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Abstract

For the robust practice of genomic medicine, sequencing results must be compatible, regardless of the sequencing
technologies and algorithms used. Presently, genome sequencing is still an imprecise science and is complicated by
differences in the chemistry, coverage, alignment, and variant-calling algorithms. We identified ,3.33 million single
nucleotide variants (SNVs) and ,3.62 million SNVs in the SJK genome using SOLiD and Illumina data, respectively.
Approximately 3 million SNVs were concordant between the two platforms while 68,532 SNVs were discordant;
219,616 SNVs were SOLiD-specific and 516,080 SNVs were Illumina-specific (i.e., platform-specific). Concordant, discordant,
and platform-specific SNVs were further analyzed and characterized. Overall, a large portion of heterozygous SNVs that were
discordant with genotyping calls of single nucleotide polymorphism chips were highly confident. Approximately 70% of the
platform-specific SNVs were located in regions containing repetitive sequences. Such platform-specificity may arise from
differences between platforms, with regard to read length (36 bp and 72 bp vs. 50 bp), insert size (,100–300 bp vs. ,1–
2 kb), sequencing chemistry (sequencing-by-synthesis using single nucleotides vs. ligation-based sequencing using
oligomers), and sequencing quality. When data from the two platforms were merged for variant calling, the proportion of
callable regions of the reference genome increased to 99.66%, which was 1.43% higher than the average callability of the
two platforms, representing ,40 million bases. In this study, we compared the differences in sequencing results between
two sequencing platforms. Approximately 90% of the SNVs were concordant between the two platforms, yet ,10% of the
SNVs were either discordant or platform-specific, indicating that each platform had its own strengths and weaknesses.
When data from the two platforms were merged, both the overall callability of the reference genome and the overall
accuracy of the SNVs improved, demonstrating the likelihood that a re-sequenced genome can be revised using
complementary data.
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Introduction

Next generation sequencing (NGS) technology has enabled

personal genomics through a reduction in costs and an increase in

efficiency [1,2]. After a lag phase in which only a small number of

personal genomes were sequenced, we are entering the exponen-

tial phase of personal genomics, sequencing thousands of genomes

at the population level [3–18]. Furthermore, efforts have been

made to incorporate personal genome information in clinical

assessments [19]. Presently, genome sequencing is still an

imprecise science and is complicated by differences in the

chemistry, coverage, alignment, and variant-calling algorithms

[20].

Single nucleotide variants (SNVs), short insertions/deletions

(indels), structural variants (SVs), new sequences, and phasing are

unique parameters of genome re-sequencing [21]. The number of

total SNVs identified in personal genomes varies significantly from

,3 to 4 million [3,8,11,16,17]. For the robust practice of genomic

medicine, sequencing results must be compatible, regardless of the

sequencing technologies and algorithms used. However, in the

study by Bentley et al. [4], the number of total single nucleotide

polymorphisms (SNPs) from the same data set varied substantially,

depending on the algorithms used. When the same genome was
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analyzed using another method of sequencing, the results differed,

including a different amount of total SNPs acquired [11]. These

findings indicated that a rigorous comparison of separate

sequencing methods was needed to delineate their limitations,

and personal genomes may need to be revised using a comple-

mentary data set until a standardized sequencing protocol for

medical genomics is established.

Previously, we sequenced the first Korean human genome using

the DNA polymerase-based Illumina GA II platform (36 bp and

72 bp in read length; paired-end libraries with insert sizes up to

300 bp; ,296 sequencing coverage). In this study, we re-

sequenced the same Korean individual genome using a different

NGS platform (the ABI ligase-based SOLiD platform). The

Illumina and SOLiD platforms have two major differences that

might potentially affect their outcomes. First, the Illumina

platform uses sequencing-by-synthesis chemistry, based on a com-

bination of fluorescent-labeled nucleotides and DNA polymerase

[22]. The SOLiD platform uses a ligation-based sequencing

method, based on the combination of fluorescent-labeled oligo-

mers and DNA ligase [23]. Second, the Illumina platform mainly

uses paired-end libraries and the average fragment size ranges

from 100 to 300 bp. The SOLiD platform mainly uses mate-pair

libraries and the average fragment size ranges from 1 to 2 kb.

Here, we examined potential differences between the two

sequencing platforms and combined data to revise the personal

genome sequence.

Materials and Methods

Library Construction and Sequencing
All study protocols were approved by the Institutional Review

Board of Lee Gil Ya Cancer and Diabetes Institute of Gachon

University (Approval # GU0911–001).

Genomic DNA (gDNA) was extracted from whole blood with

a QIAamp DNA Blood Maxi Kit according to the manufacturer’s

instructions (QIAGEN).

Libraries were prepared according to the ‘‘SOLiD System

Mate-paired Library Preparation’’ protocol from the SOLiD

System: Library Preparation Guide (02/2009 edition).

Briefly, gDNA was fragmented by HydroShear (Genomic

Solutions) at the proper settings for targeted sizes. QIAquick Gel

Extraction Kit (QIAGEN) was used for subsequent purifications of

sheared DNA, enzymatic reactions, and size-selected DNA from

agarose gels. To repair damaged DNA ends and obtain 59-

phosphorylated blunt-ends (59P), the fragments were end-repaired

using the End-It DNA End-Repair Kit (Epicentre Biotechnolo-

gies). Ligations for adaptor attachment and circularization were

accomplished using the Quick Ligation Kit (New England

BioLabs). DNA was quantified using a NanoDrop ND 1000

Spectrophotometer (Thermo Fisher Scientific) and Qubit IT

dsDNA HS (Invitrogen).

In sequential order, the sheared gDNA fragments were end-

repaired; then the LMP CAP Adaptors (missing a 5’-P from one of

its oligonucleotides) resulted in a nick on each strand when the

DNA was circularized in a later step and were ligated to the end-

repaired DNA fragments. The adaptor ligated products were

separated on a 1% agarose gel and excised from the gel at

approximate positions for span size ranges (1–2 kb). Size-selected

DNA fragments were circularized with a biotinylated internal

adaptor. Uncircularized DNA fragments were eliminated using

Plasmid-Safe ATP-Dependant DNase (Epicentre Biotechnologies).

Using the circularized DNA fragments, nick-translation was

performed for 14 minutes at 0uC in an ice water bath using

DNA polymerase I from Escherichia coli. The nick-translated

products were cleaved at the nicks using T7 exonuclease and S1

nuclease, and end-repaired as described above. P1 and P2

adaptors, which were used for library amplification, electronic

polymerase chain reaction (ePCR), and ligation sequencing, were

ligated to the ends of the end-repaired DNA. The ligated DNA

then underwent nick translation using DNA polymerase I. The

completed library was amplified with Cloned Pfu DNA Poly-

merase (Stratagene) in eight cycles. The amplified library was

separated on a 4% agarose gel and the correct-sized band (275–

300 bp) was excised, eluted, and quantified using Qubit IT

(Invitrogen).

The templated bead preparation and sequencing steps with

SOLiD 3.5 were performed according to the manufacturer’s

instructions (Applied Biosystems).

The concentration of each library for ePCR was designed to

range between 1.5 and 2.0 pM. Templated beads were deposited

onto two slides of full-scale per library, and sequencing was carried

out to 50 bp using SOLiD v3 plus chemistry.

Mapping and Variation Detection
The human reference sequence (version hg18) was obtained

from the UCSC Genome Browser database [24]. Using BioScope

version 1.2 (http://solidsoftwaretools.com), sequence reads from

SOLiD system were aligned to the reference genome. Sequence

reads from Illumina GA II system were aligned to the reference

genome using BWA with default settings. Aligned data in BAM

format were realigned, de-duplicated, and recalibrated. For

variant-calling, UnifiedGenotyper walker in GATK (v 1.5–12)

was used. To estimate the overall accuracy of data, SNVs

identified in sequencing data were compared with genotyping data

from SNP chip (Affymetrix 6.0) [3]. The SNVs were evaluated by

comparison with SNP chip data while incorporating reference

genome information.

Figure 1. Concordance of SNVs identified by the two different
sequencing platforms.
doi:10.1371/journal.pone.0060585.g001
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Detection of Callable and Non-callable Regions
The CallableLoci walker in GATK was used with default

settings to detect callable regions of the reference genome using

aligned data. The thresholds of callability used by CallableLoci

walker were a minimum sequencing depth equal to 4 and

a minimum mapping quality equal to 10.

Results

Sequencing and Mapping with Short Reads
Previously, we sequenced the SJK genome using the DNA

polymerase-based Illumina GA II platform with paired-end

sequencing [3]. In this study, we sequenced the same genome

using the DNA ligase-based SOLiD platform to compare and

combine the sequencing data from two separate NGS platforms

[11]. We generated 178.29 gigabases (Gb) of ,3.0 billion mate-

paired/single-end reads with a read length of 50 base pairs (bp).

Approximately 2.9 billion reads were aligned to the reference

human genome (hg18) using Bioscope version 1.2.

Identification and Comparative Analysis of SNVs
For data comparison, GATK version 1.5, which can be used for

both Illumina and SOLiD platforms, was applied to call variants

[25]. Using GATK, we identified ,3.33 million SNVs in the SJK

genome using SOLiD data and ,3.62 million SNVs using

Illumina data. Figure 1 summarizes the comparative analysis of

SNVs identified by these two platforms. Approximately 3 million

SNVs were concordant between the platforms while 68,532 SNVs

were discordant; 219,616 SNVs were SOLiD-specific and

516,080 SNVs were Illumina-specific (i.e., platform-specific).

To assess the overall accuracy of the SNVs in each group (i.e.,

concordant, discordant, or platform-specific), we compared the

SNVs with genotyping results from Affymetrix SNP 6.0 chip (chip-

concordance rate) (Table 1). The chip-concordance rate of

concordant SNVs was 98.92%; those of discordant SNVs from

SOLiD and Illumina data were 9.81% and 90.08%, respectively,

while those of SOLiD-specific and Illumina-specific SNVs were

97.11% and 97.82%, respectively.

Concordant SNVs between Platforms
The chip-concordance rate of concordant SNVs was 98.92%.

Table 2 summarizes the patterns of chip-discordance. The

majority of chip-discordant calls from sequencing data were

heterozygous, whereas the majority of chip-discordant calls from

chip data were homozygous, and vice versa. To assess the

accuracy of heterozygous SNVs from the sequencing data, which

were chip-discordant, we calculated the sequencing depths and

percentages of each base in the heterozygous SNVs. The criteria

for highly confident heterozygous calls using SOLiD were as

follows: more than 206 coverage, and the second most frequent

base had to be .30%. Out of 3,677 heterozygous SNVs that were

chip-discordant, 2,923 SNVs (80%) met these stringent criteria

Table 1. Classification of sequenced SNVs and their chip-concordance.

Illumina SOLiD

# of SNVs Chip-concordance
Median
depth # of SNVs Chip-concordance

Median
depth

Total 390,494 98.92% 20 390,494 98.92% 35

Chip-concordant HOM 192,914 48.87% 20 192.914 48.87% 32

Concordant SNVs
between platforms

HET 197,580 50.05% 20 197,580 50.05% 38

Total 4,244 – 21 4,244 – 37

Chip-discordant HOM 564 – 19 564 – 29

HET 3,680 – 21 3,680 – 38

Total 2,489 90.08% 18 271 9.81% 29

Chip-concordant HOM 2,440 88.31% 17 127 4.60% 31

Discordant SNVs
between platforms

HET 49 1.77% 18 144 5.21% 27

Total 274 – 13 2,492 – 21

Chip-discordant HOM 144 – 12 50 – 10.5

HET 130 – 13 2,442 – 21

Illumina-specific SNVs Chip-concordant Total 5,879 97.82% 18 – – –

Chip-discordant Total 131 – 20 – – –

SOLiD-specific SNVs Chip-concordant Total - – – 3,565 97.11% 33

Chip-discordant Total - – – 106 – 27

HOM, homozygous calls; HET, heterozygous calls; Median depth, median sequencing depth
doi:10.1371/journal.pone.0060585.t001

Table 2. Patterns of chip-discordance in concordant SNVs
between platforms.

Sequencing

Homozygous Heterozygous

Chip Homozygous 71 (1.67%) 3,677 (86.64%)

Heterozygous 493 (11.62%) 3 (0.07%)

doi:10.1371/journal.pone.0060585.t002
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(Table S1). This finding indicated that chip data may be prone to

a heterozygous-to-homozygous error in these regions.

Discordant SNVs between Platforms
The chip-concordance rate of discordant SNVs was sub-

stantially lower than those of concordant or platform-specific

SNVs. As summarized in Table 1, the key feature of this group

was that most of the SNVs were homozygous in Illumina data, but

heterozygous in SOLiD data. The chip-concordance rate of

homozygous SNVs in Illumina data was 88.31%, while that of

heterozygous SNVs in SOLiD data was 4.60%. Specifically, the

majority of SNVs in this group were homozygous in Illumina data

and heterozygous in SOLiD data. Genome re-sequencing was

reported as being prone to heterozygous-to-homozygous sequenc-

ing errors because additional sequencing depth is required to

accurately call heterozygous variants [26]. Additionally, since the

chip data may contain heterozygous-to-homozygous errors, chip-

concordance cannot be used to estimate the overall accuracy of

data since the majority of discordance between the two platforms

comes from homozygous calls in one platform and heterozygous

calls in the other platform.

To better understand this discrepancy of discordant SNVs

between platforms, we applied the same stringent criteria for

highly confident heterozygous calls to the SOLiD data. Compared

to the chip-discordant group, only 25% of the heterozygous

concordant SNVs among the two platforms met the criteria, 80%

of which were highly confident calls (i.e., over 206 sequencing

depth and the second most frequent base was over 30%). To

determine the cause of this difference, we compared the

sequencing depths of heterozygous calls in each group. As

illustrated in Figure 2, the sequencing depths of heterozygous

SNVs differed significantly between the concordant and discor-

dant SNVs. The median sequencing depth of heterozygous SNVs

concordant between platforms and chip-concordant was 38, while

that of heterozygous SNVs concordant between platforms and

chip-discordant was 38 and that of heterozygous SNVs discordant

between platforms and chip-discordant was only 21. In this group,

25% or more of the SNVs that were called heterozygous were

highly confident calls. However, the fidelity of data decreased in

the rest of the SNVs due to low sequencing depth.

Platform-specific SNVs
As illustrated in Figure 1, platform-specific SNVs were detected

in one of the two platforms (i.e., 516,090 SNVs from Illumina data

and 219,533 SNVs from SOLiD data). In comparison to the

overall heterozygosity rate of ,60% in the SJK genome, the

heterozygosity rates of these SNVs were relatively high (75.46% in

Illumina data and 82.35% in SOLiD data). When DNA was

screened using the RepeatMasker database, 71.36% of the

Illumina-specific SNVs and 70.92% of the SOLiD-specific SNVs

were located in repetitive regions. The chip-concordance rates of

platform-specific SNVs were 97.82% in Illumina data and 97.11%

in SOLiD data, which were relatively high, and indicate that the

overall accuracy is reliable. This platform-specificity in sequencing

data may arise from differences between platforms with regard to

read lengths (36 bp and 72 bp vs. 50 bp), insert sizes (,100–

300 bp vs. ,1–2 kb), sequencing chemistry (sequencing-by-

synthesis using single nucleotides vs. ligation-based sequencing

using oligomers), and sequencing quality.

Figure 2. Cumulative frequency plot of sequencing depths in heterozygous calls. The sequencing depths of heterozygous calls in
the SOLiD data are plotted. The patterns of concordant SNVs that are either chip-concordant or chip-discordant are almost compatible, which
explains why the majority of heterozygous concordant SNVs that are chip-concordant are highly confident calls. In contrast, the median of discordant
SNVs that are chip-discordant is substantially lower than those of concordant SNVs, which explains why only 25% of them are highly confident calls.
doi:10.1371/journal.pone.0060585.g002
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Callable and Non-callable Regions of the Genome
When a genome is re-sequenced against a reference genome,

not every sequence of the reference genome is re-sequenced.

Specifically, after genome re-sequencing, callable and non-callable

regions of the genome are present, depending on the results [27].

Using the CallableLoci walker in GATK, which estimates the

callability based on both sequencing depth and mapping quality,

we categorized each base into callable, poor mapping quality, low

coverage, and no coverage groups. In Illumina and SOLiD

platforms, callable and poor mapping quality bases cover 98.30%

and 98.15% of the reference genome, respectively (Figure 3A).

When the base composition of non-callable regions was analyzed,

the two platforms showed slightly different patterns. The base

composition of non-callable regions in SOLiD data was similar,

while the proportions of A and T were twice higher than those of

C and G in Illumina data (Figure 3B).

To increase the callability of the reference genome by

combining the sequencing data from the platforms, we merged

the sequencing data using BAM files, and called variants using

GATK, and again categorized each base into callable, poor

mapping quality, low coverage, and no coverage groups. As

illustrated in Figure 3B, the proportion of callable regions in the

merged data was 99.66%, which was 1.43% higher than the

average callability of the two platforms, representing ,40 million

bases (Figure 3A).

To estimate the overall accuracy of data in each group, we

calculated the chip-concordance. As summarized in Table 3, the

chip-concordance of callable regions in merged data was 99.26,

which was 0.7% higher than the average chip-concordance of

callable regions in Illumina and SOLiD. We performed the chi-

square test and the result was statistically significant (P,0.001,

odds ratio [OR]= 1.53 [merged vs. Illumina] and 2.11 [merged

vs. SOLiD]). This demonstrates that the overall accuracy, as well

Figure 3. Callable and non-callable regions. (A) Using Illumina and SOLiD data, 98.3% and 98.15% of the reference genome are callable,
respectively. Using the merged data, the callability increases to 99.66%, which is 1.43% higher than the average callability of two platforms,
representing about 40 million bases. (B) The base composition of non-callable regions. In SOLiD data, the proportions of A, T, C, and G were almost
even. In Illumina data, the proportions of A and T were higher than those of C and G.
doi:10.1371/journal.pone.0060585.g003
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as the overall callability, improved in the merged data upon

combining data from the two platforms.

Discussion

In this study, we compared the differences in sequencing results

from two sequencing platforms. Approximately 90% of the SNVs

were concordant between the platforms, and yet ,10% of the

SNVs were either discordant or platform-specific, indicating that

each platform had its own strengths and weaknesses. When data

from the two platforms were merged, both the overall callability of

the reference genome and the overall accuracy of the SNVs

improved, demonstrating that a re-sequenced genome can be

revised using complementary data.

Concordance and Discordance between the Two
Platforms
As summarized in Figure 1, SNVs were categorized into

concordant, discordant, and platform-specific groups, depending

on their concordance between the platforms. To estimate the

overall accuracy of the SNVs sequenced, we used their concor-

dance rate and SNP chip genotyping data, a common re-

sequencing practice. In the concordant group of SNVs between

the platforms, the majority of chip-discordant SNVs were

heterozygous in sequencing data but homozygous in chip data.

In the discordant group of SNVs between the platforms, the

majority of discordant SNVs were heterozygous in one platform

and homozygous in the other platform. Specifically, the majority

of discordance between genotyping platforms, either between

genotyping chip and sequencing platforms, or between sequencing

platforms, were homozygous-to-heterozygous (or vice versa) errors

rather than homozygous-to-homozygous or heterozygous-to-het-

erozygous. Heterozygous-to-homozygous errors are mainly due to

sequencing depths in sequencing data. Paradoxically, this may

imply that heterozygous calls from sequencing data, especially

those that meet highly stringent criteria, can be regarded as

confident calls. Evidence supporting this argument is that the

majority of chip-discordant SNVs that were concordant between

platforms were heterozygous in sequencing data but homozygous

in chip data. Approximately 80% of these SNVs in sequencing

data were highly confident heterozygous calls.

Alignment of Sequencing Data
When we compare the sequencing data generated by two

different platforms, the best way would be to use the same

downstream bioinformatics pipeline (e.g., mapping and variant

calling). Several aligners can handle data from both the Illumina

and SOLiD platforms, including BWA [28], BOWTIE [29], and

BFAST [30]. When we tested them, however, the mapping results

were very different; furthermore, BWA is rarely used for SOLiD

data, and BFAST is rarely used for Illumina data.

Therefore, we used the most commonly used aligners for each

platform. Default parameters were also used in the same context.

In the literature, BWA and Bioscope were often used with the

default parameters for alignment [31–34].

According to the concordance analysis with SNP chip data, the

performance of data from each platform with the current

alignment is within the acceptable reported range [35]. Therefore,

we assumed that the choice of the most commonly used aligner for

each platform would not seriously affect the aim of our study.

In addition, we used hg18 as the reference genome for aligning

the sequencing data. There are two reasons why we used hg18

instead of hg19. First, in our previous study of the SJK genome

[36], we used hg18 as the reference genome (i.e., much

background work that was not included in the previous publication

was done). We wanted to build on what we have already done.

Second, hg18 is still broadly used, as we can see in recent

publications, because hg18 has more UCSC annotations [37–41].

Clinical Perspectives
For medical purposes, the accuracy of sequencing data is very

important. Although a futuristic scenario of personal genomics

would be whole-genome sequencing followed by continuous

interpretation and annotation throughout a lifetime for personal-

ized medicine, accurately sequencing a personal genome remains

a challenge. Although a more systematic comparison is required,

we showed that comparing and combining sequencing data from

two sequencing platforms might allow one to revise a personal

genome to a meaningful extent. This approach, however, increases

the overall cost of personal genome sequencing, which will be

a major limiting factor in its implementation. An alternative

approach to this problem is to define the regions of the genome for

medical purposes and to characterize non-callable or poorly

callable regions using each sequencing platform. For example, we

revealed that the majority of platform-specific SNVs were located

in regions containing repetitive sequences. Without a specific

purpose (e.g., identification of repeat expansions that are

associated with certain diseases), we may not need to revise

a personal genome for SNVs. Also, with an increasing amount of

personal genomics data being released, we may be able to identify

regions of the reference genome that are either non-callable or

poorly callable using a certain sequencing platform. Then, we may

able to target those regions specifically for medicinal purposes

using cost-effective complementary sequencing methods.

Supporting Information

Table S1 Patterns of base calls in highly confident
heterozygous SNVs that are concordant between plat-
forms.

(XLSX)
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