.24 8% 7% 21% 86% 2.42

B-002+ FVIII-C2 1.26 7% 7% 21% 86% 2.38

A-002 1.16 4% 5% 21% 92% 4.38

A-002+ FVIII-C2 1.24 1% 7% 21% 93% 2.57

Mixed IgG Subtype Response

G-004 1.13 43% 24% 21% 62% 9.1

G-004+ FVIII-C2 1.25 42% 210% 21% 69% 5.11

C-010 0.81 80% 23% 22% 25% 1.59

C-010+ FVIII-C2 0.82 55% 23% 22% 50% 0.9

D-006 (n = 3) 2.04(.4) 45%(3%) 26%(7%) 1%(1%) 61%(3%) 1.53(0.41)

D-006+ FVIII-C2 ND ND ND ND ND ,0.2

L-025 1.12 72% 1% 21% 28% 3.56

L-025+ FVIII-C2 1.15 64% 3% 21% 34% 2.17

P-011 1.18 38% 1% 21% 61% 18.29

P-011+ FVIII-C2 1.2 29% 21% 21% 73% 11.28

P-001 0.98 23% 3% 0% 75% 22.58

P-001+ FVIII-C2 1.02 34% 4% 21% 63% 3.97

F-006 1.01 31% 8% 22% 62% 24.94

F-006+ FVIII-C2 1.19 42% 6% 22% 54% 6.46

A-008 1.09 41% 11% 21% 49% 3.78

A-008+ FVIII-C2 1.12 36% 11% 21% 54% 2.02

F-025 (n = 2) 2.19(.51) 30%(1%) 22%(4%) 21%(0%) 50%(3%) 0.90(0.16)

F-025+ FVIII-C2 ND ND ND ND ND ,0.2

C-019 4.07 61% 29% 21% 49% 1.62

C-019+ FVIII-C2 1.25 63% 28% 23% 48% 1.52

C-028 0.94 19% 14% 21% 68% 8.17

C-028+ FVIII-C2 0.74 16% 18% 22% 69% 4.18

Primary binding to FVIII signal (in RU) does not match summed IgG1+IgG2+IgG3+IgG4 signal (in RU)

H-001 0.22 56% 29% 24% 19% 2.54

H-001+ FVIII-C2 0.15 56% 34% 25% 15% 0.96

Autoimmune Subjects

Q-011-001 0.96 79% 4% 21% 18% 34.25

Q-011-001+ FVIII-C2 0.98 79% 4% 21% 18% 33.19

Q-012-001 (n = 4) 1.02(.04) 6%(1%) 2%(4%) 21%(0%) 94%(5%) 6.40(3.66)

Q-012-001+ FVIII-C2 1.23 2% 24% 21% 103% 2.78

Q-033 (n = 2) 0.75(.06) 82%(1%) 6%(1%) 21%(0%) 13%(0%) 23.97

Q-033+ FVIII-C2 0.85 89% 2% 21% 10% 11.39

Q-016 (n = 2) 0.96(.01) 23%(1%) 8%(1%) 21%(0%) 70%(3%) 26.88

Phenotypes of Anti-Factor VIII Antibodies by SPR
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plasma and Ficoll-treated heparin-anticoagulated plasma, was

reproducible when assayed using different sensors and with

different sample preparations. Once treated with CA, the samples

remained stable for several weeks at 4uC. SPR of four plasma

samples incubated with different concentrations of FVIII-C2

showed that in all cases, the competitive response (recombinant

FVIII-C2 displacing FVIII-C2-specific antibodies) was saturated

by .100 nM FVIII-C2 (Figure 1C). Figure 2 depicts a

representative binding curve for a plasma sample having a

complex antibody phenotype with injection steps and report

points annotated.

HA Phenotypes
Representative binding curves illustrating the range of pheno-

typic responses are shown in Figure 3. Each panel shows binding

curves obtained in the presence and absence of excess (1 mM)

FVIII-C2. Quantitative measurements (percent of the response

derived from each human IgG subtype, total anti-FVIII IgG

concentration (mg/ml), and the ratio of secondary to primary

binding signal in %) obtained from the binding curves are

tabulated in Tables 1&2. The total anti-FVIII IgG concentra-

tions were corrected for pre analytical dilution factors and thus

reflect the concentrations in undiluted plasma. Likewise values

,0.2 mg/ml (the lower limit of quantification) are reported based

on the assay dynamic range corrected for the sample dilution

factor. The % IgG subtype values were not considered reliable

when the total anti-FVIII IgG of a diluted or undiluted sample was

,0.2 mg/ml so they are not reported in the tables. Almost every

permutation (IgG subtype distribution, proportion of FVIII-C2

specific antibodies, and anti-FVIII IgG concentration) of pheno-

typic response was observed. Two subjects (B-002 and Q-011)

demonstrated a complete lack of competition with FVIII-C2,

whereas anti-FVIII antibodies in one sample from subject 17A

were completely specific for FVIII-C2. However, the most

common response was a mixed IgG subtype distribution with

40–80% FVIII-C2 specificity. For both the cross-sectional, single

time point samples and the serial samples, no significant

divergence between the total IgG subtype distribution and the

FVIII-C2-specific IgG subtype distribution was observed. Three

HA subjects (17A, N-008 and L-006) exhibited a predominantly

IgG1 restricted response. Another three HA subjects (F-014, B-002

and A-002) exhibited predominantly IgG4-restricted responses,

however detectable levels of other IgG subtypes were also

observed. Samples from the four autoimmune HA subjects (Q-

011, Q-012, Q-016 and Q-033) all exhibited complex mixtures of

IgG1, IgG2 and IgG4 in addition to high total anti-FVIII IgG

concentrations. In addition to testing with IgG subtype-specific

secondary antibodies, the samples were screened with anti-IgA

and anti-IgM secondary antibodies (not shown). No samples in this

study exhibited an IgA or IgM response.

Serial samples were obtained from two of the autoimmune HA

subjects (Q-011 and Q-012) and from two congenital HA subjects

(L-006 and 17A) following initial presentation with an inhibitor.

For samples from subjects Q-011 and Q-012 (Table 2), a

progressive decrease in total anti-FVIII IgG concentrations was

observed, with levels becoming undetectable six months after

inhibitor diagnosis for Q-012, at which time the FVIII activity of

the plasma was 36%. For the serial samples from moderate HA

subject L-006, trace levels of IgG3 were observed in the earliest

sample, and trace IgG4 was found in samples obtained one and

two months later. Rituximab therapy subsequently resulted in a

predictable decrease in his anti-FVIII IgG concentrations. For

mild HA subject 17A, the response was IgG1-restricted throughout

the first year following initial inhibitor detection, but a low-titer

sample obtained 5 years later, during which time he received

several additional FVIII infusions following a traumatic injury,

showed partial IgG4 character. SPR measurements of a sample

obtained from this subject 1–3 weeks after initial inhibitor

detection indicated that ,30% of the anti-FVIII antibodies bound

to the FVIII C2 domain (estimated from RUs measured in the

presence of saturating FVIII-C2 protein, Table 2) and samples

obtained later in the course of this immune response exhibited

nearly complete specificity for the C2 domain.

Discussion

Inhibitor formation is a serious complication in the manage-

ment of HA patients and more than thirty years of research has

provided insight into humoral anti-FVIII immune responses,

which often include IgG4 immunoglobulins [7,12,13]. The IgG4

subtype is frequently associated with chronic exposure to protein

antigens [14]. Previous studies have demonstrated that anti-FVIII

antibodies target multiple domains in FVIII [15–20]. Both the IgG

subtype distribution and the complexity of the epitope distribution

have been reported to be immunologically important, but they are

not routinely measured [13,17,21,22]. The present study describes

a new methodology that allows quantification of anti-FVIII IgG

isotype/subtype distributions and their gross domain specificity.

(Future studies will examine specificity of IgGs for other domains

besides FVIII-C2). The assay format is suitable for measurement

of small (50–100 mL) volumes (e.g. residual samples from clinical

assays) and for medium-throughput analysis of multiple samples.

The ability to quantify the proportion of anti-FVIII IgGs with

particular subtypes or domain specificities allows precise measure-

ment of dynamic changes in both developing and resolving

inhibitor responses.

Assay Performance
The dynamic range of the SPR assay was from 0.2–5 mg/ml

anti-FVIII antibody, corresponding to ,1.4–35 BU/ml for the

high-affinity neutralizing monoclonal antibody BO2C11

Table 1. Cont.

Subject
IgG1+2+3+4 (RU)a/
polyclonal IgG (RU) % IgG1 % IgG2 % IgG3 %IgG4

Total anti-FVIII IgG from
SPR (mg/ml)

Q-016+ FVIII-C2 (n = 2) 1.02(.03) 23%(1%) 5%(2%) 21%(0%) 72%(3%) 11.19(1.54)

aThe ratios indicate the agreement between the summed SPR signals from the binding of secondary detection antibodies specific for IgG1, IgG2, IgG3 and IgG4

(numerator) to the initial SPR signal generated by the anti-FVIII antibodies in plasma that bound to the immobilized FVIII (denominator).
bMultiple measurements (n) were made when sufficient plasma was available.
cStandard deviations are reported for these experiments in parentheses.
dND = Not Determined because the low total IgG titer made estimates of ratios and %Ig subtypes unreliable.
doi:10.1371/journal.pone.0061120.t001
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(Figure 1A). Subject Q-012 had an initial inhibitor titer of 2 BU/

ml and the corresponding anti-FVIII antibody titer by SPR was

,6.4 mg/ml (Table 2), indicating that a polyclonal inhibitor titer

of ,0.3 BU/ml could be detected. Thus the usable range of the

SPR-based assay is similar to that of the Bethesda assay in

detecting inhibitor responses, but the former can also be used to

detect and characterize non-neutralizing antibody responses to

FVIII.

The use of plasma and serum samples can introduce significant

matrix interference into immunoassays due to competitive or

nonspecific binding of proteins or other components. The SPR

format is particularly sensitive to non-specific binding since the

mass of bound protein (or other components in plasma or buffer) is

measured, whether or not the interaction is specific. The SPR

format, in which samples are tested sequentially rather than in

parallel, also requires that an active sensor surface be regenerated

between tests. Several factors contribute to the reproducibility and

accuracy of the measurements reported herein: the use of CA-

treatment as a pre-analytical step, the use of affinity-captured

FVIII, and the use of monoclonal secondary antibodies to detect

specific IgG subtypes.

Since inhibitory anti-FVIII antibodies may compete with vWF

[23] for binding to FVIII [24], vWF was removed from test

samples. Caprylic acid proved to be an effective pre-clearance step

yielding samples with no residual vWF (Figure S2) and very low

non-specific binding [25]. Like any pre analytical treatment, CA

treatment may potentially alter the distribution of antibody

populations in test samples [26]. The quantitative recovery of

B02C11 from CA-treated samples and the highly reproducible

behavior of test plasmas treated independently at different times

suggest that CA treatment did not alter the antibody profiles.

More exhaustive spike-recovery experiments were not possible due

to the lack of additional purified FVIII-specific human antibodies.

FVIII is a labile protein, so covalent immobilization followed by

repeated assays in which it is exposed to plasma would not be

feasible. The use of affinity-captured FVIII as the antigen,

although it limits the dynamic range of quantitative measure-

ments, allows a fresh antigen surface to be used for each testing

Table 3. Clinical data for subjects.

Subject Age HA Severity Baseline FVIII
Peak Titer
(BU/ml)a Inhibitor Treatment History

Hemophilia Genotype
(if known)

Predominantly IgG1 Response

17A 24 mild 6–14% 250 ITI failedb A2201P

N-008 2 moderate 3% 11 no ITI 14–21 delc

L-006 2 moderate 1% 87 ITI initiated R2304C

Predominantly IgG4 Response

F-014 19 severe ,1% 32 ITI partly successful int-22 invd

B-002 20 severe ,1% 667 ITI failed 9–11 dele

A-002 14 severe ,1% 256 ITI failed not inversionf

Mixed IgG Subtype Response

G-004 16 severe ,1% 1000+ no ITI int-22 inv

C-010 27 severe ,1% 80 ITI partly successful not inversion

D-006 10 severe ,1% 496 ITI failed not inversion

L-025 35 severe ,1% 191 no ITI not inversion

P-011 8 severe ,1% 1084.4 ITI failed int-22 inv

P-001 12 severe ,1% 308.7 ITI failed int-22 inv

F-006 27 severe ,0.25% 44 no ITI int-22 inv

A-008 31 severe ,1% 86 ITI successful int-22 inv

F-025 21 severe ,1% 43.8 ITI failed int-22 inv

C-019 60 severe ,1% 336 ITI failed int-22 inv

C-028 2 severe ,1% 96 ITI failed not inversion

Secondary and primary SPR binding signals (in RU) do not match

H-001 50 severe ,1% 742 no ITI int-22 inv

Autoimmune subjects

Q-011 77 autoimmune normal 6 prednisone autoimmune

Q-012 77 autoimmune normal 2 prednisone autoimmune

Q-033 79 autoimmune normal 39 prednisone autoimmune

Q-016 62 autoimmune normal 20 prednisone autoimmune

aBU/ml = Bethesda Units/milliliter;
bITI = Immune Tolerance Induction;
c14–21del = exons 14–21 deleted;
dint-22 inv = intron 22 inversion;
e9–11del = exons 9–11 deleted;
fnot inversion = not an intron-22 or intron-1 inversion mutation.
doi:10.1371/journal.pone.0061120.t003
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cycle. The capture format allows FVIII to be immobilized directly

from a solution while it is still in formulation buffer, alleviating

potential problems with antigen instability due to dilution and

buffer exchange. Additionally, it allows the assay to be performed

with different sources of FVIII without having to optimize

immobilization conditions individually. The Biacore T100 and

similar instruments have multiple flow cells that can be simulta-

neously exposed to test samples, so this assay format could easily

be adapted to carry out multiple parallel measurements, e.g. to

simultaneously test antibody responses to different FVIII products.

Although a variety of domain-specific FVIII mouse mAbs are

available, capture of FVIII via different domains was not

compared rigorously, primarily due to the lack of a well-

characterized polyclonal pooled control plasma sample. FVIII-

A1 specificity has not been reported for neutralizing anti-FVIII

antibodies, therefore an anti-A1 domain monoclonal antibody

(GMA-8004) was chosen to capture FVIII from plasma. Low pH,

Figure 1. Characterization of plasma samples by SPR. A) Representative BO2C11 calibration curve obtained from 8 independent SPR runs in
which this mAb was added to a FVIII- and inhibitor-negative plasma sample that was pretreated with CA. The plasma used in these experiments
showed no evidence of anti-FVIII antibodies when tested by SPR using the FVIII-capture format (not shown). The final added BO2C11 concentrations
are shown below the x-axis and the FVIII inhibitor titers indicated in Bethesda units (BU)/ml are based on the specific activity of BO2C11 = 7,000 BU/
mg [11]. B) Spike recovery of independent samples in which 1 mg/ml B02C11 was added to a FVIII- and inhibitor-negative plasma sample that was
subsequently diluted and treated with CA and then analyzed by SPR. The measured RU values were converted to concentrations in mg/ml (central
column) based on calibration curves generated for BO2C11 as shown in Figure 1A. The adjusted BO2C11 concentration (third column) is the
measured BO2C11 concentration corrected for the 0.79 preanalytical dilution factor C) Titration inhibition curves showing addition of increasing
concentrations of recombinant FVIII-C2 to CA-treated plasma from 4 inhibitor-positive subjects. The sample from subject Q-016 was diluted first in
order to bring the total anti-FVIII antibody titer below 5 mg/mL (33 nM). The FVIII-C2-specific antibody fraction was saturated above 100 nM FVIII-C2
in all 4 samples.
doi:10.1371/journal.pone.0061120.g001
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high concentration arginine is an effective eluant for the affinity

purification of antibodies [27], and it proved to be an effective

regeneration solution for this capture antibody.

Since the nominal molecular weights of human and mouse IgG

are similar, the use of monoclonal secondary antibodies with a

defined 1:1 binding stoichiometry provides additional information

that is not obtainable with polyclonal secondary antibodies. For

most test samples, the total cumulative binding signal from the

secondary mAbs corresponded closely (80–120%) to the primary

binding signal (Tables 1&2). This provided confidence that the

measured IgG subtype distribution accurately reflected the FVIII-

specific antibody response in the test plasma. The sample from

subject H-001 was a notable exception (Figure S3). This sample

exhibited a strong, partial FVIII-C2 specific response with a

complex, mixed IgG1+IgG2+IgG4 profile. However, the cumula-

tive secondary mAb signal accounted for only approximately 20%

of the primary signal in RUs. The cause of this discrepancy (i.e. a

non-IgG plasma component bound to captured FVIII) is

unknown. All of the subtype-specific detection mAbs used in this

study have been reported to be acceptable for detection of human

IgG subtypes by ELISA [13,28–30]. For H-001, an additional

IgG3-specific secondary antibody (clone HP6047) also failed to

detect a measurable IgG3 component to this anti-FVIII immune

response. Although no samples from this study exhibited a strong

IgG3 response, serial samples from L-006 reproducibly showed

trace IgG3 content.

Both the quantity of monoclonal antibody GMA-8004 that can

be covalently linked to the sensor and the relatively low

concentration of the FVIII drug product used as the antigen

source limit the ability to capture large quantities of FVIII and

achieve mass transport limited conditions that are necessary to

obtain accurate concentration measurements. Consequently there

was some variability in the calibration curves, especially at the

higher B02C11 concentrations. This necessitated the inclusion of a

calibration curve for every sequence of samples tested (Figure 1A).

Satisfactory and reproducible assay responses were obtained when

test samples were diluted to 0.2–5 mg/ml (1.3–33 nM) total anti-

FVIII antibody.

This was a preliminary study and suitable control samples with

well defined polyclonal distributions of human anti-FVIII

antibodies were not available to formally assess recovery after

CA treatment, accuracy, and precision. However, a number of

samples were tested multiple times over the course of assay

development and routine sample testing. The results from these

Figure 2. Representative binding curve (sensorgram) characterizing anti-FVIII antibodies in a human plasma sample. The sensorgram
depicts the injection and capture of FVIII, the injection of test plasma and capture of human anti-FVIII antibodies, and sequential 120 sec injections
and binding of mouse anti-human IgG1, anti-huIgG2, anti-huIgG3, and anti-huIgG4. The sequence of sample injections and wash steps is indicated
below the x-axis, while the sensorgram shows the sequential contributions to the signal in RU due to (1) capture of injected FVIII (2277 RU); (2)
attachment of antibodies from plasma to captured FVIII (839 RU); (3) attachment of anti-IgG1 secondary detection mAb to anti-FVIII antibodies that
are subclass IgG1 (191 RU); (4) attachment of anti-IgG2 secondary mAb to anti-FVIII antibodies that are subclass IgG2 (75 RU); (5) (negligible)
attachment of anti-IgG3 secondary mAb to anti-FVIII antibodies that are subclass IgG3 (29 RU); (6) attachment of anti-IgG4 secondary mAb to anti-
FVIII antibodies that are subclass IgG4 (558 RU). The baseline signal is set to 0 RU for the sensor surface with the immobilized capture antibody GMA-
8004. Red arrows indicate injection points for samples and black arrows indicate injections points for buffer to initiate the intermediate wash steps.
Note that a mismatch in the refractive index between the injected solution and the assay buffer results in a transient upward baseline shift in signal
(during the injection of the FVIII in formulation buffer) or a transient downward shift (during the injection of the CA treated plasma sample). Since the
secondary detection antibodies were diluted into assay buffer, such transient baseline shifts are less evident following the later injections. In order to
accurately measure the binding signals following injections of FVIII, plasma antibodies, and detection antibodies, baseline measurements were taken
10 seconds prior to each injection, and the binding level measurements (report points) were taken 30 seconds after the end of each injection, when
the sensor was again exposed to assay buffer and the refractive index shift was resolved. These report points were used to obtain the quantitative
results summarized in Tables 1&2.
doi:10.1371/journal.pone.0061120.g002
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tests provide a measure of the reproducibility of this assay format.

When multiple tests were performed, the number of tests (n = #)

and the standard deviation of each measurement (#) are indicated

in parentheses in Tables 1 and 2.

HA Phenotypes
The Concerted Action on Neutralizing Antibodies in severe

hemophilia A (CANAL) study reported that inhibitor development

generally occurs after a median of 14 exposure days [31]. The

present study enrolled HA subjects age 2 and above. Therefore, it

was not surprising that class switching had already occurred in

almost all of the inhibitor subjects. Table 3 summarizes

demographic and HA-related clinical information regarding the

inhibitor-positive subjects. Consistent with previous studies

[12,13,21], their immune responses to FVIII were dominated by

IgG1 and IgG4, with minor IgG2 and/or IgG3 components

observed in higher-titer, more complex responses. The most

notable responses from this panel of samples were for subjects 17A

(mild HA, infused multiple times), N-008 (moderately severe HA,

inhibitor detected after his 9th FVIII infusion, sample obtained 2

months later), and L-006 (severe HA, serial samples obtained

following initial inhibitor detection after 11 FVIII infusions), who

all demonstrated IgG1-restricted responses. Several other mild/

moderate HA subjects had no anti-FVIII antibodies detectable by

SPR. The IgG1-restricted responses may simply reflect limited

exposure to FVIII, as mild/moderate HA patients generally

Figure 3. Binding curves from matched plasma samples with and without the addition of saturating (1 mM) recombinant FVIII-C2.
(A–F) Black arrows pointing downwards indicate injection of CA treated plasma and red arrows indicate injections of anti-huIgG1, anti-huIgG2, anti-
huIgG3 and anti-huIgG4. Injection of FVIII and its capture on mAb GMA-8004 (0–700 s) are not shown. (G) The Biosensor assay format is shown
schematically.
doi:10.1371/journal.pone.0061120.g003

Phenotypes of Anti-Factor VIII Antibodies by SPR

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e61120



receive FVIII infusions only to treat severe bleeding or during

surgery.

At the other end of the spectrum, the autoimmune HA subjects

exhibited a complex response with respect to the IgG subtype

distribution, total anti-FVIII IgG concentration and apparent ratio

of anti-FVIII IgG to inhibitory antibodies (BU/ml). The

complexity of these responses suggests they were flare-ups of

previous sub-clinical autoimmune responses to FVIII. Prescott et al

(1997), measuring only inhibitory antibodies, observed that the

autoimmune responses were less complex than alloimmune HA

responses [17]. However, they noted that although inhibitors

primarily targeted only a few FVIII domains, their specificity for

additional FVIII domains was indicated by immunoprecipitation

experiments, suggesting that non-inhibitory antibodies were also

present. The present study also evaluated the fractions of

antibodies specific for the FVIII-C2 domain versus those specific

for other FVIII domains in the autoimmune subjects. Samples

from a larger number of subjects, and utilizing other FVIII

fragments or hybrid/mutant FVIII proteins for competition

assays, will be required to further characterize and quantify the

epitope specificity of anti-FVIII antibodies by SPR.

In general, solution phase competition experiments with

matched samples yield unequivocal, easily interpretable results.

This was observed in the present study, measuring the FVIII-C2

specific IgG response, and in earlier studies that identified the

domain specificity of inhibitory antibodies using the Bethesda

assay [17]. Alternative approaches, based on competition binding

to immobilized FVIII between mAbs with known specificity and

anti-FVIII antibodies in plasma [32–34], use of hybrid porcine/

human FVIII proteins [35,36], FVIII mutagenesis [36], phage

display [37] FVIII peptide-binding assays [38–40] and Luminex

technology [41] have also been described.

As noted above, competition studies with FVIII-C2 protein

consistently demonstrated that specificity for this domain was not

linked to specific IgG subtypes. This result is consistent with the

observations of Kessel et al. [37] and also with the concept that

IgG class switching occurs after epitope specificity has been

determined. Some measurement of the clonality of FVIII-specific

antibodies would be a valuable metric to gauge the complexity of

inhibitor responses. However, both IgG class switching and the

prevalence of IgG4 in the samples complicate the definition of

clonality. The desired information may actually be the clonality of

FVIII-specific precursor B-cells prior to class switching. It is

important to note that in IgG4-dominated responses, ELISAs

using anti-kappa and anti-lambda chain secondary antibodies to

address clonality of the responses may be misleading since

circulating IgG4 molecules are functionally ‘‘bi-clonal’’ due to

exchange of half-IgG4 molecules with other (non FVIII-specific)

IgG4 antibodies [42–44].

Conclusions
The SPR method described herein is an easily adaptable assay

format with which to characterize anti-FVIII antibody responses.

The assay sensitivity is satisfactory to characterize most inhibitors

detectable using the Bethesda assay, as well as samples containing

anti-FVIII antibodies (neutralizing+non-neutralizing) with con-

centrations .0.2 mg/ml. Several observations were notable: As

has already been reported, the IgG4 subtype was commonly

observed, typically in mixed subtype responses. However, three

HA subjects with inhibitor responses (2 emerging, 1 chronic)

demonstrated IgG1-restricted responses. Also, most subjects

exhibited partial FVIII-C2 specificity. Autoimmune subjects

exhibited complex responses involving multiple IgG subtypes,

multiple domain specificities, high total anti-FVIII antibody

concentrations, and an apparently high ratio of total to inhibitory

anti FVIII IgG. The present study analyzed plasma samples from

22 inhibitor subjects, including serial samples from two HA

subjects with a recently diagnosed inhibitor and two acquired HA

subjects following initial detection of their inhibitor. Future studies

analyzing a larger set of plasma samples will compare the anti-

FVIII total antibody and antibody-subtype titers estimated from

SPR sensorgrams with titers derived from quantitative ELISA

assays [13]. Such larger studies will also establish the relative

sensitivity of SPR, ELISA and Bethesda assays in detecting and

characterizing anti-FVIII antibody responses. The SPR platform

described herein is a promising approach to carry out future

prospective studies of FVIII inhibitors and other anti-drug

antibody responses. Because of the small plasma volumes required

and the quick assay turnaround time, this method is especially

suitable for batch analysis of multiple samples, e.g. central

laboratory characterization of antibody responses to FVIII or

other clinically important antigens.

Supporting Information

Figure S1 Binding kinetics of FVIII captured on the
anti-FVIII-A1 domain antibody GMA-8004. A. MAb GMA-

8004 was immobilized on a CM5 chip as described in Methods.

Recombinate was then injected and the binding kinetics were

measured at flow rates 5 ml/min and 30 ml/min. X-offset and y-

offset were performed using the Biacore software to match the end

of the association phase for the 5 ml/min and 30 ml/min curves. B.

Magnified view of the dissociation over 30 min, which was

,10 RU at 5 ml/min (compared to the initial binding signal of

3215 RU) vs. ,5 RU at 30 ml/min (compared to the initial

binding signal of 865 RU). At both flow rates the total dissociation

over 30 min was ,1% of the initial signal in RUs. Note that the

capture times were not adjusted to yield matching capture levels at

the different flow rates so the amount of captured FVIII is lower at

the lower flow rate.

(TIF)

Figure S2 ELISA assays showing VWF in serially diluted
Untreated and CA-treated plasma and serum samples.
No VWF was detected in the CA-treated samples.

(TIF)

Figure S3 Binding curves for subject H-001 obtained in
the presence and absence of excess (1 mM) FVIII-C2.
Quantitative measurements (percent of the response derived from

each human IgG subtype, total anti-FVIII IgG concentration (mg/

ml), and the ratio of secondary to primary binding signal in %)

obtained from the binding curves are tabulated in Table 1.

(TIF)

Table S1 Subjects and samples.
(DOC)

Supplementary File S1 A detailed description of FVIII

dissociation kinetics from capture antibody GMA-8004 is provided

and the preanalytical treatment of plasma to remove vWF is

described.

(DOC)
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