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Abstract

Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short
term memory representations that an attractor network modeling a cortical local network can simultaneously maintain
active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9
short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each
population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without
synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates
because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the
cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the
continuing neuronal firing in those pools. The findings have implications for understanding how several items can be
maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain,
and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal
aging.
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Introduction

Short term memory can be implemented in for example the

prefrontal cortex by the continuing firing of neurons during the

short term memory period [1–3]. Here, we show how synaptic

facilitation in the recurrent synaptic connections can increase very

considerably the number of short term memories that can be

maintained simultaneously active in a standard model of this

continuing firing, a cortical attractor network [4–7], and can make

the short term memory system much more robust, i.e. less sensitive

to the selection of model parameters such as the amount of

inhibition. The findings are of importance for understanding how

several different items can be maintained simultaneously in

working memory [8], the impairments of cognitive function

including working memory and attention in schizophrenia and in

aging that can occur when the operation of cortical systems for

short term memory and attention are impaired [7,9–12], and how

cortical areas involved in language processing can keep active

several items, such as the subjects of a sentence [13].

George Miller published a paper in 1956 entitled ‘‘The magic

number 7, plus or minus two: some limits on our capacity for

processing information’’ [14]. A key issue was that the capacity of

short term memory (for example our memory for a list of

telephone numbers) is approximately 762 items. For visual short

term memory, the capacity may be closer to 4 items [8,15,16].

Kohonen and other pioneers made neuronal network models

that could maintain their activity during a short term memory

period [17–19]. A key to the operation of such autoassociation

networks was the strong recurrent synaptic connectivity within

each population of excitatory neurons, and feedback inhibition to

all the excitatory neurons to maintain the activity within limits,

and just some populations firing actively. Hopfield introduced the

methods of statistical mechanics from theoretical physics to allow

for example the calculation of the capacity of what became known

as attractor networks [4,20], that was extended to more

biologically plausible networks with diluted connectivity, sparse

representations, graded firing rate representations, and the speed

of operation of dynamically realistic integrate-and-fire neuronal

attractor networks [6,21–24].

To provide background information, we note that there are

currently a number of theories regarding the underlying mecha-

nisms that yield limits to the capacity of short term memory. The

main two competing models are ‘‘fixed capacity models’’ (or slot

models) [25], and dynamic allocation models (or resource models)

[26]. In fixed capacity models, all items are recalled with equal

precision up to the limit (3–4 items) with no further information

being stored beyond this limit, whereas in dynamic allocation

models, the limited resources are shared out between items but not

necessarily equally. This is an issue that has recently received

substantial attention (e.g. Wei et al. [27]), and our work does not

directly tackle this question, although we suggest that with respect

to formal network models, this issue arises with continuous

attractor networks. Instead, we focus on another fundamental

aspect and investigate the biophysical mechanisms that establish
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such capacity limits in discrete attractor networks, and how this

short term memory capacity can be enhanced. Indeed, the issue

arises of the extent to which discrete (as contrasted with continuous

[28]) attractor networks with distinct subsets of neurons for each

memory are able to maintain more than one memory simulta-

neously active. One memory at a time is typical, and it was shown

that with overlapping memory patterns, more than 1–2 simulta-

neously active memories are difficult due to interference between

the patterns even when the patterns are graded [29]. Most

investigations have involved non-overlapping patterns as we do

here, and it has been found difficult to maintain more than

approximately 4 memories simultaneously active [30,31]. Non-

overlapping patterns refers to patterns in which each population of

neurons representing a memory is separate, and this has

advantages in the mean field analysis and the simulations.

However, interference and cross-talk between the different pools

was a feature of the simulations described here, and was

implemented through w2 as shown below. Nonetheless, by using

sparse representations with a = 0.01 (where the sparseness a is the

proportion of neurons that is active for any one memory pattern),

Amit et al. were able to maintain six memory patterns simulta-

neously active in short term memory [32], and mean field analysis

showed that having reasonable number of patterns simultaneously

active could be stable with sparse representations [30,32]. Here,

we show how the addition of synaptic facilitation to this approach

can increase very considerably the number of short term memories

that can be maintained simultaneously active, and can make the

short term memory system much more robust.

Methods

The attractor network architecture for short term memory that

was simulated is shown in Fig. 1. The network investigated had 10

excitatory pools of neurons, S1–S10, and one inhibitory pool of

neurons, with the synaptic weights shown in Fig. 1. The global

inhibition in the model reflects the evidence that in a local area of

the cerebral cortex, inhibitory neurons are connected to excitatory

neurons within that local area [33]. In the network, the proportion

of neurons active for any one representation, that is the sparseness

with binary neurons, was 0.1, and this value was chosen as this is

in the order of the sparseness of the representation in the cerebral

cortex [34]. A full description of the integrate-and-fire attractor

single network is provided below in subsections ‘Network’ and

‘Spiking Dynamics’. The network has a mean field equivalent

allowing further quantitative analysis of the stability conditions

and capacity, and the way in which we used this in the context of

synaptic facilitation is described in subsection ‘Mean field analysis’.

To the standard integrate-and-fire network [7,35–37], we added

synaptic facilitation, which has been incorporated into such

networks, for example to account for the low firing rates in the

delay periods of some short term memory tasks [38], in decision

tasks with responses delayed over a period in which the firing rate

may be low [39], and decision-making with sequentially presented

stimuli [40]. In contrast to Mongillo et al.’s work [38], we

investigate the neurodynamical origin of short term memory

capacity limits, and assume that sustained neural activation (as

opposed to alternative mechanisms such as neural oscillations

and/or patterns of synaptic strengths already reviewed by the

authors elsewhere [31]) is the mechanism underlying the encoding

and maintenance of multiple items in short-term memory.

Synaptic facilitation is common in higher cortical areas such as

the prefrontal cortex [41–43] implicated in working memory and

attention [2,8]. Synaptic facilitation is caused for example by the

increased accumulation of residual calcium at the presynaptic

terminals, which increases the probability of neurotransmitter

release [41]. Short term synaptic facilitation was implemented

using a phenomenological model of calcium-mediated transmis-

sion [38]. The synaptic efficacy of the recurrent connections

between all of the excitatory neurons was modulated by the

utilization parameter u (the fraction of resources used) reflecting

the calcium level. When a spike reaches the presynaptic terminal,

calcium influx in the presynaptic terminal causes an increase of u

which increases the release probability of transmitter and thus the

strength of that synapse. The time constant of the decay of the

synaptic facilitation is regulated by a parameter tF which

experimentally is around 1–2 s [38,43]. The value for the baseline

utilization factor U (0.15) and for tF (1.5 s) used here are similar to

values reported experimentally and used elsewhere [38–40,43]. In

more detail, the strength of each recurrent excitatory synapse j is

multiplied by the presynaptic utilization factor uj (t), which is

described by the following dynamics:

duj(t)

dt
~

U{uj(t)

tF

zU(1{uj(t))
X

k

d(t{tk
j ), ð1Þ

where tk
j is the time of the corresponding presynaptic spike k. The

first term shows how the synaptic utilization factor uj decays to the

baseline utilization factor U = 0.15 with time constant

tF = 1500 ms, and the second term shows how uj is increased by

each presynaptic action potential k to reach a maximum value of 1

when the neuron is firing fast. The modulation by the presynaptic

utilization factor u is implemented by multiplying the synaptic

weight by u to produce an effective synaptic weight weff. This

models the underlying synaptic processes [38].

Network
The integrate-and-fire attractor network, developed from an

earlier model [7,35–37] but with synaptic facilitation added [38],

contains NE = 800 pyramidal cells (excitatory) and NI = 200

interneurons (inhibitory). There are ten populations or pools of

excitatory neurons each with 0.1 NE neurons (i.e. 80 neurons). The

network is fully connected. Neurons within the selective popula-

tion are coupled, by a factor w+ = 2.3 (unless otherwise stated)

above the baseline connection synaptic weight w = 1. Connections

to inhibitory cells are set to the baseline level, w = 1, and from the

inhibitory neurons winh = 0.945 (unless otherwise stated).

To model spontaneous background activity, every neuron in the

network is coupled through Next = 800 synaptic connections to an

external source of Poisson-distributed, independent spike trains of

rate 3.05 Hz per synapse, so that each neuron received 2440

spikes/s. The presence of cue stimuli to initiate the short term

memory was modeled by an increase of l to 3.3125 spikes/

synapse. This value of l was applied to any of the pools S1 to S10

(via l1 to l10 as illustrated in Fig. 1 of the paper) during the cue

delivery period, which was from 500–1500 ms in the simulations.

For pools not being cued on, and for the inhibitory neurons, l
remained at lext during the cue delivery period and throughout

the trial. After the cue had been delivered to the pools selected for

short term memory for that trial, l returned to the default value of

lext = 3.05 Hz/synapse for the remainder of the trial (1500–

4500 ms).

Spiking Dynamics
The model is based on integrate-and-fire (IF) neurons. The

subthreshold membrane potential V of a neuron evolves according

to
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Cm

dV (t)

dt
~{gm(V (t){VL){Isyn(t), ð2Þ

where Cm is the membrane capacitance (see numerical values in

Table 1), gm is the membrane leak conductance, VL is the resting

potential, and Isyn is the synaptic current.

The synaptic current includes glutamatergic excitatory compo-

nents (mediated by AMPA and NMDA receptors) and inhibitory

components (mediated by GABA). External cells contribute to the

current only through AMPA receptors. The total current is given

by

Isyn(t)~IAMPA,ext(t)zIAMPA,rec(t)zINMDA(t)zIGABA(t) ð3Þ

with the different currents defined by

IAMPA,ext(t)~gAMPA,ext V (t){VEð Þ
XNext

j~1

sAMPA,ext
j (t) ð4Þ

IAMPA,rec(t)~gAMPA,rec V (t){VEð Þ
XNE

j~1

wjs
AMPA,rec
j (t)uj(t) ð5Þ

INMDA(t)~
gNMDA(V (t){VE)

1zc exp ({bV (t))

XNE

j~1

wjs
NMDA
j (t) uj(t) ð6Þ

IGABA(t)~gGABA(V (t){VI )
XNI

j~1

sGABA
j (t) ð7Þ

where wj are the synaptic weights, sx
j is the fraction of open

channels for each receptor, and gx is the synaptic conductance for

receptor x = AMPA, NMDA, GABA. Synaptic facilitation is

implemented through the utilization factor uj which modulates

the recurrent excitatory synapses, specifically the synaptic gating

variables s as can be seen from Equations 5 and 6. The values for

the synaptic conductances and the reversal potentials VE and VI

are given in Table 1. NMDA currents are voltage dependent and

controlled by the intracellular magnesium concentration

([Mg2+] = 1 mM), with parameters c = [Mg2+]/(3.57 mM)

= 0.280 and b = 0.062 (mV) 21.

The fraction of open channels in cell j, for all receptors, is

described by the following differential equations, where _ss is the

derivative of s in time:

_ssAMPA,ext
j (t)~{sAMPA,ext

j (t)=tAMPAz
X

k

d(t{tk
j ) ð8Þ

Figure 1. The attractor network model. The single network is fully connected. The excitatory neurons are divided into N selective pools or
neuronal populations S1–SN of which three are shown, S1, S2 and SN. There were typically N = 10 short term memory populations of neurons in the
integrate-and-fire networks simulated, and analyzed with mean field analyses. Each of these excitatory pools represents one short term memory by
maintaining its activity during a delay period after a cue has been applied. We show that if the excitatory connections show synaptic facilitation, then
any number in the range 0–9 of the pools will maintain its activity in the delay period depending on which set of pools was activated by a cue l1, l2,
… l10. The synaptic connections have strengths that are consistent with associative learning. In particular, there are strong intra-pool connection
strengths w+, and weaker between-pool synaptic connection strengths of w2. The excitatory neurons receive inputs from the inhibitory neurons with
synaptic connection strength winh. The other connection strengths are 1. w+ was typically 2.3, w2 0.87, and winh 0.945 as determined using a modified
mean field analysis. The integrate-and-fire spiking network typically contained 1000 neurons, with 80 in each of the 10 non-overlapping short term
memory (STM) excitatory pools, and 200 in the inhibitory pool. Each neuron in the network also receives external Poisson inputs lext from 800
external neurons at a typical rate of 3.05 Hz/synapse to simulate the effect of inputs coming from other brain areas.
doi:10.1371/journal.pone.0061078.g001
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_ssAMPA,rec
j (t)~{sAMPA,rec

j (t)=tAMPAz
X

k

d(t{tk
j ) ð9Þ

_ssNMDA
j (t)~{sNMDA

j (t)=tNMDAzaxj(t)(1{sNMDA
j (t)) ð10Þ

_xx(t)~{x(t)=tNMDA,risez
X

k

d(t{tk
j ) ð11Þ

_ssGABA
j (t)~{sGABA

j (t)=tGABAz
X

k

d(t{tk
j ) ð12Þ

where the rise time constant for NMDA currents is tNMDA,rise = 2 ms,

and a= 0.5 ms21; rise time constants for AMPA and GABA

currents are neglected. Decay time constants for AMPA, NMDA,

and GABA synapses are tAMPA = 2 ms, tNMDA,decay = 100 ms, and

tGABA = 10 ms. The sums over k represent a sum over spikes emitted

by pre-synaptic neuron j at time tk
j .

Mean Field Analysis
To complement the integrate-and-fire simulations described in

the paper, we performed mean field analyses of the network when

it is operating with synaptic facilitation. The mean field analysis

provides a simplification of the integrate-and-fire dynamics

considered in the spiking simulations, which are computationally

expensive and therefore not suitable for extensive parameter

explorations, though they are important for establishing how the

system operates with stochastic dynamics when it is of finite size

and has noise, that is randomness, introduced by the almost

random spiking times of the neurons for a given mean rate [7].

The mean field analyses allow the different operating regimes of

the network to be established analytically [7,44,45], including in

our case proving the stability of the system when multiple short

term memories are simultaneously active. The mean field analyses

also allow exhaustive parameter explorations to define the values

of the parameters within which different operating regimes of the

network occur. The mean field analysis is noiseless, that is there is

no randomness introduced by the almost random spiking times of

the neurons for a given mean firing rate, and is in this respect

equivalent to an infinitely large integrate-and-fire spiking simula-

tion. The network that we simulated has, without the synaptic

dynamics, a mean field equivalent that was developed by Brunel

and Wang [35] (see Text S1 for a full account of the original

method). Here, we consider that mean field approach but extend

and apply it to the case where synaptic facilitation is present in the

network. In the following we describe how the conventional mean

field approach has been extended.

Synaptic facilitation in the mean field approach. We

extended and modified the standard mean field approach [7,35] to

incorporate the effects of synaptic facilitation. As can be seen from

Fig. 2c, the synaptic facilitation u(t) increases particularly for each

excitatory subpopulation that has received external stimulation

produced by the cues, and reaches a value close to 1 during the

delay period. Only small increases occur in the pools that have not

received this external stimulation by a memory cue (and those

increases occur because of effects produced through the w2

connections between the excitatory pools shown in Fig. 1). Since

u(t) converges in both cases to a given value, we can then define a

new effective synaptic strength (wj)eff which operates during the

steady state, and this opens the possibility to perform a mean field

analysis of the network endowed with STP. The effective synaptic

strengths are defined as:

(wj)eff~uj?wj ð13Þ

where uj‘ is the asymptotic synaptic facilitation value that is

estimated from the average uj(t) observed in the last 500 ms of the

delay period of the spiking network simulations. The protocol used

in such simulations is described in detail in the next section. A

conventional mean field analysis with the effective synaptic

strengths can then be performed and can be used to systematically

scan the parameter space {w+, winh} with the aim to reproduce a

short term memory regime in which only the stimulated (i.e. cued)

subpopulations remain active during the delay period.

Results

Integrate-and-fire Simulations
Results of the integrate-and-fire simulations of short term

memory are shown in Fig. 2. After a 500 ms period of spontaneous

activity, cues l12l7 were applied to excitatory neuron pools S1 to

S7 during the period 500–1500 ms. This produced a high firing

rate of approximately 70 spikes/s in pools S1–S7 (Fig. 2b), and the

synaptic utilization factor uj increased in this period to values close

to 1 (Fig. 2c). The inputs l82l10 to pools S8–S10 remained at the

baseline level of 3.05 Hz/synapse throughout the trial, and

therefore their firing rates did not increase in the period 500–

1500 ms, and correspondingly the utilization factor u for these

pools remained low. At the end of the cue period, l12l7 returned

to the baseline level of 3.05 Hz/synapse, but the neurons in pools

1–7 continued to fire at a high rate of approximately 40 spikes/s,

Table 1. Parameters used in the integrate-and-fire
simulations.

Cm (excitatory) 0.5 nF

Cm (inhibitory) 0.2 nF

gm (excitatory) 25 nS

gm (inhibitory) 20 nS

VL 270 mV

Vthr 250 mV

Vreset 255 mV

VE 0 mV

VI 270 mV

gAMPA,ext (excitatory) 2.08 nS

gAMPA,rec (excitatory) 0.104 nS

gNMDA (excitatory) 0.327 nS

gGABA (excitatory) 1.25 nS

gAMPA,ext (inhibitory) 1.62 nS

gAMPA,rec (inhibitory) 0.081 nS

gNMDA (inhibitory) 0.258 nS

gGABA (inhibitory) 0.973 nS

tNMDA, decay 100 ms

tNMDA,rise 2 ms

tAMPA 2 ms

tGABA 10 ms

a 0.5 ms21

doi:10.1371/journal.pone.0061078.t001
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well above the baseline rate of 3 spikes/s in the spontaneous

period. The continuing relatively high firing rate in pools S1–S7

was sufficient to keep via the recurrent collateral connections the

synaptic utilization factor within such pools relatively high (Fig. 2c),

and that in turn was what kept each of the selective pools S1–S7

continuing to fire fast. That high firing rate in pools S1–S7 was the

implementation of the short term memory. In contrast, the firing

in the uncued pools S8–S10 remained low, showing that the short

term memory was selective for just whichever pools of neurons had

been cued on earlier (Fig. 2a,b). The inhibition prevented the

effects of interference between the different neuronal pools

implemented through w2producing high firing rates in the uncued

neuronal pools.

In this scenario, the synaptic facilitation in the recurrent

connections is regenerated by the continuing firing of the

originally cued pools. Thus two factors are responsible for

enabling the firing to continue for long periods of many seconds

after the cues have been removed. The first is the recurrent

collateral activity itself implemented in the architecture of the

network. Second, it is the regenerating synaptic facilitation just for

the pools that were cued and had high firing as a result, which

gives the advantage in the competition implemented by the

inhibitory neurons to the previously cued pools, relative to the

previously uncued pools.

Further evidence for the importance of the synaptic facilitation

in the process is that if there was a short delay after the end of the

cue period in the neuronal firing (produced in the simulations by a

decrease of lext to 0), then the firing in the previously cued pools

could be restored by restoring lext within approximately 1 s,

before the synaptic facilitation had decayed too far. However, if

lext was delayed for longer (e.g. 3 s) so that the synaptic facilitation

had decayed, then the firing of the previously cued pools could no

longer be selectively restored by restoring lext at its baseline or at

any other value. An example is shown in Fig. 3, in which after the

cue period from 500–1500 ms, there was a delay period with lext

for the excitatory neurons set to 0 for 500 ms. When lext was

restored to all excitatory pools (in this case with a value of

3.125 Hz/synapse) at time t = 2000 ms, there was sufficient

synaptic facilitation remaining (Fig. 3b) to produce firing

selectively in the previously cued pools (Fig. 3a), and thus to

restore the short term memory. With delays of longer than

approximately 2 s (depending on lext), the synaptic facilitation had

dissipated so much that selective recall of the short term memories

became very poor. This helps to show the importance of the

synaptic facilitation in the maintenance and even restoration of in

this case multiple short term memory representations.

In these simulations, with the parameters shown, we were able

to keep any number between 0 and 9 of the pools of memory that

represent each short term memory simultaneously active,

depending on which pools were activated by the cue. The system

described thus has the strength that for a fixed set of parameters, it

can flexibly keep active any number of memories from 0–9.

Without synaptic facilitation, we were able to maintain only 6

pools simultaneously active (w+ = 2.3, winh = 0.98) in the same

network (Fig. 4b). Thus synaptic facilitation considerably increased

Figure 2. Short term memory with 7 simultaneously active
memories. After a 0.5 s period of spontaneous activity (with lext at the
baseline level of 3.05 Hz/synapse), cues l12l7 were applied to
excitatory neuron pools S1 to S7 during the period 500–1500 ms.
(l12l7 were applied by increasing lext to 3.3125 Hz/synapse for just
these 7 pools during the cue period.) As shown on the rastergram (a)
and peristimulus time histogram of the firing rate (b) this produced a
high firing rate of approximately 70 spikes/s in each of the pools S1–S7
(b, solid lines), and the synaptic utilization factor uj increased in this
period to values close to 1 (c, solid line). In the rastergram (a) each
vertical line is a spike from a single neuron, and each row shows the
spikes for a single neuron. 10 neurons chosen at random are shown for
each pool of neurons. The input to pools l82l10 remained at the
baseline level of 3.05 Hz/synapse throughout the trial, and therefore
their firing rates did not increase in the period 500–1500 ms (b, dashed
lines), and correspondingly the utilization factor u for these pools

remained low (c, dashed lines). At the end of the cue period, l12l7

returned to the baseline level of 3.05 Hz/synapse, but in the short term
memory period from 1500–4500 ms the neurons in pools 1–7
continued to fire at a high rate of approximately 40 spikes/s (b, solid
lines), well above the baseline in the spontaneous period of 3 spikes/s.
Moreover, the synaptic facilitation uj remained high for pools 1–7
during the short term memory period from 1500–4500 ms (c, solid
lines).
doi:10.1371/journal.pone.0061078.g002
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the number of short term memories that could be maintained

simultaneously from 6 to 9 with the sparseness a = 0.1. We note

that the condition where the number of cued short term memory

pools cued was 0 is an important condition that was satisfied in the

results described, and shows that the network remained stably in

its low firing rate spontaneous state when no pools were cued. The

mean field analyses also confirmed this.

We investigated what parameters may be important in setting

the limit on the number of short term memories that can be

maintained active simultaneously. A key parameter was found to

be the inhibitory synaptic weights in the model shown in Fig. 1.

Fig. 4a shows the upper and lower values for the inhibitory

synaptic weights in the network as a function of the number of

memories that are simultaneously active. The data are from the

integrate-and-fire simulations confirmed with the modified mean

field analyses. For example, the data plotted for the value 3 short

term memories simultaneously active are the upper value that is

possible in the network for 3 short term memories to be

simultaneously active, and the lower value shows the lowest value

of inhibition at which 0 memories can be active, that is, when the

spontaneous firing state is stable without any cues being applied.

Lower values of winh than this resulted in the spontaneous state

with no cues applied jumping into a high firing rate attractor state

with rates typical of those found in the cerebral cortex [34]. The

simulations were run with the standard value of w+ = 2.3, and all

the other parameters at their standard values described elsewhere

in the paper. The upper limit shown in Fig. 4a defines the level of

inhibition above which the inhibition is too great for that number

of short term memories to be simultaneously active. Clearly if

more memories must be kept simultaneously active, the level of

inhibition must not be too great, as otherwise some of the active

attractors will be quenched. What Fig. 4a shows is that the upper

limit as expected decreases as the number of memories required to

be active increases, and that very interestingly the upper limit

reaches the lower limit at approximately 9 memories simulta-

neously active in this short term memory system. This leads to the

concept that the number of short term memory representations

that can be kept simultaneously active may in practice be limited

by (among other possible factors) the precision with which a

biological system must tune winh. With any number from 0 to 9

memories simultaneously active, the tolerance with which winh

must be set is very fine. This leads us to suggest that at least in this

model, 7 plus or minus 2 short term memories simultaneously

active in a single attractor network may be a limit that is set at least

in part by how finely in practice the inhibition needs to be tuned as

the number of simultaneously active short term memories reaches

7 and above, and also by the sparseness of the representation,

which in the cerebral cortex is not very sparse [34].

In order to investigate our hypothesis that synaptic facilitation

can not only increase the number of memories that can be

maintained simultaneously active, but may also make the system

more robust with respect to its sensitivity to small changes in the

parameters, we show the result in Fig. 4b of simulating the same

short term memory network, but without synaptic facilitation. It is

clear that not only is the capacity less without the effects of the

synaptic facilitation used for Fig. 4a, but also for a given number of

short term memories simultaneously active, the system without

synaptic facilitation is more sensitive to small parameter changes,

such as of winh as shown in Fig. 4b. In fact, it can be observed that

Dw = (winh)high- (winh)low is larger for the same number of memories

(greater than 2) when the system is endowed with synaptic

facilitation. Thus the synaptic facilitation mechanism has the

advantage that it also makes the system more robust, and thus

more biologically plausible, as well as increasing the short term

memory capacity. We emphasize that this type of robustness,

relative insensitivity to the exact values of the parameters, is likely

to be important in biological systems, in which specification of the

properties of neurons and networks is not expected to be set with

high precision.

Mean Field Approach
We complemented these integrate-and-fire simulations with

mean field analyses to define the areas of the parameter space

within which these multiple item short term memory effects were

found, and to confirm by analytic methods the stability of the

multiple short term memory system that we describe. The system

analyzed with the mean field approach was equivalent to that

Figure 3. Multiple item short term memory can be selectively
restored after a delay showing the importance of the synaptic
facilitation in the short term memory process. After the cue
period from 500–1500 ms, there was a delay period with lext for the
excitatory neurons set to 0 for 500 ms. When lext was restored to all
excitatory pools (in this case with a value of 3.125 Hz/synapse) at time
t = 2000 ms, there was sufficient synaptic facilitation remaining (b) to
produce firing selectively in the previously cued pools (a), and thus to
restore the short term memory. Conventions as in Fig. 2. Without
synaptic facilitation, the network failed to recover the previously cued
memories.
doi:10.1371/journal.pone.0061078.g003
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described for the integrate-and-fire simulations [7,35], that is it

had 10 specific pools each with sparseness a = 0.1, one inhibitory

pool, and, unless otherwise specified, the same synaptic weights as

the integrate-and-fire simulations described (see Fig. 1, and the

Methods). A novel aspect of the mean field implementation used

was that we estimated the effective synaptic weights that resulted

Figure 4. (a) The upper and lower values for the inhibitory synaptic weights in the network as a function of the number of
memories that are simultaneously active. For example, the data plotted for the value 3 short term memories simultaneously active are the
upper value that is possible in the network for 3 short term memories to be simultaneously active, and the lower value shows the lowest value of
inhibition at which 0 memories can be active, that is, when the spontaneous firing state is stable without any cues being applied. The integrate-and-
fire simulations were run with the standard value of w+ = 2.3, and all the other parameters at their standard values described elsewhere in the paper.
The results are from the integrate-and-fire spiking simulations, and from the modified mean field analyses. (b) The same as (a), but without synaptic
facilitation. The axes are to the same scale as in (a), but a slightly larger value of winh is needed to maintain stability of the spontaneous state as the
effective w+ is now exactly 2.3, with no modulation by u.
doi:10.1371/journal.pone.0061078.g004
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from the effects of the synaptic facilitation using the integrate-and-

fire spiking simulations, and used those values for the effective

synaptic weights in the modified mean field analyses described in

detail in the methods. A hypothesis in which we were especially

interested was that the parameter space for multiple short term

memory became smaller, and therefore harder to prescribe when

the network was built biologically, as the number 762 was

exceeded. Of particular interest was the parameter winh, which in

previous work with this type of integrate-and-fire network in which

one active pool was being investigated had the value 1.0 [46,47].

In order to allow multiple memory representations to be active,

winh was reduced to a lower value, typically 0.945, for the

simulations described here. This reduction of inhibition was

important in reducing the competition between the multiple active

short term memory pools. If it was reduced too much, then the

spontaneous state became unstable. If it was increased too much

towards 1.0, then it was difficult to maintain active more than one

pool of cued neurons. With the mean field analyses, we were able

to show that the range of values of winh, in which 3 or 7 multiple

pools could be kept simultaneously active was smaller than when

the requirement was just to maintain 1 pool active, as shown in

Fig. 4a and 5. Moreover, with the modified mean field analyses it

was possible to find a value of winh that allowed 9 out of the ten

pools to remain simultaneously active (Fig. 4a and 5). The mean

field approach thus allowed us to show analytically that the system

we describe with synaptic facilitation could maintain up to 9/10

separate pools of neurons simultaneously active.

In more detail, for each winh value, a set of effective synaptic

weights for (w+)eff was obtained from the spiking simulations, and

the modified mean field analysis was then performed on the

resulting network. Table 2 shows the effective w+ for the cued

pools, and for the non-cued pools. These values for (w+)eff were

obtained from the spiking simulations by multiplying the value of

w+ by the value of u‘ that was obtained, and these values of (w+)eff

were used in the mean field analyses. winh was 0.945. The other

values were the same as those used in the conventional mean field

approach and in the spiking simulations shown in Fig. 2.

Fig. 5 shows the results of the modified mean field analyses. The

values for the parameter winh within which different operating

regimes occur are shown for different numbers of cued short term

memory pools. The first regime is with winh ,0.94, in which case

there is insufficent inhibition in the network, and some of the pools

start firing even when no pools have been cued. This regime of

Figure 5. Mean field analysis showing the values of the inhibitory synaptic weights winh (between the lower and upper limits)
within which different numbers of simultaneously active short term memories can be maintained stably. The different regimes are
described in the text. There were 10 selective pools and the pattern of effective synaptic strengths (w+)eff and (w2)eff was determined from the
corresponding spiking simulations. The coding level of the network was set to a = 0.1. The inset graph shows the firing rate of the subpopulations
which have been stimulated as derived from the mean field analysis in the multiple active short term memory regime for different short term
memory set sizes. For all the set sizes the firing rates obtained are physiologically plausible. The results displayed in this figure correspond to the
results for the integrate-and-fire network shown in Fig. 4.
doi:10.1371/journal.pone.0061078.g005

Table 2. Mean field analyses.

Number of pools (w+)eff cued (w+)eff noncued

0 0.97 0.97

1 2.21 1.2

3 2.21 0.97

7 2.16 0.67

9 2.14 0.62

The values for the effective synaptic weights (w+)eff for the cued and the non-
cued pools, for different numbers of cued pools as calculated from Equation 13.
doi:10.1371/journal.pone.0061078.t002
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unstable firing of the uncued state when the neurons should be

firing at the spontaneous rate of approximately 3 Hz is labeled

‘unstable spontaneous activity’ in Fig. 5.

The second regime labeled ‘multiple simultaneous STM regime’

in Fig. 5 is the regime of interest in this paper. The region lies

above the dashed line in Fig. 5 of unstable spontaneous activity

and below the solid line. In this area in Fig. 5, any number of cued

memories can be maintained stably. It is clear from Fig. 5 that for

just one cued memory, the value for winh can be anywhere

between 0.94 and 1.07. For any 3 of the 10 possible STMs to be

stable when cued on, the value for winh can be anywhere between

0.94 and 1.02. For any 7 of the 10 possible STMs to be stable

when cued on, the value for winh can be anywhere between 0.94

and 0.96. Thus winh must be set much more accurately when the

required capacity is for any 7 of the 10 possible short term memory

attractor states to be maintained stably. For any 9 of the 10

possible STMs to be stable when cued on, the value for winh must

be 0.94 and nothing else will do. The mean field analysis thus

confirms that it is possible to maintain 9/10 possible short term

memory states active when the sparse of the representation is 0.1

with binary neurons. The useful operating region for multiple

simultaneously active short term memories is thus between the low

limit and high limit boundaries shown in Fig. 5 that are established

by the modified mean field analyses. Previous mean field analyses

have already demonstrated that without synaptic facilitation it is

difficult to find a value for which more than 5 short term memories

can be maintained simultaneously active [30,31]. We have also

replicated such findings (results not shown) in this study although,

as discussed by Dempere-Marco et al. [31], when the traditional

mean field approach is used, the role of the dynamics during the

stimulation period must be carefully considered. The mean field

analysis thus confirms that synaptic facilitation is an important

mechanism by which the number of short term memories that can

be maintained simultaneously active can be increased.

The third regime shown in Fig. 5 and labeled ‘only some cued

memories are stable simultaneously’ refers to the case in which

winh is above the solid line, and is so large that only a subset of the

cued short term memory pools can maintain their activity. That is,

the high firing rates expected of all cued pools cannot be

maintained stably. Thus the multiple short term memory

capability fails when winh increases to a value above the solid

line in Fig. 5. The fourth regime shown in Fig. 5 is above the upper

dashed line, when winh is so large that no cued pools maintain their

high firing rates stably.

These effects of the synaptic facilitation on the performance of

the short term memory network can be understood as follows. The

synaptic facilitation has an effect similar to increasing the synaptic

connection weights within each neural population that was

activated by a cue on a particular trial, relative to the non-cued

pools. Thus the effective synaptic weights of just the cued pools are

increased for just that trial, and are very different from the

synaptic weights of the uncued pools. In more detail, the effective

synaptic weights within a pool that result from the synaptic

facilitation are shown in Table 2, and indicate that when the

neurons are firing fast, u approaches 1.0, and the effective synaptic

weights for a cued pool become close to the value of 2.3 that was

usually specified for w+. That value for w+ is sufficient to maintain

a pool of neurons firing stably. On the other hand, for uncued

pools, the value of u remains low, and the effect of this is to reduce

(by the multiplicative effect on the synaptic weight) the effective

synaptic weights to values that are below the value of approx-

imately 2.1 needed to maintain a pool firing stably with a high rate

in an attractor state. It is this that enables the network to remain

stable using the mechanism of synaptic facilitation, with very many

simultaneously active pools, in the face of the noise (stochastic

fluctuations caused by the close to random firing times of the

neurons and of the external inputs l) in the system. In a network

without synaptic facilitation, all the internal recurrent collateral

synaptic weights of the pools (one pool for each stimulus) are of the

same strength, so that any noise in the system may cause a jump

from an active to an inactive pool as the weights and energy

landscape [7,48] for the different pools are rather similar. The

synaptic facilitation makes the energy landscape have very deep

basins just for the cued pools.

The Short Term Memory Capacity with More Sparse
Representations

The sparseness of the representation, which for binary neurons

is the proportion of the excitatory neurons active for any one

stimulus, is another factor that we have found to be important in

setting the capacity for the number of items that can be

maintained simultaneously active in short term memory. So far

in this paper, we have considered a network with a sparseness, a, of

the representation of 0.1. The reason for choosing a representation

that is not very sparse is that representations in the cerebral cortex

are not very sparse, and 0.1 is a biologically realistic value for

binary neurons to investigate, as shown by recordings from

neurons in different cortical areas [34]. In fact, as representations

in the cortex are graded, the measure of sparseness we have

defined for the graded case indicates even less sparse representa-

tions than this [34]. We hypothesized that more sparse represen-

tations would enable more memories to be maintained active

simultaneously, until the limit of all the excitatory neurons being

active was approached. We tested the hypothesis by performing

further simulations with 20 specific pools in the network each with

the sparseness a = 0.05. We found that with synaptic facilitation

incorporated as described here, it was possible to maintain 20

different short term memories active simultaneously (Fig. 6a,

which shows 14 cued and perfect multiple short term memory)

(w+ = 3.5; winh = 0.945). However, without synaptic facilitation, it

was possible to maintain only seven of the 20 memories

simultaneously active (Fig. 6b, which shows 8 cued, but only 6

maintained in short term memory, with two of the cued pools

falling out of their high firing rate state) (w+ = 2.5; winh = 0.975).

These results again indicate that the use of synaptic facilitation can

greatly increase the number of short term memories that can be

maintained simultaneously active. These results also show that

there is no ‘magic’ limit on the number of memories that can be

maintained simultaneously active in short term memory. The

number is set in part by the sparseness of the representations, with

sparse representations allowing more short term memories to be

simultaneously active; and by the use of synaptic facilitation, which

can increase the number of representations that can be kept

simultaneously active, by effectively increasing the synaptic

connection weights within each neural population that was

activated by a cue on a particular trial, relative to the non-cued

pools.

Discussion

In this work, we have investigated what parameters appear to be

important in setting the limit on the number of short-term

memories that can be maintained active simultaneously in a

discrete attractor network. A key parameter was found to be the

inhibitory synaptic weights, which has led us to suggest that, at

least in part, there may be a capacity limit set by how finely in

practice the inhibition needs to be tuned in the network, and also

by the sparseness of the representation. We have further shown
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that synaptic facilitation of the type found in the prefrontal cortex

boosts such capacity limit by effectively increasing the synaptic

strengths just for those pools to which a cue is applied, and then

maintaining the synaptic facilitation by the continuing neuronal

firing in just these pools when the cue is removed.

The neural mechanism described here for enabling a single

attractor network to maintain multiple, in our case up to 9 with a

sparseness a = 0.1, memories simultaneously active is very biolog-

ically plausible, in that recurrent collateral connections to nearby

neurons with associative synaptic plasticity are a feature of the

architecture of the neocortex [6,33], as is synaptic facilitation.

Indeed, synaptic facilitation is common in higher cortical areas

such as the prefrontal cortex [41–43], in contrast with early

sensory areas where depression is more usual [41]. This is very

consistent with the evidence that the prefrontal cortex is involved

in short-term memory [1,6,49], whereas it is important that in

early sensory cortical areas the neurons faithfully represent the

inputs, rather than reflecting short-term memory [6].

The use of synaptic facilitation in the multiple active short-term

memory mechanism described is important to the success of the

system, for without the synaptic facilitation it is difficult to

maintain more than a few representations simultaneously active

[29–31]. In the attractor network we used, we took into account

the sparseness of the representation as shown here. In particular,

with the sparseness a = 0.1 it was possible to maintain only 6

memories simultaneously active without synaptic facilitation, and

9 with synaptic facilitation in the same network. With a = 0.05 it

was possible to maintain only 7 memories simultaneously active

without synaptic facilitation, and 20 with synaptic facilitation.

Thus synaptic facilitation greatly increases the number of

memories that can be maintained simultaneously active, and this

is one of the new findings described in this research. The use of

synaptic facilitation is of conceptual interest in the mechanism

described, for it is a non-associative process, which is what enables

just the cued pools to remain active when they are cued without

any further associative learning. Moreover, as shown here, the

effect of the synaptic facilitation is sufficiently large that it can, in

combination with the recurrent collateral connections, enable the

process including the synaptic facilitation to be regenerated so that

the short-term memory of just the cued pools can be maintained

for many seconds.

To be clear, we note that the issue of how many memories can

be maintained simultaneously active in a short-term memory is

different from the issue of how many memories can be stored in an

attractor network and later correctly retrieved one at a time, which

is a much larger number that scales with the number of synapses

on each neuron, can be increased by a reduction in the sparseness

of the representation, is facilitated by diluted connectivity, and is in

the order of thousands in a network with 10,000 recurrent

collateral synapses onto every neuron [4,6,21,50,51].

As shown in Figs. 4 and 5, the precision with which the

inhibition must be set increases as the number of memories

required to be simultaneously active increases. In the simulation

shown with 10 specific pools (a = 0.1), the limit was reached with 9

pools simultaneously active. In this case, 90% of the excitatory

neurons were active. Under these circumstances, the constraint is

to find a value of winh that is sufficiently small that all these cued

pools can be active without quenching each other through the

inhibitory neurons; and at the same time for winh to be sufficiently

large that when no pools are cued, the spontaneous state is stable,

a requirement for a short-term memory system.

This led us to hypothesize that if we reduced the sparseness of

the representations, this would enable more representations to be

maintained active simultaneously. We tested the hypotheses by

performing further simulations with the sparseness a = 0.05, with

20 specific pools in the network. We found that with synaptic

facilitation incorporated as described here, it was possible to

maintain 20 different short-term memories active simultaneously

(with an example of 14 simultaneously active illustrated in Fig. 6a).

Figure 6. Simulations of short term memory with multiple
simultaneously active pools with a sparseness of the repre-
sentation a = 0.05. There were 20 pools in the integrate-and-fire
simulations. (a) With synaptic facilitation, it was possible to cue on (500–
1500 ms) up to 20 pools, and for all cued pools to remain stably active
after the removal of the cues at 1500 ms. w+ = 3.5, winh = 0.95. In the
example shown, 14 pools were cued, and all 14 remained firing in the
short term memory period after the cues. The firing rates of all 20 pools
are shown, with those within the cue set shown with solid lines, and
those not cued with dotted lines. (b) Without synaptic facilitation, it was
possible to cue on (500–1500 ms) up to 7 pools, and for these to remain
stably active after the removal of the cues at 1500 ms. w+ = 2.5,
winh = 0.975. In the example shown, 8 pools were cued, and only 6
remained firing in the short term memory period after the cues, with 2
of the pools not maintaining their firing rates. The firing rates of all 20
pools are shown, with those within the cue set shown with solid lines,
and those not cued with dotted lines. There were 4000 neurons in these
simulations, and lext was 3.05 Hz per synapse on each of the 800
external synapses. Similar results to those in (b) could also be obtained
with w+ = 6, winh = 1.1.
doi:10.1371/journal.pone.0061078.g006
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However, without synaptic facilitation, it was possible to maintain

only seven of the 20 memories simultaneously active (Fig. 6b), and

the increase in the number as the representations are made more

sparse is consistent with mean field analyses [30]. These results

show that there is no ‘magic’ limit on the number of memories that

can be maintained simultaneously active in short-term memory.

The number is set in part by the sparseness of the representations,

with sparse representations allowing more short-term memories to

be simultaneously active. However, the results show that there is a

very real gain in the number that can be kept simultaneously active

if synaptic facilitation is used as part of the mechanism.These

points lead us to the following hypothesis. The number of

memories that can be maintained simultaneously active is in

practice in a single network in the cortex in the order of 7, because

the sparseness of the representation is unlikely to be more sparse

than a = 0.1. Representations that are somewhat distributed in this

way are important to allow completion of incomplete represen-

tations in memory systems, and robustness against damage to

synapses or neurons [6,34]. In fact, as representations in the cortex

are graded, the measure of sparseness we have defined for the

graded case indicates even less sparse representations than the

value of 0.1 [6,34]. With that level of sparseness, a large number of

neurons will be simultaneously active, and this will make setting

the inhibition difficult, as just described. We are led therefore to

the suggestion that the number of memories that can be kept

simultaneously active in short term memory in a single cortical

network is limited by the sparseness of the representation, which is

not very sparse, and by the difficulty of setting the inhibition when

many neurons are simultaneously active. Moreover, as we show

here, synaptic facilitation can significantly increase the number

that can be maintained simultaneously active, by effectively

altering the energy landscape on each trial for just the pools of

neurons that have been cued.

We note that these findings were obtained with non-overlapping

pools of neurons, and that the restriction on the number that can

be maintained simultaneously active will if anything be increased

when there is overlap between the pools, due to interference

between the different pools due to their overlap [29]. The system

that we have simulated does in fact implement some functional

overlap between the pools, through the effect of w2 (see Fig. 1),

and this does simulate effects of interference and cross-talk

between the different excitatory short term memory populations

of neurons.

Another feature of the mechanism described is that it does not

rely on oscillations, precise timing in the system, or a special

mechanism to read out which short term memories have been

cued: the firing rate of the cued neurons is available, and is the

usual way that information is read out from memory [6,34]. This is

in contrast to another mechanism that has been proposed that is

based on oscillations to implement multiple short term memories

[52,53]. Although there is some evidence that oscillations may play

a role in short term memory function, there is controversy, with

some studies indicating that there is an increase of power in the

alpha band (9–12 Hz) [54] with short memory load whereas more

recent studies indicate that an increase occurs in the lower range-

theta (2–6 Hz) and gamma bands (28–40 Hz) with a power

decrease in the alpha/beta band (10–18 Hz) (as discussed in

Lundqvist et al. [55]) or in the theta band (4–12 Hz) [56].

Furthermore, the locus (or loci) of short term memory function

leading to capacity limits have not been fully established. Thus,

although the proposed model could be extended to account for

oscillations by, for instance, changing the relative contribution of

the slow NMDA and the fast AMPA receptors to the total synaptic

currents [57,58], or by introducing a mechanism based on the

interplay of the different time constants of the synaptic facilitation

and neuronal adaptation processes as in Mongillo et al. [38], we

have preferred not to incorporate such mechanisms, and instead

propose a minimal model that is investigated in depth in order to

gain a fundamental understanding of how synaptic facilitation can

boost short term memory capacity.

The mechanism described here may play an important part in

language, by enabling a single cortical network of 1–2 mm2 to

keep active multiple items simultaneously, representing for

example individuals that are the subjects of a sentence [13], and

thus reducing the load on the syntactic mechanisms that

implement language in the brain. By syntax we mean in this

context in computational neuroscience the ability to represent the

fact that some sets of firing neurons might represent the subjects of

a sentence, and other sets of firing neurons the objects in a

sentence, so that some form of binding mechanism is needed to

indicate which firing neurons are the subjects, and which are the

objects. A further way in which the multiple short term memory

mechanism described here may be useful in the brain’s imple-

mentation of language is that if there is a need to reactivate

assemblies in a sentence that is being produced (for example to

determine when forming a verb whether the subject was singular

or plural), then non-specific activation working in conjunction with

the remaining synaptic facilitation might enable those assemblies

to be reactivated, as illustrated in Fig. 3.

Some approaches to short term memory consider continuous

attractor networks in which the concept of the precision of the

memory is relevant [27], but that concept does not apply to

attractor networks with discrete representations where the term

short term memory capacity, i.e. the number of separate memories

that can be stored, actively maintained and correctly recalled, does

not aim to reflect such precision. The reason for this is that,

whereas continuous attractor networks account for precision by

considering the dynamics of the width of the bumps that are

actively maintained during the delay period [27], in discrete

attractors such widths can not be defined. In a sense, discrete

attractor networks can be considered a limit case of continuous

attractor networks in which the items that can be encoded differ

sufficiently from each other to engage clearly distinct populations

of selective neurons. Discrete attractor networks are highly

relevant when the items being stored are not part of a continuum,

but are separate and different items [6,59]. Thus, although most

experimental (and theoretical) paradigms addressing the question

of how neural resources are allocated to different items in short

term memory [25–27] consider the accuracy dimension to

discriminate between two main competing families of models

(i.e. fixed capacity models vs dynamic allocation models), the use of

saliency, an experimental variable that can be easily manipulated,

has also demonstrated its value to contribute remarkable

predictions. In particular, the predictions of a discrete attractor

network similar to the one proposed in this work (although without

synaptic facilitation) that was presented by the authors [31] lie

somewhere between pure slot and pure shared resources models.

This in agreement with the recent results by Wei et al. [27]

obtained by making use of a continuous attractor network.

It is also worth noting that in the context of short term memory,

the property investigated here is how many such discrete short

term memory states can be maintained active simultaneously.

While the number of memories that can be stored and correctly

recalled is high (in the order of the number of synapses per neuron

divided by the sparseness of the representation [6,60]), the number

that can be maintained simultaneously active is much smaller, with

some of the relevant factors considered here.

Holding Multiple Items in Short Term Memory

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e61078



In addition, we note that some types of short term memory

encode the order of the items [52,61], but that order information

may not be a property of all types of short term memory, including

for example that involved in remembering all the subjects in a

sentence referred to above.

We further comment that the mechanism described here utilizes

synaptic facilitation, and that this mechanism would enable items

to remain active relative to other items even if at the same time

there is some overall synaptic depression. Indeed, the important

new issue that we address here is how synaptic facilitation can

provide a mechanism for increasing the number of items that can

be maintained simultaneously active in short term memory. We

also note that long-term associative synaptic modification can

occur rapidly, as shown by studies of long-term potentiation [6], so

that the new attractor states required for new items to be stored in

a short term memory could be set up rapidly.

Finally, we point out that factors that reduce synaptic facilitation

[62] could cause a deterioration in short term memory by for

example reducing effective synaptic weights, which in stochastic

neurodynamical systems can decrease the stability of the high

firing rate attractor states that implement short term memory

[7,63], and this opens a new avenue for helping to minimize the

deterioration of short term memory that occurs in normal aging.

We also note that given the potential role of the prefrontal cortex

in the cognitive symptoms of schizophrenia [10,12], factors that

enhance excitatory synaptic connectivity such as synaptic facilita-

tion, may provide useful approaches to explore for treatment

[12,64,65].
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