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Abstract

Copy number variation (CNV) has played an important role in studies of susceptibility or resistance to complex diseases.
Traditional methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH)
suffer from low resolution of genomic regions. Following the emergence of next generation sequencing (NGS) technologies,
CNV detection methods based on the short read data have recently been developed. However, due to the relatively young
age of the procedures, their performance is not fully understood. To help investigators choose suitable methods to detect
CNVs, comparative studies are needed. We compared six publicly available CNV detection methods: CNV-seq, FREEC,
readDepth, CNVnator, SegSeq and event-wise testing (EWT). They are evaluated both on simulated and real data with
different experiment settings. The receiver operating characteristic (ROC) curve is employed to demonstrate the detection
performance in terms of sensitivity and specificity, box plot is employed to compare their performances in terms of
breakpoint and copy number estimation, Venn diagram is employed to show the consistency among these methods, and F-
score is employed to show the overlapping quality of detected CNVs. The computational demands are also studied. The
results of our work provide a comprehensive evaluation on the performances of the selected CNV detection methods, which
will help biological investigators choose the best possible method.
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Introduction

Copy number variation (CNV) [1] is a form of structural

variation (SV) [2,3] in the genome. Usually, CNV refers to the

duplication or deletion of DNA segments larger than 1 kbp [4].

Iafrate et al. [5] showed that CNVs are present in human

populations with high frequency (more than 10 percent). [6]

showed that in an individual genome the average size of CNVs is

3.560.5 Mbp (0.1 percent). Many studies have shown that CNVs

are associated with complex diseases such as autism [7],

schizophrenia [8], Alzheimer disease [9], cancer [10], etc.

Traditionally, fluorescence in situ hybridization (FISH) and

array comparative genomic hybridization (aCGH) are employed

to detect CNVs. However, because of their low resolutions (about

5,10 Mbp for FISH, and 10,25 kbp with 1 million probes for

aCGH [11]), short CNVs are still difficult to detect. In the last few

years, the NGS technology brought revolutionary breakthroughs

and is used in various fields of life science [12], e.g., for the

detection of CNVs with high resolution (,10 kbp) [13]. Recently

a variety of CNV detection methods were proposed [11,14–27]

(see Table 1). Motivated by a comparative study of CNV detection

methods based on aCGH technique [28], we conducted a

comprehensive comparison of six representative CNV detection

methods based on NGS under different sets of conditions. We

hope this study can provide researchers with a clear understanding

of the method’s strengths and weaknesses, and use this information

to choose suitable methods in practice.

There are two main categories of NGS based CNV-detection

methods: the pair-end mapping (PEM) based and the depth of

coverage (DOC) based method [29]. PEM based methods are

suitable to detect balanced SVs such as inversions and CNVs with

small size. The DOC methods are more popularly employed by

most CNV detection tools.

DOC based methods first pile up the aligned reads at the

genomic coordinate, and then calculate the read counts across

sliding [15] or non-overlapping windows (or bins) [11,14,21,23],

yielding the so-called read depth signal. In the case of CNV-seq

[15] and SegSeq [14], the ratios of the read counts do not require

further normalization due to the requirement of a control sample

[19]. Otherwise, normalization such as GC-content [11,23] and

mapability [22] correction is required. The normalized read depth

signal is processed following one of the two ways: (1) first

segmented by local change-point (or segmentation, partition)

algorithms and a merge procedure [14] (e.g. readDepth [22] uses

circular binary segmentation (CBS); CNVnator [23] uses mean

shift; and FREEC [21] uses Lasso based method); (2) tested by a
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statistical hypothesis at each window (e.g. event-wise testing (EWT)

[11]) or several consecutive windows [15].

A CNV is characterized by the break point loci (starting and

ending points), single copy length and number of copies. Precise

break point loci and copy number estimation are always desirable.

Normally, shorter CNVs are more difficult to detect than longer

ones. Also, it is easier to detect copy number greatly deviated

CNVs than slightly deviated ones. (e.g. a homozygous deletion is

easier to detect than a heterozygous deletion). In addition, it is

known that higher coverage can provide higher resolution of break

point detection, yielding higher accuracy. Therefore, these

parameters are important factors to be studied.

Based on the results of the comparative studies, the tested

methods were ranked in terms of break point detection, copy

number estimation, false positive rate, true positive rate, compu-

tation time and peak memory usage, and guidelines for the

selection of appropriate methods under a specific set of conditions

were given. Moreover, the advantages and disadvantages of each

method, the related issues of CNV detection from NGS data, as

well as the directions for further improving current methods and

software were discussed.

Methods

Copy Number Detection Methods Used in the Studies
A number of CNV detection methods have been published

recently for NGS data analysis [11,14–27] (see Table 1). These

methods differ in statistical model, parameter, methodology,

programming language, operating system, input requirement,

output format, and signature used. Based on these factors, as well

as the public availability, implementation stability, and the citation

in literature, six popular and representative methods were selected:

CNV-seq, FREEC, readDepth, CNVnator, SegSeq, and event-

wise testing (EWT). These methods are no means exclusive, but we

believe they represent a fair number of CNV detection methods

for NGS data. Table 1 lists the detailed information of the existing

CNV detection methods to the best of the authors’ knowledge.

rSW-seq was excluded because of no publicly available codes.

CNAnorm was not available when we started our study. cnD and

CNAseg were excluded because of stability issue. From the same

dataset, there were issues getting the code to fully perform to our

expectations. Our study focused on the method with DOC

signature, so CNVer and CopySeq were excluded because they

combine both ROC and PEM signature. A comparison between

the combined signature based methods with the single signature

based methods can be found in [17]. It was already shown that

modeling across samples can improve the performance consider-

ably [26,27], and therefore JointSLM and cn.MOPS were not

compared in this paper for fairness. Since they are developed for

the purpose of population studies, multiple samples (recommended

at least 10 and 6 samples respectively) are required.

Simulated Data Processing
A simulation study was carried out to compare the performance

of each CNV detection method. In such a case, the parameters of

CNVs to be estimated were known in advance as the ground truth.

Figure 1 shows the simulation.

The following parameters concerning CNVs are mainly under

our studies because of their biological significance:

N Single copy length (l): the length of a single copy. As is shown

in Figure 1, it is the length of a single red block.

N Copy number (n): the number of duplicated red blocks in

Figure 1. For diploid genome, suppose n = 2 as normal, n = 0, 1

as loss, and n.2 as gain.

N Coverage (c): the average number of reads that cover each base

pair in the genome. It can be calculated from the length of the

genome G, the number of short reads N, and the average read

length L as c~ NL
G
:

The aforementioned parameters were tuned during the

simulation. The read length L was fixed to 36 bp to be consistent

with the Illumina platform; the genome length G was fixed to

1 Mbp; and the locus of break point (where a CNV starts) was

fixed to b. In the studies, the maximum single copy length was

constrained to be within 6 kbp, because our studies showed that

CNVs with size larger than 6 kbp can be detected by all methods.

Table 1. List of selected CNV detection methods.

Method Reference Language
Control
required? Input format

GC
correction

single-end/
pair-end Methodology characteristics

CNV-seq [15] R, perl Yes hits No single-end statistical testing

FREEC [21] C Optional SAM,BAM,bed,etc. Optional both LASSO regression

readDepth [22] R No bed Yes both CBS, LOESS regression

CNVnator [23] C No BAM Yes both mean shift algorithm

SegSeq [14] Matlab Yes bed No single-end statistical testing,CBS

EWT (RDXplorer) [11] R, python No BAM Yes single-end statistical testing

cnD [16] D No SAM,BAM No both HMM, Viterbi algorithm

CNVer [17] C No BAM Yes pair-end maximum-likelihood, graphic flow

CopySeq [18] Java No BAM Yes pair-end MAP estimator

rSW-seq [19] NA Yes NA Yes single-end Smith-Waterman algorithm

CNAseg [20] R Yes BAM No pair-end wavelet transform and HMM

CNAnorm [24] R Yes SAM,BAM Yes both linear regression or CBS

cn.MOPS [26] R, C++ multiple samples BAM or data matrix No both mixture of Poissons, MAP, EM, CBS

JointSLM [27] R, Fortran multiple samples data matrix Yes both HMM, ML estimator, Viterbi algorithm

doi:10.1371/journal.pone.0059128.t001
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For the same reason, the maximum copy number was constrained

to be within 6.

For each different combination of parameters (l, n, c) (see

Table 2), 1000 Monte Carlo trials were carried out. For each trial,

the procedure of simulating and detecting CNVs was as follows:

1. Generation of the reference and control genome. First, all the

known CNVs (CVNs listed in database of genomic variants

(DGV)) of chromosome 1 and 21 of NCBI36/hg18 were

removed. Then ten sequences of length 1 Mbp were extracted

(9 from chromosome 1 and 1 from chromosome 21). These

1 Mbp sequences were used randomly as the reference

genome, and a diploid control genome was generated from

this reference.

2. Generation of the test genome. The test genome was generated

from the control genome by introducing CNVs with given

parameters. For n.2, a section staring from the predefined

break point b with length l was copied, and inserted n22 times

into the genomic locus b+l (see Figure 1). So in the genomic

locus between b and b+l, a gain with copy number n was

expected to be observed. For n ,2, 2 2 n copy(s) was (were)

deleted.

3. Introduction of SNPs and indels. The frequency is 5 SNPs/kbp

and 0.5 indels/kbp, and the indels have random length of

1,3 bp.

4. Generation of reads. To simulate the non-uniform bias, each

locus was assigned with a sample probability p, which is the

product of mapability and GC-content profile downloaded

from the readDepth’s website. From both the control and test

genome, reads were sampled randomly according to the

probability p on the whole genomic loci. For fixed coverage c,

the number of short reads N can be calculated as Gc
L

.

5. Alignment of reads to the reference. The mapping tool Bowtie

[30] was used to map all the reads to the reference genome

with default options, yielding output SAM file. Then the

SAMtools [31] was used to convert SAM to BAM file, and

generate hits file and bed file from BAM file.

6. Run of each CNV detection method. The configuration of

parameters is explained in the discussion section.

7. Summarization of the outputs of each method. The results of

each method were sorted according to the following informa-

tion: parameters used, number of Monte Carlo trial, starting

break point locus, length of CNV, and the copy number.

Real Data Processing
To compare the performances of the CNV detection methods

on the real data, a BAM file of the chromosome 21 of NA19240

(Yoruba female) was downloaded from the website of Illumina.

This BAM file contains approximately 14.7 million reads, which

were aligned to the NCBI36/hg18 reference genome. The

coverage is 11, indicating a medium coverage. For the methods

that require a control sample (i.e. CNV-seq and SegSeq), we

generated the control sequencing data from chromosome 21 of

NCBI36/hg18 reference with the same sequencing parameters

(coverage and average read length).

The detected CNVs by aforementioned six methods were

compared with those retrieved from the database of genomic

variants (DGV), which lists all the discovered CNVs reported in

the literature. The option of filter query was ‘external sample

id = NA19240, chromosome = 21, assembly = NCBI36/hg18, var-

iant type = CNV’.

To compare the computational performance of CNV detection

methods, a high coverage data set is required. So from the website

of the 1000 Genomes Project, a BAM file of chromosome 1 of

NA19240 was thus downloaded, which has 0.22 billion short reads

with the coverage of 34.

Performance Evaluation Criteria
Since it is difficult to compare the performances of CNV

detection methods from an algorithmic point of view, the black-

box testing method was employed, which is widely used in the

software engineering. Without knowing the explicit structure, the

black-box testing can compare the relative performances of

multiple software tools by analyzing their inputs and outputs. To

help the researchers have an overview of the performance of each

tested method in terms of both break point detection and copy

number estimation, we showed the estimates by the box plots.

Furthermore, we listed the means and standard deviations of the

estimates errors. The detection performances were evaluated by

the receiver operating characteristic (ROC) curves, the precision-

recall curves and the F-scores. In the real data processing, the

Venn diagram was used to show the consistency of the detected

CNVs using each individual method, and the F-score was

employed to quantitatively evaluate the quality of detected CNVs.

Computational demands are also important factors for analyzing

Figure 1. Schematic demonstration of the generation of the
test genome (the lower one) from the control genome (the
upper one) when copy number n = 4. A DNA segment of length l
bp (the length of a single red block) starting from locus b is copied and
inserted n22 times.
doi:10.1371/journal.pone.0059128.g001

Table 2. List of combinations of parameters (l, n, c) in
simulation.

Parameter of interest Values Fixed parameters

l (kbp) 0.8,1,2,6 n = 6,c = 5

n 0,1,3,6 l = 6 kbp, c = 5

c 3,5,10,30 l = 6 kbp, n = 5

doi:10.1371/journal.pone.0059128.t002
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huge amount of NGS data, so both the computation time and

peak memory usage were investigated.

For the simulated data processing, we followed the comparative

study of array CGH analysis tools [28], where the receiver

operating characteristic (ROC) curve was used to evaluate the

detection of the performance. The ROC curve is a graphical plot

of the true positive rate (TPR, equivalent to sensitivity or recall) vs

false positive rate (FPR, equivalent to 1-specificity). These two

measurements are closely related to the type I and type II error.

The ideal detection is expected to achieve TPR = 1 and FPR = 0.

However, in real world these two measurements are always in

contradiction: when one wants to improve the TPR, the FPR will

degenerate at the same time, and vice versa. So usually one has to

decide a trade-off between these two measurements, which

depends on the study design. For example, in the biomarker

identification studies, the researchers want to identity biomarkers

that could be associated with a particular disease. In this case, high

sensitivity is preferable since false detections can be further

removed by the experimental validation. A point in the ROC

curve that is closer to the northwest corner (i.e. with greater TPR

and lower FPR) is believed to indicate better performance than the

one further away. In each Monte Carlo trial, the detected CNV

was compared with the ground truth, yielding a point on the ROC

plot. The TPR and FPR were calculated in the unit of base pair.

The true positive rate was calculated as the ratio between the

number of base pairs in detected CNVs that overlap with the

ground truth, and the number of base pairs in the ground truth;

the false positive rate was calculated as the ratio between the

number of base pairs in detected CNVs that do no overlap with

the ground truth, and the number of base pairs not in the ground

truth.

The box plot was employed to depict the estimation perfor-

mance of both the break point position and the copy number. The

box plot depicts the minimum, the lower quartile, the median, the

upper quartile and the maximum of the estimates for the 1000

Monte Carlo trials. So from the box plot, the distribution of the

estimates precision is clearly presented.

To evaluate the overlap quality, the F-score [2] was introduced,

which takes value ranging from 0 to 1. A lower score indicates a

poor consistency with the ground truth while a higher score

indicates a better consistency. To calculate the F-score for each

detected CNV, the following is considered: if it has no overlap with

any ground truth (CNVs in DGV), the F-score is set to be 0;

otherwise, F~2 PR
PzR

, where P is the precision (percent of the

detected CNV that overlaps with the ground truth) and R is the

recall (percent of the ground truth that overlaps with the detected

CNV) [2]. The Venn diagram was used to demonstrate the

consistency between detected CNVs with different methods. In

order to take into account of the lengths of CNVs, the genome was

segmented into blocks of the same length (100 bp), and the

overlaps were counted block by block.

The computational demand is an important issue in real data

processing. We consider both the computation time and

memory usage as the evaluation criteria. In particular, read-

Depth [22] supports the multi-core computation, so this option

was enabled to achieve its best computation speed. Note that

other methods may also support the acceleration feature,

depending on whether the programming language supports

the multi-core and parallelizing computation or not. Memory

usage is the peak memory occupied during the execution,

including the related software, e.g. Matlab.

Results

Simulation Studies
The experiments were run in terms of single copy length, copy

number and coverage.

Single copy length. The performances for different single

copy lengths (l = 0.8, 1, 2 and 6 kbp) are shown in Figure 2, 3, S1

and Table S1. The coverage c is fixed to 5, and the copy number n

is fixed to 6 (see Table 2).

In Figure 2, each point of the ROC curve is the average of 1000

points, each corresponding to a Monte Carlo trial with the same

parameters. It is shown that with an increase of single copy length,

the true positive detection rate increases. This observation is

consistent with our expectation, because CNVs of large sizes are

easy to detect. CNVnator fails when the single copy length is lower

than 2 kbp. readDepth, CNVnator and EWT achieve lower false

positive rate (at the amplitude of 1024) compared with CNV-seq,

FREEC and SegSeq (at the amplitude of 1023). Here it is

necessary to note that the former three methods do not require a

control sample, but CNV-seq and SegSeq do (see Table 1).

Figure 3 shows that with increases of the single copy length, the

estimates of readDepth are stable. readDepth and EWT achieve

the best performance on break point position estimation, while

CNVnator and readDepth achieve the best performance on copy

number estimation. The means and standard deviations of

estimation error of break point position and copy number are

listed in Table 3 and 4 respectively.

Copy number. The performances for different copy numbers

(0, 1, 3 and 6) are shown in Figure 4, 5 and S2. The means and

standard deviations of the estimation error for break point position

and copy number are listed in Table 3 and 4 respectively. The

coverage is fixed to 5, and the single copy length is fixed to 6 kbp

(see Table 2).

We observe that (Figure 4) all the methods except SegSeq have the

lowest TPR at copy number 3. Here we note that copy number 1

indicates a single copy loss, while copy number 3 indicates a single

copy gain. It is more difficult to detect CNVs in these two cases than in

the case when copy number is 0 or 6. CNV-seq and readDepth fail

(TPRisvery low)atcopynumber1and3;SegSeqfailsatcopynumber

0. It is shown that (box plots in Figure 5) the break point estimate and

copynumberestimateofCNVnatorare thebestcomparedwithother

methods, and the estimates do not vary much with respect to the

change of copy number.

Because of the presence of SNPs and indels in the test genome,

around 20% reads cannot be aligned. This affects the read depth

greatly. So for n ,2 the copy number estimates tend to be

overestimated (in Figure 5, the first two box plots in the lower row

are above the dotted red lines), while for n.2, they are

underestimated (the last two).

Coverage. The performances of the six methods for different

coverages (3, 5, 10 and 30) are shown in Figure 6, 7 and S3. It can

be seen that (Figure 6) the FPR of EWT decreases (while the FPR

of SegSeq increases) greatly when the coverage increases. At

coverage 3, readDepth fails. It can be seen that (Figure 7) the

performances (both break point position estimation and copy

number estimation) of SegSeq degrade. Under investigation trial

by trial, we found that when coverage increases, SegSeq tends to

detect small CNV segments with random locations. So the

standard deviation of break point estimates increases. These small

CNV segments are of copy number around 2, so the mean of copy

number estimates decreases to 2. But we can notice that the mean

of break point position estimates (red solid line) approaches to the

ground truth.

Comparative Studies of CNV Detection Methods
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Overall performances on simulation. Table 3 and 4 list

the means and standard deviations of the estimate errors of both

break point position and copy number. We multiply the mean with

the standard deviation of the estimate error, and take the median

of the product as the ranking measurements of the break point

position and copy number quality. Table S2 and S3 list the p-

values of the pairwise Wilcoxon rank-sum test of the estimates,

which show that there is no significant difference of the break

point position estimates between EWT and readDepth. For FPR

and TPR, we also used the median as the ranking measurements.

Their performances are ranked as follows (. and = means better

and no significant difference.):

N break point position estimation: readDepth = EWT.CNVna-

tor.FREEC.CNV-seq.SegSeq;

N copy number estimation: CNVnator.CNV-seq.read-

Depth.FREEC.EWT.SegSeq;

N FPR: readDepth.CNVnator.EWT.CNV-seq.FREEC.

SegSeq;

Figure 2. The ROC curves with different single copy length: 0.8 kbp (triangle), 1 kbp (diamond), 2 kbp (circle) and 6 kbp (square).
The coverage is fixed to 5 and copy number is fixed to 6. Notice that the horizontal axes have different scales.
doi:10.1371/journal.pone.0059128.g002

Figure 3. The box plot of the break point position estimates (first row) and copy number estimates (second row) of CNVs with
different single copy length: 0.8 kbp, 2 kbp and 6 kbp, respectively. The coverage is fixed to 5 and the copy number is fixed to 6. The
horizontal red dotted lines indicate the ground truth values; the red solid lines indicate the mean values; and the red pluses indicate the outliers.
doi:10.1371/journal.pone.0059128.g003
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N TPR: FREEC.EWT.SegSeq.CNV-seq.readDepth.CNV

nator.

Real Data Studies
The results of the methods when applied to real data analysis

are shown in Figure 8. The NCBI36/hg18 chromosome 21 was

segmented into blocks of the same length (100 bp), and the

overlaps between CNVs were analyzed block by block. Since the

chromosome 21 is of length 4.7e7 bp, there are totally 4.7e5

blocks. From the left panel, it is shown that there are 1592 out of

4.7e5 blocks that are detected as CNVs by all the three methods

(CNV-seq, FREEC and SegSeq), and are consistent with DGV.

There are 3261 blocks that are detected as CNVs by all the three

methods, but are not consistent with DGV. There are 33420

blocks that are detected only by SegSeq, indicating that SegSeq

achieves higher FPR compared with CNV-seq (1283 blocks) and

FREEC (1151 blocks). This is consistent with the conclusion based

on the simulation.

Since readDepth, CNVnator and EWT do not require a control

sample, their Venn diagrams are displayed separately in the right

panel of Figure 8. There are 2146 blocks that are detected as

CNVs by all the three methods, and are consistent with DGV.

However, there are 6747 blocks that are detected as CNVs by all

the three methods, but are not consistent with DGV.

A 7-way (selected six methods plus DGV) Venn diagram

analysis was also performed. However, because this diagram is too

complicated, Table 5 only presents the domains of the 7-way Venn

diagram with block number greater than 1000. For example, the

third column means there are 1235 blocks that are detected as

CNVs by CNVnator and EWT, but considered as normal by the

rest methods and the DGV. It shows that there are 2705 blocks

that are detected by all six methods, and are not consistent with

DGV, indicating that the ground truth might not include all the

CNVs. From the first, second and forth column, it is shown that

SegSeq, CNVnator and readDepth tend to detect unique CNVs,

i.e., detected by only one method. These unique CNVs might be

false positives. From the last three columns, CNV-seq and FREEC

detect CNVs with high reliability.

To study the quality of detected CNVs, the F-score of each

CNV was calculated. The distribution of F-score is shown in

Figure 9. It is shown that CNV-seq and FREEC detect less (both

in number and in percent) CNVs with low quality (F-score,0.1)

compared with the rest methods. This is consistent with the 7-way

Venn diagram analysis: CNV-seq and FREEC are relatively

conservative, and only report reliable CNVs.

Computational Demand
The experimental environment was established in linux open-

SUSE 11.3, and the desktop computer has a dual-core 2.8 GHz

x86 64 bit processor and 6 GB memory.

The computation time and memory usage are shown in

Figure 10. It is shown that for small data size (coverage and

genome length), computation time of CNV-seq, FREEC, SegSeq

and EWT approximately increases linearly with the data size,

while CNVnator achieves the best speed because of the very low

Table 3. The means and standard deviations of estimation error of break point position.

CNV-seq FREEC readDepth CNVnator SegSeq EWT

l = 0.8 kbp, n = 6, c = 5 39561.67e3 729687 32610 NA 68661.78e3 36617

l = 2 kbp, n = 6, c = 5 4496218 7936752 29692 2691 8846552 83682

l = 6 kbp, n = 6, c = 5 1006138 4796251 28622 2648 1.22e361.37e3 31614

l = 6 kbp, n = 0, c = 5 1166270 3596548 3360 113651 41769.07e3 5.13e365.05e3

l = 6 kbp, n = 1, c = 5 6136838 2746136 25680 1776442 19465.28e3 306194

l = 6 kbp, n = 3, c = 5 1.28e361.57e3 2696178 1.6e362.15e3 796404 56161.09e3 1.71e362.05e3

l = 6 kbp, n = 6, c = 3 6436458 6696183 NA 496363 2.76e361.48e3 75688

l = 6 kbp, n = 6, c = 10 203681 729650 32610 596290 8869.15e3 36617

l = 6 kbp, n = 6, c = 30 24628 73460 486426 12641 47763.32e3 3360

doi:10.1371/journal.pone.0059128.t003

Table 4. The means and standard deviations of estimation error of copy number.

CNV-seq FREEC readDepth CNVnator SegSeq EWT

l = 0.8 kbp, n = 6, c = 5 2.4461.46 2.5360.26 0.8960.68 NA 3.4661.08 1.3860.93

l = 2 kbp, n = 6, c = 5 1.6160.22 2.360.51 1.2361.08 0.8560.22 2.8661.07 1.3060.79

l = 6 kbp, n = 6, c = 5 0.8760.19 1.5660.53 0.8260.78 0.5060.08 2.4661.56 1.1060.93

l = 6 kbp, n = 0, c = 5 0.1560.06 1.1261.41 0.0660.01 0.0260.01 1.7360.70 1.2762.08

l = 6 kbp, n = 1, c = 5 0.1460.05 0.1560.53 0.0260.13 0.1760.05 0.4960.46 0.3660.89

l = 6 kbp, n = 3, c = 5 0.2160.08 0.0060.00 0.4660.99 0.1260.08 0.6360.59 0.0360.30

l = 6 kbp, n = 6, c = 3 1.1260.23 1.7660.48 NA 0.4560.14 2.4361.33 1.1360.82

l = 6 kbp, n = 6, c = 10 0.7460.14 1.6960.32 0.6660.45 0.4960.07 3.2761.47 0.8960.96

l = 6 kbp, n = 6, c = 30 0.7360.08 1.9660.30 0.8460.57 0.7060.04 4.1060.69 1.2460.90

doi:10.1371/journal.pone.0059128.t004
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increase of the computation time. The memory usage of

CNVnator and FREEC are almost fixed for small data. For large

data size, EWT runs fastest among all the six methods, and

FREEC achieves the best memory efficiency among all the

methods. Note that the missing bar of SegSeq is caused by ‘out of

memory’, so SegSeq is not suitable for large data size when

memory is not sufficient.

In summary, in terms of both computation time and peak

memory usage, CNV-seq, CNVnator and EWT are computa-

tionally efficient compared with other methods; readDepth is

fastest for medium size data, and EWT has a good balance

between computational complexity and storage.

Discussion

In this paper, six publicly available CNV detection methods:

CNV-seq, FREEC, readDepth, CNVnator, SegSeq and EWT,

were compared comprehensively on both simulated and real data.

This comparative study provides guidelines for investigators to

choose the most appropriate method according to their specific

requirements and data set.

The following guidelines are proposed based on our compar-

ative studies (Table 6).

N readDepth, CNVnator and EWT achieve better break point

estimation among all the tested CNV detection methods;

N CNVnator, readDepth and CNV-seq provide better copy

number estimation compared with the rest;

N When low FPR is preferable, readDepth, EWT and CNVna-

tor are better choices;

N When high TPR is preferable, FREEC, SegSeq and EWT are

better choices;

N If the computation speed/memory usage is the first priority,

EWT/FREEC should be used;

Figure 4. The ROC curves with different copy number: 0 (triangle), 1 (diamond), 3 (circle) and 6 (square). The coverage is fixed to 5 and
single copy length is fixed to 6 kbp.
doi:10.1371/journal.pone.0059128.g004

Figure 5. The box plots of the break point position estimates (first row) and copy number estimates (second row) of CNVs with
different copy number: 0, 1, 3 and 6, respectively. The coverage is fixed to 5 and single copy length is fixed to 6 kbp. The horizontal red dotted
lines indicate the ground truth values; the red solid lines indicate the mean value; and the red pluses indicate outliers.
doi:10.1371/journal.pone.0059128.g005
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N EWT has the best balance between computation time and

memory usage.

An interesting finding based on our simulation is that, the single

copy gain (c = 3) is less easily detected compared with the single

copy loss (c = 1). As shown in Figure 4, the circle (single copy gain)

is lower than the diamond (single copy loss) for all the six methods

except SegSeq. Further literature study supported this in silico

finding. In [26] Klambauer et al. gave a theoretical proof, showing

that the average read count for copy number 2 has a higher

probability to be drawn from a copy number 3 than from a copy

number 1 distribution. In other words, CNVs with copy number 3

are more likely to be assigned to copy number 2, yielding lower

probability to be detected.

As the developer stated, the LASSO-based segmentation is

robust against outliers. From the simulation experiments, it is

shown that FREEC is robust to detect CNVs. However, since the

L21 norm used in the LASSO yields bias on the estimates of the

amplitude [32], the copy number estimates of FREEC are not

accurate, as shown in the overall performance ranking. EWT

transfers the read count ratio into Z-score, and tests over an

Figure 6. The ROC curves with different coverage: 3 (triangle), 5 (diamond), 10 (circle), 30 (square). The copy number is fixed to 6 and
single copy length is fixed to 6 kbp.
doi:10.1371/journal.pone.0059128.g006

Figure 7. The box plots of the break point position estimates (first row) and copy number estimates (second row) of CNVs with
coverage: 3, 5 and 10, respectively. The single copy length is fixed to 6 kbp and copy number is fixed to 6. The horizontal red dotted lines
indicate the ground truth values; the red solid lines indicate the mean value; and the red pluses indicate outliers.
doi:10.1371/journal.pone.0059128.g007
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interval of consecutive windows. Since the statistics is well

designed, EWT works robustly over all simulation conditions.

CNV-seq fails to detect low level copy number deviations (i.e. copy

number 1 and 3); we found that the designed statistics is not

sensitive to this task: From Figure 4, The TPR is only 0.2 and 0.03

respectively with default setting where the p-value is 1e23. When

the p-value is increased to 1e22, the TPR improves to 0.65 and

0.25 respectively. readDepth uses CBS to segment the read depth

signal, and calls CNVs with the cutoff derived from the negative-

binomial model. In this model, an over dispersion parameter, or

the variance mean ratio needs to be predefined. When we

decreased this parameter to as small as 0.1 from the recommended

value 1, the TPR of readDepth at copy number 1 can reach above

0.99; but the TPR at copy number 3 cannot be improved by trying

different combinations of parameters. However, at copy number

4, the TPR can easily reach above 0.99 with recommended

setting. For CNVnator, the mean-shift algorithm is employed to

segment the read depth signal. In the mean-shift algorithm, a local

2D density function has to be estimated to determine the

breakpoints. And in the estimation of this density function, the

so-called ‘bandwidth for the bin index’ parameter Hb, which is in

fact the number of neighboring consecutive non-overlapping bins,

needs to be predefined. This Hb and the bin size jointly determine

the resolution of CNVnator. In order to have multiple resolutions,

Hb is increased from 8 to 128. The default bin size is 100 bp, so the

theoretical extreme resolution is 800 bp. This minimal resolution

is consistent with Figure 2, in which the TPR is 0 and 0.09 at CNV

size 0.8 kbp and 1 kbp, respectively. SegSeq fails at copy number

zero. From the experiments, we observed that when the copy

number is 0, SegSeq always reports two small sized CNVs

respectively at the two boundaries of the ground-true CNVs, but

never spans the entire ground-true CNV. We found that the

reason is as follows: SegSeq uses the log ratio of the case and

control reads count as statistic, so when the copy number is zero,

or the case reads count is zero, the log ratio is negative infinity,

which might cause further exception in the finite precision

personal computer. As a result, the software is unable to report

this CNV region.

The above findings are based on the simulation experiments, in

which the effect of each factor can be studied orthogonally,

providing insight into the differences among the CNV detection

methods. The simulations only focus on the main characteristics of

CNV (e.g. single copy length and copy number). However, due to

the complexity of human genomes, there are factors that are not

considered in the simulation. e.g.,the multiple alignment loci

problem and GC-content correction. Because of the existence of

SNP, indels, and sequencing error, a read can be aligned to

multiple loci. One way is to use only the unique mapped reads to

count the read depth signal [14], while the other way is to assign a

random locus [23] to the multiple loci aligned read, and then

count the read depth signal. Since these two ways have been

discussed in [30,31,33], the simulations did not consider this

multiple loci problem. In our experiments, we use the default

setting of Bowtie, which is similar to MAQ’s default policy [30],

such that the best alignments with fewer mismatches are

outputted. If a read has multiple alignments with the same quality

score, a random locus is selected. Under this strategy, the methods

without a control perform the best [26]. We note that the read

length is often greater than 36 bp, which can decrease both

mismatches and multiple alignments. Therefore, the read depth

signal can be affected by the change of the read length. This

improvement is equivalent to multiplying a factor by the read

depth signal, and so does not affect the results of the CNV

detection methods based on DOC. The GC-content bias, which is

caused by the non-uniform sampling, affects the read depth

significantly when a control data is absent. Since there is no

standard formulation between GC-content and sampling distribu-

tion [21], in our simulation, we use the GC-content profile as the

sample probability factor, which therefore may not reflect the real

Figure 8. The Venn diagrams of selected CNV detection methods in the real data processing.
doi:10.1371/journal.pone.0059128.g008

Table 5. Selected domains of 7-way Venn diagram of CNV
called by a single program.

CNV-seq 0 0 0 0 1 1 1

FREEC 0 0 0 0 1 1 1

readDepth 0 0 0 1 1 1 1

CNVnator 0 1 1 0 1 1 1

SegSeq 1 0 0 0 0 1 1

EWT 0 0 1 0 1 1 1

DGV 0 0 0 0 0 0 1

Block number 32007 2293 1235 1339 2961 2705 1507

Each column represents a domain. ‘0/1’ denotes a normal/CNV status.
doi:10.1371/journal.pone.0059128.t005
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characteristics of GC-content deviation. This is the limitation of

the simulation experiments.

Since performance varies depending on the parameter settings,

the configuration of the parameters follows these rules. 1) The

shared parameters are set the same for all the methods. Since the

recommended GC-content correction bin size of readDepth and

EWT is 100 bp, we also set the bin size of CNVnator to 100 bp.

The smallest Hb parameter (number of consecutive bins) of

CNVnator is 8, so we also set the ‘filter’ parameter of EWT to 8,

yielding the size of the smallest detectable CNV to be 800 bp.

Therefore, the window size of FREEC and SegSeq is set to

800 bp. The thresholds for CNV-seq and FREEC are set to 0.6.

The p-value for CNV-seq, Pinit and Pmerge for SegSeq, false

detection rate for readDepth are all set to 1e23. 2) The parameter

that is specific for each method is tested after the shared

parameters are fixed. The ‘step’ parameter of FREEC is set to

400 bp; the ‘overDispersion’, ‘percCNGain’ and ‘percCNLoss’ of

readDepth are set to 1, 0.01, and 0.01, respectively; the ‘bigger-

window’ and ‘minimum-windows-required’ parameter of CNV-

seq are set to 1 and 2 respectively. Note that CNV-seq can

calculate the window size adaptively when p-value is given. We set

this p-value to 1e23 for other experiments except when the single

copy length is 0.8 and 1 kbp, where the calculated window size is

larger than 1 kb. In these two cases (0.8 and 1 kbp), we set the

window size to 0.8 kbp, to agree with other methods.

As each algorithm has its own set of parameters to be tuned for

different data, it is difficult to tune the parameters for each data

set. Also to consider the configurations described in the previous

paragraph, some algorithms may not work at their best

performance. This might have effect on the comparative results,

which need further study.

As the next-generation sequencing is a promising technology,

more robust and powerful CNV detection software are needed to

efficiently process the huge amount of short read data efficiently.

Existing algorithms can be further improved in several aspects: (1)

as each algorithm has its own strength and weakness, existing

Figure 9. Distribution of F-scores of detected CNVs. The left panel represents the number of CNVs, and the right one represents the
percentage.
doi:10.1371/journal.pone.0059128.g009

Figure 10. Computational demands. The left panel is the computation time in second, and the right one is the peak memory usage in megabyte.
doi:10.1371/journal.pone.0059128.g010
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algorithms can be integrated to achieve highly accurate yet robust

estimation. One approach is to combine the PEM with the

complementary DOC signature, e.g. CNVer and CopySeq, to

improve the break point position accuracy. Another approach is to

process multiple samples simultaneously, e.g. cn.MOPS and

JointSLM in the population studies, which can decrease the

FPR [26]. (2) There are defects and bugs occasionally in the

current software. e.g. cnD works for some data set, but occasionally

fails for other data set simulated with the same parameters.

Therefore further works are needed to improve the robustness of

the software. (3) A user more friendly software is needed because

some software tools require to configure more than one file,

causing inconvenience. To this end, we are in the process of

developing new approaches for the detection of CNVs with sparse

regression models and the corresponding software [25], which will

be reported elsewhere.

Supporting Information

Figure S1 The precision-recall with different single copy length:

0.8 kbp (triangle), 1 kbp (diamond), 2 kbp (circle) and 6 kbp

(square). The coverage is fixed to 5 and copy number is fixed to 6.

(TIF)

Figure S2 The precision-recall with different copy number: 0

(triangle), 1 (diamond), 3 (circle) and 6 (square). The coverage is

fixed to 5 and single copy length is fixed to 6 kbp.

(TIF)

Figure S3 The precision-recall with different coverage: 3

(triangle), 5 (diamond), 10 (circle), 30 (square). The copy number

is fixed to 6 and single copy length is fixed to 6 kbp.

(TIF)

Table S1 The F-scores in the simulation studies.

(DOCX)

Table S2 The p-values (pairwise Wilcoxon rank-sum test) of

break point position estimation.

(DOCX)

Table S3 The p-values (pairwise Wilcoxon rank-sum test) of

copy number estimation.

(DOCX)
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