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Abstract

The new dynamical game theoretic model of sex ratio evolution emphasizes the role of males as passive carriers of sex ratio
genes. This shows inconsistency between population genetic models of sex ratio evolution and classical strategic models. In
this work a novel technique of change of coordinates will be applied to the new model. This will reveal new aspects of the
modelled phenomenon which cannot be shown or proven in the original formulation. The underlying goal is to describe
the dynamics of selection of particular genes in the entire population, instead of in the same sex subpopulation, as in the
previous paper and earlier population genetics approaches. This allows for analytical derivation of the unbiased strategic
model from the model with rigorous non-simplified genetics. In effect, an alternative system of replicator equations is
derived. It contains two subsystems: the first describes changes in gene frequencies (this is an alternative unbiased
formalization of the Fisher-Dusing argument), whereas the second describes changes in the sex ratios in subpopulations of
carriers of genes for each strategy. An intriguing analytical result of this work is that the fitness of a gene depends on the
current sex ratio in the subpopulation of its carriers, not on the encoded individual strategy. Thus, the argument of the gene
fitness function is not constant but is determined by the trajectory of the sex ratio among carriers of that gene. This aspect
of the modelled phenomenon cannot be revealed by the static analysis. Dynamics of the sex ratio among gene carriers is
driven by a dynamic ‘‘tug of war’’ between female carriers expressing the encoded strategic trait value and random partners
of male carriers expressing the average population strategy (a primary sex ratio). This mechanism can be called ‘‘double-level
selection’’. Therefore, gene interest perspective leads to multi-level selection.
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Introduction

Sex ratio evolution is one of the basic examples of evolutionary

mechanisms that are presented in every course on evolutionary

biology. The first approach to this problem was presented by

German biologist Carl Dusing [2]. Historically, it was the first

application of mathematical modeling to evolutionary phenome-

na. Dusing argued that the fitness of females using different sex

ratio strategies can be described by the number of their

grandoffspring. A similar approach was applied by Fisher and

Shaw and Mohler [3,4,5]. This is also an important example in

evolutionary game theory, known as a sex ratio game [6,7,8,9,10,11].

The general prediction of this approach is that the sex ratio of 0.5

is evolutionarily stable. However, there is an alternative approach

to the modeling of sex ratio evolution related to population

genetics [5,12,13,14]. This approach is focused on tracing the

genes encoding sex ratio strategies. Those models predict a stable

structure of the population describing gene frequencies among

males and females and a sex ratio as the effect of expression of

those genes. Therefore, there is a major difference between the

strategic phenotypic approach and genetic modeling [15,16,17].

The phenotypic approach describes the mean female strategy of

0.5 as evolutionarily stable, while genetic models show that the

composition of the male population can also matter. To analyze

this problem, in our previous paper [1], a new model of sex ratio

evolution was developed. The new approach is an attempt to

combine the genetic and phenotypic approach and to overcome

the limitations of both of them. The goal was to solve the problem

of different predictions and to obtain a coherent picture of the

modeled phenomenon.

The new model focuses on the global dynamics of the system,

and its structure resembles the genetic approach [5,12,13,14].

Whereas the classical Dusing-Fisher-Shaw-Mohler (DFSM) model

is focused on the reproductive success of individual strategies

carried by female strategic agents (as in Dusing’s paper, see [2], or

the sex ratio game) or some undescribed group of ‘‘parents’’ (as in

[3,4], more on this topic in section 4.2). For a closer understanding

of the relations between the classical and the new approach, the

selection of individual strategies resulting from global dynamics

must be analyzed, which is the subject of this paper.

In this paper a novel technique of change of coordinates will be

applied to the model from [1]. This will reveal new aspects of the

modelled phenomenon which cannot be shown or proven in the

original formulation. Similarly the results from [1] will be hard to

show in the new coordinates, thus the two papers complement

each other. The underlying goal is to describe the dynamics of

selection of particular genes in the entire population, instead of in

the same sex subpopulation as in the previous paper and earlier

population genetics approaches. In effect, an unbiased strategic
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model will be analytically derived from the non-simplified rigorous

genetic model.

Thus, the classical strategic approach analyzes the reproductive

success of a female, while the genetic approach traces gene

frequencies in the population. Therefore, what happens when we

combine both perspectives and assume that the gene is the

strategic agent?

Methods

Now we shall recall the structure of the new model (see Table 1

for the list of symbols). Section 1 can be skipped by readers

familiar with paper [1].

1.1 Summary of basic formal details of the new model
There are u individual strategies described by Pi[½0,1�, the

proportion of male offspring of a female playing strategy Pi. There

are xi females and yi male carriers of the strategy Pi in the

population. Therefore, the population consists of x~Sixi females

and y~Siyi males. Thus, f ~½f1,:::, fu� is the vector of frequencies

of strategies of the female subpopulation, and m~½m1,:::, mu� is an

analogous vector for the male subpopulation, where fi~
xi

x
and

mi~
yi

y
:P~

y

yzx
is the fraction of males in the population (the

secondary sex ratio), and Sj fjPj is the mean female strategy (the

primary sex ratio). Assume that each female produces k offspring

according to haploid inheritance. However, males are gene

carriers too, and transfer those genes to their offspring with the

probability 0.5. The influence of males can be described by the

fitness exchange effect (i.e. daughters of male carriers contribute to the

fitness of female carriers and sons of female carriers contribute to

the fitness of male carriers). In [1] it was shown that

Wmm~0:5 Sj fjPj

� � xk

y
is the expected number of male offspring,

and Wmf ~0:5 Sj fj 1{Pj

� �� � xk

y
is the expected number of

female offspring of the male individual. Analogously,

Wfm~0:5(1{Pi)k is the expected number of male offspring,

and Wff ~0:5Pik is the expected number of female offspring of

Table 1. List of important symbols:

classical theory:

P – secondary sex ratio

Pind – individual strategy interpreted as the mean sex ratio in the brood of a single female, which is the carrier of this strategy ( P with index denotes the individual
strategy)

N- population size

k – mean brood size of a single female

�WWf P, f , mð Þ~
i
fiWf Pi , P, f , mð Þ – mean fitness function of the female subpopulation

�WW P, f , mð Þ~P �WWm(P, f , m)z(1{P) �WWf P, f , mð Þ – mean fitness function of the whole population

W (Pind , P) – classical Dusing-Fisher-Shaw-Mohler fitness function

new model:

y – number of males

x – number of females

N~yzx – population size

u – number of individual strategies

fi~
xi

x
– frequency of females with strategy Pi

mi~
yi

y
frequency of males with strategy Pi

f ~½f1,:::, fu� -state vector of the female subpopulation

m~½m1,:::, mu� -state vector of the male subpopulation

G~½G1,:::, Gu� – state vector of the gene pool

Gi~Pmiz 1{Pð Þ fi- frequency of a gene which encodes the strategy Pi

Mi~
Pmi

Pmiz(1{P)fi

fraction of males in the subpopulation of carriers of the strategy Pi

P~
y

yzx
– frequency of males in the population

C~
x

y
~

1{P

P
– number of females per single male individual

�PPpr~
j
fjPj -primary sex ratio (mean strategy in the female subpopulation)

Wm(Pi , P, f , m) – males’ payoff function

Wf Pi , P, f , mð Þ – females’ payoff function

Wg(Pi , G, M)- fitness function of a gene which encodes strategy Pi

�WWm(P, f , m)~
i
miWm(Pi , P, f , m) – mean fitness function of the male subpopulation

doi:10.1371/journal.pone.0060405.t001
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the female individual playing the strategy Pi: Therefore, the

following equations were obtained:

Wm(Pi, P, f , m)~Wmmz
xi

yi

Wfm~k
1{P

2P
Sj fjPjz

fi

mi

Pi

� �
, ð1Þ

– payoff function of the males carrying the strategy Pi,

Wf Pi, P, f , mð Þ~Wff z
yi

xi

Wmf

~
k

2
1{Pið Þz mi

fi

1{Sj fjPj

� �� �
,

ð2Þ

– payoff function of the females playing the strategy Pi:
Now we have all elements needed to formulate multipopulation

replicator dynamics (see appendix A in the File S1). In [1], this

took the following form:

_ffi~fi Wf (Pi, P, f , m){ �WWf P, f , mð Þ
� �

for i~(1,:::, u{1),
_mmi~mi Wm(Pi, P, f , m){ �WWm P, f , mð Þð Þ for i~(1,:::, u{1),

_PP~P �WWm(P, f , m){ �WW P, f , mð Þð Þ,

where �WWm(P, f , m)~SjmiWm(Pi, P, f , m), �WWf P, f , mð Þ~
i
fiWf

Pi, P, f , mð Þ, �WW P, f , mð Þ~P �WWm(P, f , m)z(1{P) �WWf P, f , mð Þ
are the respective average payoff functions of the male, female and

the whole population. This leads to the following system of

equations:

_ffi~k
fi

2
1{Pið Þz mi

2
{fi

� �
1{Sj fjPj

� �� �
for i~(1,:::, u{1),

_mmi~
k

2

1{P

P

� �
fiPi{miSj fjPj

� �
for i~(1,:::, u{1),

_PP~k(1{P) Sj fjPj{P
� �

:

It was shown that, for biological reasons, we can limit the

analysis of the model to values of primary and secondary sex ratios

over the interval(0, 1):

1.2 Summary of predictions of the new model
An analysis of the behavior of this model shows that two phases

of convergence can be distinguished. The first, rapid phase occurs

when the secondary sex ratio P converges to the current value of

the primary sex ratioSj fjPj , and the male subpopulation

converges to the state termed the male subpopulation equilibrium

(MSE), described by the condition fiPi~miSj fjPj : During the

second phase of convergence, the primary sex ratio converges to

the value 0.5, and the value of the secondary sex ratio follows these

changes to maintain equality. In addition, the state of the male

subpopulation changes to maintain the MSE.

Results

2. Reformulation of the model
In the previous paper [1], a change in the coordinates (described

in appendix A in the File S1) was applied to the numerical

solutions obtained to calculate the frequencies of all types of

individuals (see Fig. 3c in [1] and section 3.2 there) and gene

frequencies (see Fig. 6 in [1] and section 4 there). However, this

method can be applied not only to numerical solutions, but also

directly to replicator equations. In this way, we can reformulate

the new model to focus on changes in gene frequencies. We have

Pmi male carriers and 1{Pð Þ fi female carriers of a strategy Pi in

the whole population. Thus, the frequency of carriers of a gene

which encodes this strategy is equal to:

Gi~Pmiz 1{Pð Þ fi: ð3Þ

The state of the population can be described by the

vectorG~½G1,:::, Gu�[Du, whereSjGj~1: In this description,

there is no information about the sex of the carriers of these

genes. We can fill this gap by adding information about the sex

ratio in the subpopulation of the carriers for every gene:

Mi~
Pmi

Pmiz(1{P)fi

~
Pmi

Gi

-proportion of males among carriers of Pi,

Fi~1{Mi~
(1{P)fi

Pmiz(1{P)fi

~
(1{P)fi

Gi

ð4Þ

-proportion of females among carriers of Pi:

Then, M~½M1,:::, Mu� is the vector of subpopulation sex

ratios. Therefore, this structure can be treated as a division of the

entire population into u subgroups with one-dimensional subpop-

ulation states. Then, according to the general notation from

appendix A in the File S1, si~Mi and cj~Gj (see also [18]), the

structure of the space of population states will take the form

presented in Fig. 1. Note that in the previous formulation of the

model, the space of population states was the product of two u{1
dimensional simplexes of the male and female subpopulation and a

one-dimensional simplex of the proportion between these

subpopulations (a secondary sex ratio); in general, the dimension

of the whole space was 2u{1: In the new formulation, this space

Figure 1. Scheme of a space of population states in the new
formulation of the model. In this case, it is a product of a simplex of
gene frequencies and u one-dimensional simplexes that describe sex
ratios in the subpopulations of carriers for each strategy.
doi:10.1371/journal.pone.0060405.g001
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consists of one u{1 dimensional simplex of gene frequencies and

u one-dimensional simplexes of subpopulation sex ratios, and the

dimension of the whole space of population states is also 2u{1:
Therefore, the dimension of the space of population states is

invariant in response to the change of coordinates, which is

consistent with the fact that we have a different parameterization

of the same phase space. We can describe important population

parameters in the new coordinates for parameters such as the

mean female subpopulation strategy �PPpr, i.e., the primary sex ratio

and secondary sex ratio (among adult individuals) P :

�PPpr~Sj fjPj~
1

1{P
Sj(1{Mj)GjPj and P~SjGjMj :

The average fitness functions from the previous paper (recalled

in section 1.1) were:

�WWm(P, f , m)~k
1{P

P
Sj fjPj

– mean fitness of the male subpopulation,
�WWf P, f , mð Þ~k 1{Sj fiPi

� �

– mean fitness of the female subpopulation,

Figure 2. Trajectories of a population of individuals with strategies for sex ratios of 0.2, 0.5 and 0.8 for initial conditions.

f1~f2~0:05, f3~0:9, m1~0:85, m2~0:1, m3~0:05: Panel a) shows the trajectories of gene frequencies Gi , Therefore, Gi increases when Pv

1

2
and

PvMi or Pw

1

2
and PwMi and decreases when Pv

1

2
and PwMi or Pw

1

2
and PvMi . This mechanism is clearly shown in the trajectories of

strategy 0.5. The trajectory G0:5 switches from a decrease to an increase when trajectory of M0:5 passes the trajectory of P (see panel b). Panel b)
shows the respective changes of sex ratios in carrier subpopulations Mi: Note that sex ratios in carrier subpopulations rapidly converge to the values
determined by the MSE phenomenon, and after that, they follow the changes of the primary sex ratio �PPpr that slowly converges to 0.5. The sex ratio
among carriers of male biased strategies change due to the dynamics of the primary sex ratio while among female biased strategies, it converges to
the neighbourhood of the value encoded by the gene.
doi:10.1371/journal.pone.0060405.g002
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�WW P, f , mð Þ~k(1{P)

– mean fitness of the whole population.

Then, we can derive the mean payoff to the carrier of a gene for

strategy Pi (for a full derivation see appendix B in the File S1):

Wg(Pi, P,f , m)~Wg(Pi, G, M)~MiWm(Pi, P,f , m)

z(1{Mi)Wf (Pi, P,f , m),

which takes the form:

Wg(Pi, G, M)~
k

2

1{Pð Þ
P

Miz 1{Mið Þ
� �

~
k

2
CMiz 1{Mið Þð Þ,

ð5Þ

where C~
1{P

P
is the number of females per single male

individual. For the new coordinates we obtain the following

replicator equations (for a detailed derivation, see appendix C in

the File S1):

_GGi~Gi Wg(Pi, P,f , m){ �WW (P,f , m)
� �

-dynamics of gene frequencies,

_MMi~Mi Wm(Pi, P,f , m){Wg(Pi, P,f , m)
� �

-dynamics of sex ratios in carriers subpopulations,which take the

form:

_GGi~Gik
1

2
{P

� �
Mi

P
{1

� �
for i~(1,:::, u{1), ð6Þ

_MMi~
k

2
Mi

1{P

P

� �
�PPpr{Mi

� �
z 1{Mið Þ Pi{Mið Þ

� �
ð7Þ

for i~(1,:::, u):

3. Behavior of trajectories of replicator equations
3.1 Trajectories of gene frequencies. Here, we will

examine the dynamics of gene frequencies. The product

1

2
{P

� �
Mi

P
{1

� �
is responsible for the sign of the right side

of equation (6). When both coefficients are negative or positive,

then their product is positive (the frequency of gene Pi increases),

and when they have opposite signs, then their product will be

negative (the frequency of gene Pi decreases). The zero points of

these coefficients,P~
1

2
and P~Mi, are stationary points of

equation (6). Therefore, the dynamics of the gene frequencies can

be described in the following way:

Gi increases when

Pv

1

2
and PvMi or Pw

1

2
and PwMi,

Gi decreases when

MivPv

1

2
or MiwPw

1

2
, ð8Þ

Gi is constant when Gi~0 or Mi~P or P~
1

2
:

Recall that P~SjGjMj , which means that the secondary sex

ratio is equal to the average sex ratio in the carrier subpopulation

over the entire population. Therefore, the frequency Gi decreases

when the sex ratio in the carrier subpopulation Mi is shifted

farther from 0.5 than the mean sex ratio in the carrier

subpopulations for all strategies P: In the opposite case, Gi will

increase. This mechanism is illustrated in Fig. 2a. Therefore, the

frequency of a gene that encodes the strategy 0.5 increases when

the sex ratio in a subpopulation of its carriers is closer to 0.5 than

the current value of the secondary sex ratio; this frequency

decreases in the opposite case. A situation in which the secondary

sex ratio is equal to 0.5 is the stationary state of the dynamics of

gene frequencies (6). Therefore, this mechanism described by (8) is

independent of individual strategies Pi, but its dynamics are

dependent on the trajectories of the sex ratios in the subpopula-

tions of carriers of the strategies described by Mi. Note that

parameter Mi also affects the secondary sex ratioP~SjGjMj ,

modifying the values of Gj : However, sex ratios in carrier

subpopulations Mj are determined by mechanisms acting at the

level of carrier subpopulations that are described in the next

section.

3.2 Trajectories of sex ratios in subpopulations of

carriers. The dynamics of sex ratios in the carrier subpopula-

tions are more sophisticated. The right side of equation (7)

contains two coefficients: �PPpr{Mi

� �
and Pi{Mið Þ, weighted by

current values of MiC and 1{Mið Þ: These coefficients are

responsible for the direction of convergence. The coefficient
�PPpr{Mi

� �
induces attraction of Mi to �PPpr, and the coefficient

Pi{Mið Þ causes attraction of Mi to Pi: This is, in a sense, a tug of

war between female partners of the male carriers (representing

average strategy �PPpr) and female carriers of the same gene

(representing encoded strategy Pi). As we can see in Fig. 2b, the

shape of the trajectory of a 0.8 sex ratio strategy that produces

mostly sons is almost parallel to the trajectory of parameter P,

which is equal to �PPpr in the slow phase of convergence (see [1]).

On the other hand, the trajectory of a 0.2 sex ratio strategy that

produces more daughters is closer to the constant function 0.2

than to the trajectory of P: Thus, the Mi value of the strategies

producing (and in effect carried by) mostly males resemble

trajectories of the primary sex ratio, while female biased strategies

have Mi almost constant and equal to Pi. This interesting aspect

would be hard to show by static analysis. Below, we will

characterize equilibrium in this ‘‘tug of war’’.

Lemma 1

a) For every set of values of P, �PPpr[(0, 1) and Pi[(0,1�,
dynamics (7) has the unique stable conditional equilibrium

Mi that is contained in the interval limited by the values of
�PPpr and Pi:

b) For the strategy Pi~0, there is one stationary point, Mi~0,

which is stable when unique. However, when �PPprw
1

C
and
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Pv

1

2
, the rest point Mi~0 becomes unstable, and there

exists a second stationary point Mi~
�PPprC{1

C{1
:

For a proof, see Appendix D in the File S1.

Lemma 1 indicates that, at every moment, there exists some

attracting point for Mi lying between the current value of the

primary sex ratio �PPpr (which also changes in time) and the value of

individual strategy Pi. By this dynamic equilibrium, the expression

of individual strategies determines the parameter Mi. The only

exception is strategy Pi~0 (production of female offspring only)

for which the second stationary state may exist during the rapid

phase of convergence. It was impossible to analytically derive the

stable sex ratio in the carrier subpopulations, in the general case.

This is possible only when the population is in the MSE state and

will be presented in a subsequent paper devoted to the MSE.

According to Lemma 1, we can numerically approximate this

value because it is unique in these biologically significant cases.

Discussion

4.1 The mechanism of ‘‘double-level’’ selection
Here, we will summarize the results we have obtained. The first

intriguing analytical result of the reformulated model is that the

fitness function of a gene (5) is independent of the individual

strategy it encodes. Proliferation of a given gene depends on the

current sex ratio in the subpopulation of its carriers Mi: Note that

the fitness function (5) is a good mathematical description of

Fisher’s idea, which is related to the reproductive value of carriers

with different sexes according to the deviation of the secondary sex

ratio P. It suggests that males are reproductively more efficient

when they are in the minority (P,1/2), because each male can

mate with several females (C.1). On the other hand, females are

more efficient when they are in the minority (P.1/2), because

each female will be expected to produce offspring, and there are

not enough mates for all males (C,1). Therefore, parameter Mi

describes the proportion of carriers with the more reproductively

efficient sex among all carriers of a gene. This fitness function

explicitly considers male carriers from the mother’s generation of

unexpressed sex ratio genes. Function (5) can be transformed in

the following way (recall that yi is the number of male carriers, and

xi is the number of female carriers, of the strategy Pi):

Wg~
k

2
CMiz 1{Mið Þð Þ

~
k

2

yi

xizyi

Cz
xi

xizyi

� �
~

1

xizyi

yiC
k

2
zxi

k

2

� �
:

This is the per capita normalized sum (averaged over the

carriers subpopulation) of the offspring produced by female

partners of male carriers described by yiC
k

2
and offspring of

female carriers described by xi

k

2
(where

k

2
is the number of

offspring of a single female multiplied by the probability of gene

transfer from the focal parent). This is an explanation of the

importance of male carriers of the unexpressed sex ratio genes, or

rather their female partners. Their role is important, because each

male carrier may have C partners, and the activity of their

partners is an important component of gene fitness. Surprisingly,

this function is independent of the value of a given strategy, Pi,
encoded by the carried gene. It depends only on C and Mi: The

phenomenon can be termed double level selection. The fitness of a

gene that encodes an individual strategy is determined in some

way by the current sex ratio in its carrier subpopulation and the

secondary sex ratio in the population as a whole. Values of both

parameters may be perturbed. However, the stable carrier

subpopulation sex ratio should be determined in some way by

the value of the encoded strategy (Fig. 3). This is a newly

discovered mechanism. In general, the mechanism of double level

selection can be regarded as an example of multi-level selection,

which is the concept presented by [19,20,21,22,23]. The classical

approach to the modeling of sex ratio evolution treats this

phenomenon as single level selection, which means that the fitness is

unambiguously determined by the values of individual strategy Pi

and a population state described by the secondary sex ratio (Fig. 3).

In the next subsection, a higher level of this process will be

considered.

4.2 Dynamics of gene frequencies
The mechanism realized by gene frequency replicator equations

(6), described by the rules (8) increases the frequency of a gene for

Figure 3. A comparison of ‘‘single level’’ selection and ‘‘double level’’ selection.
doi:10.1371/journal.pone.0060405.g003
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which the value of a parameter Mi is greater/smaller than the

secondary sex ratio P (which is equal to the average M in the

population) when P is smaller/greater than 0.5. Thus, it is

profitable for the gene to be carried by that sex which is currently

in the minority. There is an interesting relationship between the

mechanism described by (8) and the replicator dynamics

paradigm. In standard replicator equations, frequencies of

strategies change according to the sign of the deviation of their

fitness from average fitness (minus – decrease, plus – increase). If

fitness depends linearly on a particular trait, then selection works

according to deviations from the average trait value. Note that the

payoff function (5) is linear with respect to the parameter (trait) Mi,

and the secondary sex ratio P is an average Mi over the population.

The difference between the mechanism in rules (8) and standard

replicator dynamics is that parameter Mi is not a description of a

fixed individual strategy but of the current state of a subgroup of

individuals (the subpopulation of carriers of strategy Pi). Dusing

classically argued that female producing offspring of the sex that is

currently in the minority will have more grand-offspring. This

argument states that there are differences in fitness among females

with different strategies, which is considered a proof of the

existence of selection on individual strategies. However, our new

model shows that a mechanism based on different reproductive

values is independent of individual strategies Pi, and it affects the

primary sex ratio �PPpr and the secondary sex ratio P (which is equal

to the average sex ratio in the carrier subpopulation) by changing

only gene frequencies Gj : In [3], the following statement can be

found:

‘‘...it would follow that those parents, the innate tendencies of which

caused them to produce males in excess, would for the same expenditure,

produce a greater amount of reproductive value; and in consequence

would be the progenitors of a larger fraction of future generations…’’.

Therefore, Fisher in his original reasoning considered a group of

individuals that adjusts the sex ratio among its members due to

genetic mechanisms. However, the mechanisms for this adjust-

ment were not explicitly explained. The perspective of a group

adjusting the sex ratio among its members is also assumed by [4].

However, they also presented only a conjecture that the sex ratio is

completely heritable within the group, without an explanation of

how it is realized. Therefore, there is a difference between Fisher’s

reasoning that operated on the level of the subpopulation of all

carriers of a gene and Dusing’s approach related to the level of

female individuals. The female perspective is not sufficient,

especially for male-biased strategies, which will produce more

male than female carriers. This means that the Fisherian argument

about the different reproductive values of males and females is an

important part of understanding sex ratio self-regulation. Howev-

er, it is not enough for a full mechanistic explanation of this

process. Therefore, we should investigate how the expression of

individual strategies determines the sex ratio in the carrier

subpopulation Mi: This will allow us to overcome the limitations

of Dusing’s reasoning, which considers only female reproductive

success and disregards the role of male gene carriers from the same

generation.

4.3 Dynamics of sex ratios in carrier subpopulations: the
‘‘tug of war’’ mechanism

The sex ratio in carrier subpopulations is the effect of intrinsic

dynamics that can be compared to a ‘‘tug of war’’ between Pi and
�PPpr: It was proved in Lemma 1 that for every population state

there exists a single unique attractor of Mi dynamics contained in

the interval that is limited by values of �PPpr and Pi: Let us describe

the ‘‘tug of war’’ metaphor in a more formal way. The right-hand

side of replicator equation (7) is proportional to

Mi

1{P

P

� �
�PPpr{Mi

� �
z 1{Mið Þ Pi{Mið Þ:

The factor Mi

1{P

P

� �
that is the weight of �PPpr{Mi

� �
can be

written as
yiC

xizyi

and the proportion (1{Mi) that is the weight

of Pi{Mið Þ equals
xi

xizyi

: Thus the right side of this equation is

proportional to

1

xizyi

yiC �PPpr{Mi

� �
zxi Pi{Mið Þ

� �
:

Since C is the number of females per single male, then yiC is

also the number of female partners of male carriers of gene

encoding the strategyPi: These females ‘‘pull the rope’’ toward the

value of �PPpr: On the other side, a team of xi female carriers of this

gene ‘‘pulls the rope’’ toward the value Pi: It is evident here that

the expression of strategies of parental individuals determines the

fate of their descendants, by the setting of the sex ratio among

them.

4.4 An unresolved problem: the role of the male
subpopulation equilibrium

Recall that, during the slow phase of the sex ratio dynamics,
�PPpr~P: Note that, if in rules (8) we substitute �PPpr instead of P and

fi instead of Mi we obtain the following rules:

fi increases when Sj fjPjv
1

2
and Sj fjPjvPi or Sj fjPjw

1

2
and

Sj fjPjwPi,

fi decreases when PivSj fjPjv
1

2
or PiwSj fjPjw

1

2
,

fi is stable when: fi~0 or fi~1 or Pi~Sj fjPj :

These describe the changes of a female subpopulation state

when the MSE condition is satisfied (Lemma 1 from [1]). This

leads to the problem of the role of the MSE phenomenon, which is

responsible for the rapid phase of convergence and the dynamics

of sex ratios in the carrier subpopulations. The first idea that

comes to mind to explain this phenomenon is that the male

subpopulation equilibrium is equivalent to some stable sex ratio in

the carrier subpopulation (the equilibrium of the ‘‘tug of war’’

mechanism), which is conditional on current values of P, �PPpr and

Pi: The rapid phase will then be equivalent to convergence to this

stable value. When the subpopulation reaches a stable sex ratio,

then it simply follows changes of the primary (and in effect the

secondary) sex ratio, which are equivalent to the slow phase of

convergence. Unfortunately, this idea is false. As shown in [1],

when the MSE conditions are satisfied for all strategies, then all

males in the population have the same fitness. If we assume that

carrier subpopulations are in their stable states, then for all

strategies females will have fitness equal to males. So, when all

males have equal fitness, and all females have fitness equal to

males, then all individuals in the population have equal fitness. In

this case, the population would be in a global stationary state,

which is not true. The nature and role of the male subpopulation

equilibrium are the subjects of a subsequent paper.
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