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Abstract

Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor
tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be
critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in
the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse
mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry.
Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs
targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement
membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of
both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the
pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This
expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching
structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with
subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and
EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and
larger and more complex branching structures indicating a loss of negative feedback control during branching
morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear
hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching
morphogenesis and epithelial to mesenchymal transition in the mammary gland.
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Introduction

Branching morphogenesis is a highly conserved developmental

process, where epithelial-based organs are able to increase their

surface area and form the correct functional histoarchitecture

[1,2]. This process gives rise to the airways of the lungs [3], the

urine collecting ducts [4], the prostate [5], salivary glands [6] and

the mammary glands [7,8].

The molecular events that induce and regulate branching

morphogenesis are highly conserved between different organs and

between different species [9]. Receptor tyrosine kinases (RTKs),

such as fibroblast growth factor receptors (FGFRs) and epidermal

growth factor receptors (EGFRs) are key mediators of signals that

regulate proliferation, differentiation and branching morphogen-

esis in the mammary gland [1,10]. Extracellular cues such as FGFs

and EGFs act via their respective receptors to activate intracellular

pathways, such as the mitogen-activated protein kinase (MAPK)

and phosphatidylinositol 3-kinase (PI-3 kinase) pathways which are

critical for proper development of branched organs [1]. In

addition, aberrant expression and activation of RTKs such as

the EGFR family is common in a number of cancers including

breast cancer (reviewed in [11]). Molecular signaling in branching

morphogenesis must be precisely regulated both spatially and

temporally to ensure normal homeostasis. Recent studies have

underscored the importance of negative feedback control of RTK

signaling for ensuring correct cell fate and morphogenesis [12].

Sprouty, initially shown to be critical for tracheal development in

Drosophila [13], is now known to act as a conserved negative

feedback regulator of RTK signaling in higher eukaryotes [14–20].

There are four mammalian Sprouty proteins (SPRY1–4) and they

have been proposed to participate in a classical negative feedback

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60798



loop of RTK signaling through the MAKP pathway [21].

However, detailed molecular mechanisms of action of the sprouty

proteins have not been fully elucidated. The studies of sprouty in

the mammals have thus far mostly focused on the regulation of

FGFR and EGFR [21]. Sprouty proteins have been identified as

regulators of FGFR, c-Met and EGFR signaling in lung, kidney

and vasculogenesis but their role in the human breast gland

morphogenesis has not been systematically analyzed [22].

Although, sprouty proteins are considered negative inhibitors of

RTK signaling their role in maintaining signal activity has been

reported. Thus, SPRY2 has been shown to delay EGFR

breakdown in endosomes after internalization by binding the

catalytic RING Finger of Casitas B-lineage lymphoma (c-Cbl), an

E3 ubiquitin ligase that has been identified to target EGFR

degradation. SPRY2 sequester c-Cbl molecules from activated

EGFR and disregulate EGFR ubiquitination and downregulation,

thereby potentiating the amplitude and longevity of intracellular

signals [23,24].

In mouse mammary glands the branching ducts are embedded

in fat-rich stroma whereas in humans, breast ducts are more

elaborate and terminate in the lobuli commonly referred to as the

terminal duct lobular units (TDLU) [25]. The TDLUs are

composed of differentiated luminal- (LEP) and surrounding

myoepithelial (MEP) cells, separated from the stroma by a

basement membrane. Branching morphogenesis in the mammary

gland is believed to occur through collective migration of both

LEP and MEP cells where epithelial cells at the branching end lose

adhesion and acquire transient epithelial to mesenchymal transi-

tion (EMT) resulting in increased motility [7,26]. Temporal EMT

phenotypes have also been linked to cancer progression and

metastasis [26–28]. This temporal activation of EMT in both

cancer progression and branching morphogenesis highlights the

importance of understanding the molecular regulators of breast

morphogenesis. Indeed, disruption in the regulation of RTKs,

critical regulators of branching morphogenesis, is also a major

factor seen in many cancer forms, including breast cancers [1]. Lo

et al. [29] have shown that SPRY2 expression is suppressed in

breast cancers suggesting that SPRY2 might function as a tumor

suppressor. Interestingly, Faratian et al. [30] have recently shown

that reduced expression of SPRY2 is an independent prognostic

factor in HER2 positive breast cancer. These data link candidate

morphogenic pathways to breast cancer progression.

Three-dimensional cultures have proven to be important tools

for recapitulating an in vivo like context in the mammary gland

[31,32]. We have previously shown that D492, an epithelial cell

line with stem cell properties, generates TDLU-like structures in

3D culture [33,34]. D492 is thus a good model to dissect

molecular mechanisms regulating branching morphogenesis. We

have also shown that endothelial cells stimulate growth and

morphogenesis of breast and lung epithelial cells [35,36]. Most

recently, we demonstrated that endothelial cells facilitate branch-

ing morphogenesis of D492 in co-culture and furthermore induces

a subpopulation of D492 to generate spindle-like colonies through

an EMT conversion [37]. Here, we show that SPRY2 is

predominantly expressed in luminal epithelial cells of duct and

lobuli in human breast tissue. We also show that SPRY2 is highly

expressed in the pregnant and lactating mouse mammary gland

with phosphorylated SPRY2 peaking during pregnancy. Expres-

sion of SPRY2 is associated with expression of phosphorylated

EGFR (pY1068) and activation of the downstream MAPK

signaling pathway. Using D492, we show that SPRY2 is expressed

at the branching tips and suppression of SPRY2 through shRNA

gene knockdown increases branching morphogenesis and pro-

motes epithelial to mesenchymal transition when cultured with

endothelial cells.

Materials and Methods

Cell culture
The breast epithelial stem cell line D492 was maintained in H14

medium [38], consisting of DMEM/F12, 50 IU/ml penicillin,

50 mg/ml streptomycin (Invitrogen), 250 ng/ml insulin, 10 mg/ml

transferrin, 2.6 ng/ml sodium selenite, 0.1 nM estradiol, 0.5 mg/

ml hydrocortisone, 5 mg/ml prolactin (SIGMA) and 10 ng/ml

EGF (Peprotech). Primary LEPs and MEPs were maintained on

CDM3 and CDM4 as previously described [35,39]. Primary

human BRENCs were isolated from breast reduction mammo-

plasties as previously described [40] and cultured on endothelial

growth medium (EGM-2) (Lonza) +5% FBS (Invitrogen).

Preparation of 3D mono- and co-cultures
3D monocultures were carried out in 96 well culture plates

(Becton Dickinson, BD, Falcon). 76103, 16104 and 1.36104

D492 cells were suspended in 300 ml of reconstituted basement

membrane (rBM) purchased as matrigel (BD). Co-culture exper-

iments were carried out with 16103 D492 mixed with 56104

BRENCs. 100 ml of mixed cells / rBM were seeded in each well in

a 96 well plate and cultured on H14 (Monoculture) or EGM5 (Co-

culture) for 16 days.

Isolation and processing of mammary glands and 3D cell
cultures

Human tissue from breast reductions was used for immunohis-

tochemistry and for isolation of primary breast epithelial cells.

Primary LEPs and MEPs were isolated by magnetic cell sorting

(MACS) as previously described [39]. Murine mammary glands

were dissected from C57BL/6 mice at the following stages: 6 week

old virgins, day 15 of pregnancy and day 2 of lactation. Mammary

glands were snap frozen in liquid nitrogen and preserved at –80uC.

Isolation of colonies from 3D cell culture was done as previously

described by gentle dissociation in PBS-EDTA buffer [41].

Immunochemistry
Formalin-fixed, paraffin embedded human tissue blocks from

reduction mammoplasty biopsies were cut into 5 mm serial sections

and mounted on slides. Sections were deparaffinized and

rehydrated in xylene and ethanol. Antigen retrieval was done by

boiling in EDTA buffer for 15 minutes. Frozen mouse mammary

glands were cryosectioned at 15 mm setting following formalin

fixation. The following primary antibodies were used; Sprouty-2

(#07-524, Upstate/Millipore), CD-31 (M0823, DakoCytomation),

Keratin 19 (ab7754, Abcam), Keratin 14 (NCL-LL002, NovoCas-

tra), PCNA (ab29, Abcam), EGFR (#4267, Cell Signaling), p-

EGFR (Tyr1068) (#3777, Cell Signaling), ki67 (Abcam, ab833),

E-Cadherin (BD Biosciences, cat. 610182), N-Cadherin (BD

Biosciences, cat. 610921).Fluorescent nuclear counterstain, TO-

PRO-3 (Invitrogen) was used in immunofluorescence. Specimens

were visualized on a Zeiss LSM 5 Pascal laser-scanning

microscope (Carl Zeiss).

In situ Proximity Ligation assay
Protein phosphorylation of Spry2 was studied in situ by

Proximity Ligation assay (PLA) using the Duolink(R) kit (Olink

Bioscience, Uppsala, Sweden) [42]. Sections from mouse mam-

mary glands and 3D cultures were fixed with PFA, blocked and

incubated with primary antibodies, Sprouty-2 at 1:50 dilution
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(#07-524, Upstate/Millipore), and P-Tyr-100 at 1:100 dilution

(#9411S, Cell Signaling), overnight at 4uC. The remaining steps

of the PLA were performed as suggested by the kit manufacturer.

Cells were incubated with secondary anti-mouse PLUS and anti-

rabbit MINUS probes. Pairwise binding to the target allowed free

oligonucleotide ends of the probes to come into close proximity,

and the free ends enabled formation of circular DNA molecules

through ligation. The DNA circles were then amplified and

detected by hybridization of fluorescently labeled oligonucleotides.

Nuclei were counterstained with TO-PRO 3 (Invitrogen). Single

phosphorylated Spry2 molecules were visualized using LSM 5

Pascal confocal microscope (Carl Zeiss, Jena).

In Situ Hybridization
2981bp segment of Spry2 DNA was amplified from human

blood cells, with forward (CTAAGCCTGCTGGAGTGACC)

and reverse (GGAACTTTGAAAAACCAACA) primers generat-

ed with online Biology Workbench (http://workbench.sdsc.edu).

DIG-labeled RNA probe synthesis was performed according to the

manufacturers instructions (DIG RNA Labeling Mix, Roche).

Paraffin embedded normal breast tissue slides were processed and

then treated for 10 minutes with proteinase K (Fermentas), and

with acetic anhydride / triethanolamine (Sigma) for 10 minutes.

Before hybridization, the samples were prepared in pre-hybrid-

ization buffer for 2 hours. Hybridization was carried out for 12–

16 hours. Slides were then washed and incubated with Anti-

Dioxigenin-AP fab fragments (Roche) antibody for 4 hours at RT.

Color development was carried out with NBT/BCIP buffer

(Sigma) for 4 hours at RT in dark.

Western blotting
Equal amounts (5 mg) of proteins were separated on 10%

NuPage Bis-Tris gels (Invitrogen) and transferred to a PVDF

membrane (Invitrogen). Antibodies: Sprouty-2 (1:2000, #07-524,

Upstate/Millipore), pERK (1:2000, #4695, Cell Signaling),

pERK (1:2000, #9101, Cell Signaling), and b-actin (1:5000;

ab3280, Abcam). Membranes were visualized with ECL+ after

incubation with anti-mouse or rabbit secondary antibodies

(1:5000) (GE healthcare).

Q-RT-PCR
Total RNA was extracted with Trizol (Invitrogen), DNAase

treated and reverse transcribed with Hexanucleotides using

ReverAid (#K1622, Fermentas). Resulting cDNA was used for

Q-RT-PCR, in master mix (Applied Biosystems) with primer pairs

and probes for Spry2 (Hs00183386_m1, AB) and GAPDH

(Applied Biosystems). Experiments were done in triplicate on

7500 Real Time PCR System (Applied Biosystems). SPRY2

mRNA levels were normalized to GAPD and relative mRNA

differences was calculated with the 2DCt Method.

shRNA knockdown of SPRY2
Three separate pGIPZ lentiviral shRNA constructs targeting

SPRY2 transcripts were purchased from Open Biosystems

(RHS4430-101098640 (KD3), RHS4430-101103852 (KD2),

RMM1766-96881511 (KD1)). A non-silencing construct

(RHS4346) was used as a control. All constructs contained both

a puromycin selection marker and green fluorescent protein

(GFP). Viral particles were produced in HEK-293T cells using

Arrest-In transfection reagent (ATR1740; Open Biosystems)

according to instructions. Virus-containing supernatants were

collected at 48 hours after transfection and target cells were

infected in the presence of 8 mg/ml polybrene. Stable,

D492SPRY2 KD cells were established by puromycin selection

(3 mg/ml) followed by flow-sorting, selecting GFP expressing cells.

Migration and proliferation assay
For migration experiments, a total of 2.56104 starved cells were

seeded in DMEM/F12 basic medium on collagen coated upper

compartment of a transwell Boyden chamber (Corning) with an

8 mm pore size. EGM5 medium was used as a chemoattractant in

the lower chamber. After 18h incubation, cells in the upper

chamber were removed with a cotton swab and migrated cells on

the bottom surface stained with 0.1% crystal violet. Cells were

counted in three representative fields in each filter. In the

proliferation assay, 104 cells were seeded per well in a 24 well

plate (Falcon, BD). Cells were fixed with formalin and stained with

0.1% crystal violet (days 1–5), washed and left to dry. The crystal

violet staining in each well was dissolved in 10% acetic acid and

measured at 570 nm in a plate reader.

Statistical analysis
All migration and 3D culture experiments were performed in

triplicate. Data is presented as mean +SEM from number of

independent experiments as indicated. Statistical analysis was

performed by two-tailed Students T-test using GraphPad. P values

of ,0.05 were considered to be statistically significant.

Ethics Statement
The breast tissue samples were provided by written informed

consent from women undergoing reduction mammoplasty. This

procedure has been approved by the National Bioethics Commit-

tee of Iceland, Reference number VSNa2001050056. The

Committee on the use of Experimental Animals (Tilraunadýr-

anefnd) approves all protocols for experiments on animals

performed in Iceland. The committee does not require special

approval for collecting tissues after euthanasia, as was done in this

report. Details of animal welfare; Mice were housed in Micro

Isolator cages (Lab Products Inc.) according to the guidelines set

out in the recommendation of the EU commission (2007/526/EC

- June 18, 2007) for accommodation and care of animals used for

experimental and other scientific purposes, and according to

Icelandic law (number 15/1994) and regulations (number 279/

2002). Mice were euthanized by inhalation of high concentrations

of CO2. This method is classified as "acceptable" in the

recommendations of the Panel on Euthanasia of the American

Veterinary Medical Association.

Results

SPRY2 is predominantly expressed in luminal epithelial
cells in the human breast gland

To explore the expression of SPRY2 in the human breast gland

we performed immunostaining and in situ hybridization against

SPRY2 in tissues representing the adult non-pregnant human

mammary gland from reduction mammoplasties. SPRY2 expres-

sion was seen in epithelial cells, both in large ducts and in the

terminal duct lobular units (TDLU) (Fig. 1A). Dual labeling with

antibodies against SPRY2 and the linage restricted markers

cytokeratin (CK) 18 (luminal epithelial cells) or CK14 (myoepi-

thelial cell), demonstrated that SPRY2 was predominantly

expressed within the luminal epithelial compartment (Fig. 1A).

SPRY2 was also detected in discreet areas in the stroma, most

likely endothelial cells (Fig. 1A arrows). This was supported by

analyzing the expression of SPRY2 in purified myoepithelial and

luminal epithelial cells isolated from three different breast tissue

samples using quantitative real-time PCR. Luminal epithelial cells
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showed 15–58 fold higher expression of SPRY2 compared to

myoepithelial cells (Fig. 1B) in cell purifications from three

different breast tissue samples.

SPRY2 expression is associated with activated EGFR
signaling in the pregnant and lactating mouse mammary
gland

A disadvantage of studying sprouty expression in tissue from

reduction mammoplasty is that we are unable to analyze the

temporal expression changes during different stages of branching

morphogenesis. Therefore, we analyzed the expression of SPRY2

in mouse mammary gland at different stages of development. We

isolated mammary glands from virgin, pregnant and lactating mice

and analyzed total SPRY2 expression and pSPRY2 and correlated

this with pEGFR level. Low level of SPRY2 was seen in the virgin

gland. Expression was more prominent in the pregnant gland

where the expression was co-localized with myoepithelial cells as

evidenced by co-staining for SPRY2 and CK14 (Fig. 2Aa and b).

SPRY2 expression reached its highest levels during lactation.

Total EGFR showed similar expression pattern as SPRY2.

pEGFR was low or absent in the virgin mammary gland but

increased focally at branching end buds in the pregnant gland.

Furthermore, a dramatic increase in pEGFR was seen in end buds

during lactation (Fig. 2Ad). (Fig. 2A). The high EGFR phosphor-

Figure 1. Expression of SPRY2 in lobules and ducts in the normal human breast gland. Expression of SPRY2 was evaluated in normal
human breast tissue derived from reduction mammoplasty biopsies. A) Expression of SPRY2 is most prominent in the luminal epithelial cells. SPRY2
expression was predominantly found within the epithelial compartment of duct and lobuli as evidenced by immunohistochemistry and in situ
hybridization. SPRY2 was predominantly expressed in luminal epithelial cells both in ducts and lobuli. SPRY2 was co-stained for K14 (myoepithelial
cells) and K18 (luminal epithelial cells). Note the co-expression of SPRY2 and K18 in luminal epithelial cells. SPRY2 expression was also presence in the
stroma, most likely in endothelial cells (arrows). Sections were counterstained with TOPRO-3. Bar = 100 mm. B) Expression differences of SPRY2 in
luminal- and myoepithelial cells. Real time PCR was used to quantify expression difference of SPRY2 between luminal- and myoepithelial cells. SPRY2
expression was generally low in myoepithelial cells compared to luminal epithelial cells that expressed up to 58 fold more SPRY2. Measurement was
done in paired luminal and myoepithelial cells from three different biopsies.
doi:10.1371/journal.pone.0060798.g001
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Figure 2. Expression of SPRY2 in virgin, pregnant and lactating mouse mammary gland. A) Expression of SPRY2 and pEGFR is inversely
correlated with cell proliferation. Low expression of SPRY2 is found within the virgin gland with few positive stromal cells (a). Note, increased stromal
expression of SPRY2 in pregnant gland accompanied with expression in myoepithelial cell as evidenced by double staining of SPRY2 and the
myoepithelial marker CK14 (b). Dramatic increase in SPRY2 expression is seen during lactation (a and b). SPRY2 and EGFR show similar expression
pattern at all stages (c) with pEGFR expression seen at terminal buds in pregnant gland. Dramatic increase in pEGFR expression is seen in the lactating

Sprouty-2 in Breast Morphogenesis
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ylation and SPRY2 expression in the lactating state was not

associated with cell proliferation marker PCNA (Fig. 2Ae). In

order to get quantitative information on SPRY2 expression,

western blot analysis was performed on mouse mammary gland

tissues. SPRY2 was low or not detected in the virgin mammary

gland whereas it was expressed at low levels in pregnant and high

levels in lactating mammary glands (Fig. 2B and Figure S1).

ERK1/2 mediates signaling through the RAS/MAPK cascade

downstream of EGFR. Total ERK expression was correlated with

total SPRY2 expression with highest levels seen during lactation.

In contrast, phosphorylated ERK1/2 was increased substantially

in lactating state only (Fig. 2B). There is no commercially available

antibody against phosphorylated SPRY2. To analyze the tyrosine

phosphorylation status of SPRY2 in the virgin, pregnant and

lactating gland we carried out proximity ligation assay (PLA) using

antibodies against SPRY2 and phosphorylated tyrosine residues

(see material and methods for details). The PLA assay demon-

strated strong SPRY2 phosphorylation in mammary glands from

pregnant mice compared to virgin or lactating mice (Fig. 2C).

These data suggest that loss of pSPRY2 during lactation is

accompanied by increased ERK activity.

Spatial and temporal expression of SPRY2 and pEGFR
during branching morphogenesis of breast epithelial
cells in 3D culture

To directly study the functional role of SPRY2 in branching

morphogenesis of the human breast epithelium we used the D492

cell line cultured in 3D reconstituted basement membrane (rBM).

D492 has stem cell properties, i.e. it can differentiate into luminal-

and myoepithelial cells and forms TDLU-like colonies through

branching morphogenesis when cultured within a 3D rBM

[33,34]. We first analyzed temporal expression of SPRY2 during

TDLU formation in 3D rBM. D492 cells undergo most extensive

branching during days 10–16 in 3D rBM culture (Fig. 3A).

Initially, D492 forms solid round colonies that start to branch on

days 10–12 (initial branching). After the first branching event

ductal structures elongate and secondary branching occurs with

bifurcation at the lobular-like ends (Fig. 3A). To analyze SPRY2

expression we isolated mRNA from culture days, 8, 10, 12, 14 and

16. Pre-branching (day 8), round colonies show high expression of

SPRY2. Interestingly, during the initial branching period (days

10–12) the expression of SPRY2 decreases. At day 16 elaborate

TDLU-like structures have formed and the expression of SPRY2

increases to more than 4-fold levels compared to day 10 (Fig. 3B).

Expression was also confirmed with an immunoblot on D13, D16

and D19, showing the increase in SPRY2 expression from D13 to

D16. pEGFR expression pattern was similar with increasing levels

from D13 to D16 while decreasing on D19 when branching has

stopped (Fig. 3B). This expression pattern suggests that SPRY2

might have a regulatory role during the temporal formation of

branching structures and the formation of lobular units at the

ductal ends. In support of this, immunofluorescent staining of

branching colonies at day 16 shows that SPRY2 expression is

mainly concentrated at the branching, lobular-like tips but is

lowered at sites of cleft formation (Fig. 3C). The location of

SPRY2 at day 16 is similar to that of pEGFR at branching tips

while staining for total EGFR has a more general distribution in

the branching colonies (Fig. 3C). Co-staining of EGFR and

SPRY2 demonstrate co-localization at the edge of the branching

structures. Phosphorylated SPRY2 followed the same pattern as

pEGFR and total SPRY2 as seen using the PLA (3C). Staining for

ß4-integrin and F-actin expression show the general outlines of the

branching structures and its connection to the surrounding

basement membrane (Fig. 3C).

SPRY2 knockdown in D492 stimulates branching
morphogenesis

To further explore the functional role of SPRY2 in the

regulation of branching morphogenesis we knocked down SPRY2

in D492 cells and explored their proliferative, migratory and

morphogenic potential. We used a lentiviral based shRNA

knockdown where D492 were transduced with a GFP-containing

non-silencing (NS) control and 3 different knockdown (KD)

shRNA constructs (SPRY2-KD1, SPRY2-KD2 and SPRY2-

KD3) targeting SPRY2. The SPRY2-KD3 construct was most

effective, decreasing SPRY2 expression levels 4 fold (Fig. 4A).

Thus, we used this knockdown cell line and a single cell subclone

referred to as SPRY2-KD3A. No morphological difference was

seen between NS cells and KD3A cells when visualized in a

monolayer (Fig. 4B) but D492SPRY2-KD3 and D492SPRY2-KD3A

showed increased migration compared to D492NS cells (Fig. 4C).

There was no significant difference in the proliferation of

D492SPRY2-KD3 and D492SPRY2-NS cells (Fig. 4D). However,

increased expression of pERK is seen in D492SPRY2-KD3A (Figure

S2) which could explain the migration ability of these cells. To

analyze the effects of SPRY2 knockdown on branching morpho-

genesis we compared D492SPRY2-NS, D492SPRY2-KD3 and

D492SPRY2-KD3A in 3D rBM culture. D492SPRY2-NS generated in

vivo-like 3D branching colonies similar to wild type D492 while

D492SPRY2-KD3 and D492SPRY2-KD3A showed increased branching

(Fig. 5A). The effect of SPRY2 knockdown was quantified by

counting colonies of simple/early branching, complex/late

branching and other (solid round colonies) morphology (Fig. 5B).

In a setup with 16104 cells both D492SPRY2-KD3 and

D492SPRY2-KD3A formed more branching colonies in total and

substantially more colonies that showed complex branching

phenotype compared to D492SPRY2-NS cells (Fig. 5C). Large

complex colonies (.250 mm) were twice as common in both

D492SPRY2KD3 and D492SPRY2-KD3A compared to D492SPRY2-NS

cells (Fig. 5D). All cell lines were cultured in three different cell

concentrations (1.36104, 16104 and 76103) due to the fact that

different degree of branching is observed with different number of

cells seeded in the rBM. In general less branching was seen in

cultures with higher cell density but the D492SPRY2-KD3 cells

formed more branching colonies in all cell concentrations (Fig.

5E). When we looked at the expression of SPRY2 at D16 in

D492SPRY2-NS and D492SPRY2-KD3 cells we saw that the

D492SPRY2-NS cells showed normal expression of SPRY2 at the

lobular tips whereas the D492SPRY2-KD3 cells showed markedly

suppressed expression (Fig. 5F).

gland. Similar expression is found for SPRY2 and pEGFR in lactating gland. Proliferation is increased from virgin to pregnant gland but is reduced
during lactation, with only few PCNA positive cells left. Cells counterstained with TOPRO-3, Bar = 100 mm. B) SPRY2 expression is highest during
lactation accompanied by activation of Erk/MAPK pathway. Western blot demonstrated the expression differences of SPRY2 in virgin, pregnant and
lactating glands. There is over 38 fold increase in SPRY2 expression during lactation compared to virgin state. Total ERK and pERK is also significantly
increased during lactation. Actin was used as a loading control. C) SPRY2 activity is peaking during pregnancy in the mouse mammary gland. Using
proximity ligation assay it was shown that phosphorylated SPRY2 was significantly more expressed during pregnancy compared to virgin and
lactating gland. Bar = 25 mm.
doi:10.1371/journal.pone.0060798.g002
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Figure 3. SPRY2 expression is correlated with critical points in branching morphogenesis of D492 breast stem cell line. A) D492 cells
generate branching structures when cultured in rBM. When seeded in rBM D492 cells generate TDLU-like structures. By generating in vitro TDLU-like
structures it is possible to follow individual steps in the branching morphogenesis process. Until day 8 or 9 cells grow as single colonies. First sign of
initial budding occurs at day 10 and 11 (yellow arrows) followed by duct elongation and bifurcation (blue and red arrows), respectively. B) SPRY2
expression shows a dramatic shift during TDLU formation in 3D culture. Colonies were isolated from 3D cultures at different time points as indicated.
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Initially at day 8 there is relative high expression of SPRY2 mRNA but its expression is reduced during initial budding but increases again during duct
elongation and further bifurcation of complex branching. Western blot confirms that SPRY2 levels increase up to day 16 and remain high while pEGFR
is slightly decreasing for day 16 to day 19. Actin was used as a loading control. C) pEGFR and SPRY2 are expressed at the growing tips of TDLU-like
structures. D492-derived TDLU-like structures generated in 3D culture were stained with antibodies against SPRY2, EGFR, pEGFR, b4-integrin and F-
actin. pEGFR was predominantly expressed at the branching tips while total EGFR had a more general distribution. SPRY2 was also expressed at
branching tips but not in clefts. Co-staining of SPRY2 and EGFR show strong expression at the branching tips (arrows). F-actin staining gives a general
outlook of a branching colony while b4-integrin outlines their connection to the surrounding rBM matrix. Phosphorylated SPRY2 (right) was analyzed
using proximity ligation assay as described above. pSPRY2 was predominantly expressed at the branching tips showing similar pattern as total SPRY2.
Cells were counterstained with TOPRO-3 nuclear stain. Bar = 100 mm.
doi:10.1371/journal.pone.0060798.g003

Figure 4. SPRY2 Knockdown in D492 breast epithelial stem cell line. A) D492 cells show significant knockdown of SPRY2. D492 were
transfected with non-silencing (NS) shRNA and different version of knockdown (KD) shRNA against SPRY2. KD3 showed most efficient knockdown
(70%) measured by western blot. KD3A is a single cell cloned subline from KD3. B) D492SPRY2-KD3 retains an epithelial phenotype in monolayer culture.
No phenotypic differences were observed in monolayer of D492NS and D492SPRY2-KD3 (upper row). Transfection efficacy was evaluated by GFP (lower
row). C) D492SPRY2-KD cells have acquired increased migration potential. When plated on porous transwell filter D492SPRY2-KD3 showed increased
migration compared to D492NS. Single cell derived clone KD3A from KD3 had the highest migration potential. D) SPRY2 knockdown has no effect on
cell proliferation. Monolayer proliferation of D492NS, D492SPRY2-KD3 and D492SPR2-KD3A was evaluated at different time points, as indicated. There was
no remarkable difference in the proliferation rate of the NS and KD cells, although at day 4 D492SPRY2-KD3A seemed to proliferate slightly less.
doi:10.1371/journal.pone.0060798.g004
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Endothelial cells stimulate EMT in D492SPRY2-KD cells
We have recently shown that endothelial cells support

morphogenesis and improve clonal efficiency in both lung and

breast epithelial cells [35,36]. Furthermore, we have shown that

breast endothelial cells (BRENCs) induce EMT in D492 cells [37].

Interestingly, when D492 cells are co-cultured with BRENCs we

also see marked stimulation in branching morphogenesis at clonal

dilution (Fig. 6A). Branching TDLU-like structures in co-culture

were generated from as few as 100 D492 cells in 300 ml rBM

compared to the usual 10,000 cells used in monocultures in this

assay (Fig. 6A). Immunophenotypic characterization of the

TDLU-like structures generated in co-cultures revealed distinct

luminal- and myoepithelial differentiation as shown by expression

of cytokeratin 19 and 14, respectively (Fig. 6B). Dual immuno-

staining against cytokeratin 14 and CD31 demonstrates the

perilobular location of endothelial cells surrounding the TDLU

structures (Fig. 6B). Thus, TDLU-like colonies generated in co-

cultures with BRENCs mimic TDLUs in situ with a bi-layered

epithelium consisting of an inner layer of luminal epithelial cells,

an outer layer of myoepithelial cells and an extralobular location

of endothelial cells.

To see if SPRY2 KD cells responded differently to BRENCs we

set up co-cultures with D492SPRY2-NS, D492SPRY2-KD3 and

D492SPRY2-KD3A cells. D492SPRY2-NS formed 50% spindle-like

(EMT) colonies and 40% branching colonies while

D492SPRY2-KD3 cells formed over 65% spindle-like colonies (Fig

6C and D). The D492SPRY2-KD3A clone which produced larger

and a higher number of branching colonies in the monoculture

was also used in the co-culture and interestingly they exclusively

produced spindle-like colonies. The spindle-like colonies were

similar to previously reported endothelial-induced EMT colonies

[37] and this was confirmed by an E- to N-cadherin switch

(Fig. 6C). The proliferation was similar in both branching and

spindle colonies as evidenced by Ki67 expression. Partial EMT is

known to occur during branching and this suggests that SPRY2

might regulate branching through temporal suppression of EMT

during the branching process possibly through inhibition of RAS/

ERK pathway. SPRY2 knockdown cells might thus be prone to

both increased branching and more susceptible to full EMT with

formation of spindle-like EMT colonies under co-culture condi-

tions.

Discussion

The sprouty protein family is increasingly recognized as a key

regulator of receptor tyrosine kinase signaling in different species

and organs where SPRY2 has captured most attention [43–45].

Furthermore, SPRY2 has been shown to be downregulated in a

number of cancers, including breast cancer [29,30,46]. In this

study, we have analyzed the expression of SPRY2 in the mouse

and human mammary gland.

In the human breast gland SPRY2 was equally expressed in

ducts and TDLU, and its expression was most prominent within

luminal epithelial cells. We also demonstrate that the expression of

total SPRY2 is low in virgin mouse mammary glands but is focally

increased at branching tips during pregnancy and reaches

maximum expression during lactation. The presence of phosphor-

ylated SPRY2 was most profound during pregnancy where it

seems to dampen signaling through RAS/MAPK pathway. In

support of this the pERK1/2 levels increase during lactation when

a reduction is seen in pSPRY2. Previously, Lo et al. [29]

demonstrated by in situ hybridization that SPRY2 was highly

expressed in pregnant mouse mammary glands but decreased

during the lactating stage. In our study total SPRY2 expression

was high at lactating stage but pSPRY2 level was low.

The functional role of sprouty in branching morphogenesis

during trachea development in Drosophila was first demonstrated

in spry-/- mutants which showed excessive branching [47].

Similarly, Tefft et al. [48] demonstrated that inhibition of SPRY2

expression in mouse embryos at E11.5 produced a significant

increase in lung branching. Development of the uretic bud is

another example of controlled branching morphogenesis that is

regulated by sprouty proteins [43]. In the nephric duct, cells with

high Ret tyrosine kinase receptor expression preferentially move to

the dorsal nephric duct adjacent to the metanephric mesenchyme

where they form the first uretic bud. Interestingly, SPRY1-/-

mutants show elevated expression of RET and increased

branching [49]. These data collectively demonstrate the regulatory

role of sprouty proteins during branching morphogenesis in

various epithelial organs.

Mouse studies have shown that the mammary organoid

branches and migrates by bifurcation and collective migration

[50]. Furthermore, end bud and TDLU formation requires growth

factor induced cell proliferation and studies show that this cell

proliferation is mediated through ERK1/2 [7,50]. These results

are consistent with our data. D492 cells in 3D culture capture, by

collective migration, the morphogenic process in the mammary

gland, including the formation of TDLU like structures. SPRY2

expression was most prominent at the peripheral branching buds

whereas it was significantly reduced in clefts/furrows both in in

vitro 3D cultures of human breast epithelium and in the growing

mammary gland in pregnant mice. The same expression pattern

was also seen for p-EGFR. This indicates that the D492 cell line

activates both EGFR and SPRY2 pathways during branching

morphogenesis.

It is becoming clear that the stromal microenvironment plays a

critical role in tissue morphogenesis of many organs, including the

breast [51]. It is also widely acknowledged that cancer progression

is dependent on signals from the surrounding microenvironment

[52]. Fibroblasts and extracellular matrix molecules, such as

laminin, fibronectin and extracellular matrix-entrapped growth

factors have received much attention [28]. Our recent results

demonstrate that endothelial cells stimulate growth and morpho-

genesis of breast epithelial cells [35] and induce EMT [37]. We

have also shown that endothelial cells can induce bronchial

epithelial cells with stem cell properties to generate bronchioal-

Figure 5. SPRY2 Knockdown in D492 promotes increased branching morphogenesis. A) SPRY2-KD resulted in increased branching colonies
in 3D culture. Stereoscopic images of representative 3D rBM gels for D492NS, D492SPRY22-KD3 and D492SPRY2-KD3A showing increased branching upon
SPR2 knockdown. Bar = 2mm. B) Types of morphogenesis in 3D culture. Epithelial colonies were divided into three morphotypes: simple branching,
complex branching and other (mostly solid round). Representative images of simple- and complex branching are shown. C) 3D morphogenesis of
D492NS, D492SPRY2-KD3 and D492SPRY2-KD3A cells. In a setup with 104 cells both D492SPRY2-KD3 and D492SPRY2-KD3A cells showed an increase in simple- and
complex branching pattern. Bar = 100 mm. D) Large complex colonies in 3D rBM culture. Complex branching colonies over 250 mm were counted. This
showed a 2 fold increase in size of the SPRY2 KD cells. E) 3D morphogenesis of D492NS, D492SPRY2-KD3 and D492SPRY2-KD3A cells with variable amount of
cells. In a setup using 1.36104, 104 and 76103 cells, the SPR2-KD cells showed superior branching abilities compared to NS cells. F) SPRY2 expression in
branching colonies from D492NS and D492SPRY2-KD3. As seen before SPRY2 was located at branching tips in NS cells. SPRY2 KD cells showed reduced
expression of SPRY2 with some areas of diffuse staining. Bar = 100 mm.
doi:10.1371/journal.pone.0060798.g005
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Figure 6. Epithelial integrity is disturbed in SPRY2 KD cells when co-cultured with endothelial cells. A) Endothelial cells stimulate growth
of D492 cells. When plated in 3D rBM culture with breast endothelial cells (BRENCs), D492 cells can form complex branching colonies from as little as
100–1000 cells compared to 76103 –104 in 3D monoculture. B) D492-derived branching structures form bi-layered epithelium with BRENCs positioned
extralobular. The branching colonies are bi-layered and polarized structures as evidenced by the expression of the myoepithelial marker CK14 on the
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veolar branching structures in 3D culture [36]. Interestingly, in co-

culture of endothelial cells and D492 we see a dramatic increase in

TDLU formation. This further demonstrates the proliferative and

morphogenetic induction potential of endothelial cells.

During branching morphogenesis epithelial cells need to

transiently activate critical mesenchymal properties to be able to

invade the surrounding matrix. This mesenchymal transition

proceeds gradually under tight control of morphogenetic signals

and under regulation of the microenvironment [53]. Branching

morphogenesis can therefore be regarded as partial EMT that is

under tight control from the surrounding microenvironment or

from within the invading cell. When we suppress SPRY2

expression in D492 we see hyperplasia-like effects and increased

branching morphogenesis. Furthermore, when the SPRY2 knock-

down cells are co-cultured with endothelial cells they showed

increased EMT susceptibility. We have previously shown that

endothelial-induced EMT in D492 is partially mediated by

hepatocyte growth factor (HGF) [37]. The increase in EMT after

SPRY2 knockdown suggests that SPRY2 might be critical in

temporally regulating EMT during branching morphogenesis

through modulation of RTK signaling.

Conclusion

Our data suggest that breast epithelial branching morphogen-

esis is regulated by SPRY2. Furthermore, our data indicate that

SPRY2 is an important regulator of epithelial integrity as SPRY2

knockdown cells are prone to endothelial induced EMT.

Supporting Information

Figure S1 Expression of SPRY2 in virgin, pregnant and
lactating gland. SPRY2 is present at all developmental stages in

the adult mammary gland with highest expression seen during

lactation. Actin used as a loading control.

(TIF)

Figure S2 SPRY2 knock down result in increased pERK
activity. Knock down of SPRY2 result in approximately 20%

increase in pERK activity. Actin used as a loading control.

(TIF)
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