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Abstract

Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all
macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design.
In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a
number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms
together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This
leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here
an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit
mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking
with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking
when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection
at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex
and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring
of the models results in a selection of near-native solutions in the top three for ,75% of the successfully predicted cases.
This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the
modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the
applicability limit of biomolecular interaction modeling by docking.
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Introduction

Among the wealth of protein-protein interactions that decide of

the cell’s fate, peptides play a crucial role and account for about

40% of them [1]. From co-activators to inhibitors, they are

involved in many signaling and regulation pathways and have

been identified to interact with a large number of protein domains.

MHC, SH3 and PDZ domains are for instance well known for

their affinity toward peptide binding [2–4]. This large diversity of

functions and the importance of the many biological pathways

they mediate make them prone to be associated with diseases [5].

An emergent field in drug design focuses on the development of

peptides for therapeutic applications [6]. Peptides have advantages

over small-molecule inhibitors in that they can mimic protein-

binding domains and are large enough to competitively inhibit

protein–protein interactions. Pharmaceutical leads include for

example antimicrobial peptides [7,8], cyclic peptides [9] and also

beta-breaking peptides that can inhibit amyloid fibril formation

[10–12]. Another promising application field is that of fusogenic

peptides used as cargo to deliver drugs to target cells [13].

Despite the large amount of data scientists have gathered over

protein-peptide interactions [14,15], structural determination of

their complexes remains challenging due to two major obstacles:

peptides are highly flexible and they often interact weakly with

their substrate, underlining their importance in signal transduction

or regulation which often relies on transient processes. These

obstacles make experimental structure determination often non-

trivial and call for complementary computational approaches like

biomolecular docking. From a modeling perspective, conventional

algorithms implemented either for protein-ligand or protein-

protein docking are also often struggling with the problem of

flexibility [16].

Few methods have been published to date to model peptides

onto their protein receptors. Initial applications focused on specific

protein families or domains involved in peptide recognition [2,17–

20], or were restricted to very short peptides [21]. Molecular

dynamics simulations have also been used to predict protein-

peptide interactions [22] but, even if providing interesting insights

about the association process, they were only benchmarked against

small sets of complexes and their applicability for the systematic

screening of protein-peptide interactions remains to be demon-

strated. FlexPepDock [23] was the first generic algorithm aiming

at modeling near-native protein-peptide complexes, starting either

from an ensemble of perturbed peptide structures or, with
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significantly less successful results, from an extended backbone

conformation. FlexPepDock, which is also available as a

webserver, assumes knowledge of the binding site (anchor residues)

to build and refine the peptide onto its receptor [24]. When no

information about the peptide backbone conformation is available,

the same authors have proposed a much more computationally

demanding pipeline [25] that combines Rosetta ab-initio predic-

tions to ‘fold’ the peptide and FlexPepDock to refine the binding

mode. Our own information-driven flexible docking approach

HADDOCK [26,27] has also been used in the past to model

protein-peptide interactions, e.g. [28–32]. In HADDOCK, the

docking is driven by (experimental) knowledge in the form of

information about the interface region between the molecular

components and/or their relative orientations, with applicability

in protein-ligand, protein-nucleic acid and protein-protein docking

predictions. HADDOCK can further handle simultaneously up to

six molecules of various natures [33]. This integrative approach

has proven its success in the blind international experiment

CAPRI (Critical Assessment of PRedicted Interactions) [34] where

it stands as one of the top-performing methods [35]. HADDOCK

is also available as a web server [36], facilitating its usage for large

community. Despite its successful application to the prediction of

various protein-peptide complexes, HADDOCK’s performance

for the modeling of protein-peptide interactions had not yet been

systematically benchmarked nor had its protocol been thoroughly

optimized for this purpose.

Development of a successful method for the modeling of

protein-peptide interactions should also consider aspects of their

molecular recognition mechanism. Over the last century several

theories have been put forward to explain the molecular

recognition process [37–41], among which induced fit [37,38]

and conformational selection [39–41]. Conformational selection

postulates that, already in the absence of its ligand, a protein exists

in a number of discrete conformational states in equilibrium,

including the one that preferentially binds the ligand. This concept

is opposed to the induced fit theory, primarily introduced to

describe enzyme action, which states that the conformational fit is

induced by substrate binding. In recent years, a shift toward a

reconciliation of both models can be observed where conforma-

tional selection and induced fit may be in fact co-existing [42–45].

Here we present an optimized HADDOCK protocol for flexible

protein-peptide docking that combines conformational selection

and induced fit recognition mechanisms. The performance of this

approach is demonstrated on a non-redundant protein-peptide

benchmark, the peptiDB dataset [46]. The latter consists of both

naturally occurring peptides and short segment of proteins, mainly

loops or disordered regions that fold upon binding. It was

originally developed to test the FlexPepDock algorithm [23]. We

demonstrate that, using a coarse definition of the interacting

surface on the unbound protein receptor and no information on

the peptide side, HADDOCK is able to generate near-native or

sub-angstrom models for ,70% of the dataset in unbound/

unbound docking.

Results

We have developed an efficient protein-peptide docking

protocol that combines conformational selection with induced

fit, capitalizing on two of HADDOCK’s features: i) its ability to

provide ensembles of structures as starting point for the docking,

and ii) its flexible refinement capabilities allowing for both

backbone and side-chain flexibility. This protocol was optimized

making use of the PeptiDB protein-peptide benchmark dataset

[46] consisting of 103 non-redundant complexes, 62 of which also

have the unbound form of the protein available. In the protein-

protein docking field, the difficulty of a target is usually assessed by

measuring the deviation between the unbound and bound forms of

its constituents [34]. However, this measure is inapplicable within

the context of protein-peptide docking since we usually don’t have

access to the free form of the peptide. Therefore, in order to define

the difficulty of each target, we measured instead the deviation in

terms of backbone RMSD of the bound form of the peptide from

an ideal extended conformation (see Methods). Three different

classes were defined (easy/medium/difficult) (Figure 1A). The

conformational changes on the protein side are, in first instance,

not taken into account in this classification as most peptides were

observed not to induce any significant conformational changes on

their partner upon binding [46].

Since HADDOCK is an information-driven docking approach,

in order to drive the docking, we defined a large binding site on

the protein receptor derived from the interacting residues within

5 Å from the peptide in the crystal structures of the complexes (see

Methods). On average, this maps a surface of 1200 Å2 on the

protein side, whereas the average interface area in protein-peptide

complexes is only about 500 Å2 (see Table A in File S1). This

rather broad definition of the binding region was chosen to drive

the docking to an approximate location of the peptide binding site

without introducing too much bias in our results by defining the

tight pocket or groove that accommodates the peptide. While this

represents of course a ‘‘best case’’ scenario where the binding

regions are rather well defined, this allows to concentrate on the

problem of addressing properly the peptide flexibility in the

docking process.

Bound/Unbound (Extended) Docking – Impact and
limitations of Flexible Refinement

We first evaluated the performance of HADDOCK in docking

and refining extended peptides. Based on the solvent accessible

surface areas of the peptide in the crystal structures of the

complexes (Figure 1B), in half of the cases the peptide targets a

hollow surface on the protein and in another half, the peptide

remains largely exposed to the solvent. Especially for the hollow

binding sites, flexible refinement is crucial in generating proper

poses. Rigid body docking only (it0 stage of HADDOCK) shows a

success rate of 54% of acceptable (sub-angstrom or near-native)

solutions (Figure 2A); while a subsequent refinement with both

side-chain and backbone flexibility enables an induced fit of the

peptides in their binding pocket, resulting in an 18% increase in

performance leading to 72% of acceptable solutions over the

benchmark. However, while peptides that bind onto their protein

receptor in a stretched conformation (typically SH3 domains) can

be successfully predicted, about 60% of the peptides binding in a

helical conformation fail, which represents 44% of the failed cases

(12 out of 28). Clearly, folding of a helix upon binding is far

beyond the possibilities of the flexible refinement in HADDOCK.

Other failed cases consists of deeply buried peptides and peptides

with more complex and localized conformational changes

including b-hairpins and turn-like conformations. The impact of

the flexible refinement in terms of fraction of native contacts (Fnat)

and RMSD improvements will be discussed later below.

Bound/Unbound Docking – Introducing Conformational
Selection

Given the failure to model helical peptide conformations

starting from extended stretches, we revised our approach to

allow for conformational selection at the rigid-body docking stage

of HADDOCK. Among 103 complexes, 21 peptides bind onto

Ensemble-Based Flexible Protein-Peptide Docking
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their receptor in a helical conformation, 42 as extended or beta

and the remaining 38 as disordered. This proportion reflects what

other studies reported about the conformations adopted by

peptides upon binding [1]. Building onto the ensemble docking

capability of HADDOCK we started the docking from an

ensemble of three distinct conformations of the peptide: a-helix,

polyproline II and extended. Together, these three conformations

cover about 80% of the observed peptide bound structures in the

Protein Data Bank [47]. This combined conformational selection

and induced fit protocol led to an increased success rate of 76.3%

among the final models after final water refinement (Figure 2B).

Not only does the performance improves, but also the quality of

the generated models with 23 sub-angstrom high quality solutions

compared to 17 for the induced fit approach only (Figure 2B).

In the cases where a helical conformation was selected, we

however observed for some targets distortion of the helical

conformation after flexible refinement. To correct this, we

introduced ‘‘on-the-fly’’ backbone dihedral angle restraints for

helical regions by allowing angle variations around the measured

dihedral angle of 610u. These restraints corrected the loss of

secondary structure, improving substantially the overall success

rate to 79.4% (Figure 2C). More specifically, for the helical cases,

the success rate increased from 50% without restraints to 65%

with the new dihedral angle restraints. This is also reflected in an

overall improvement of the interface-RMSD (i-RMSD) by ,1 Å

and ,10% increase in the total number of acceptable models.

How Successful is Conformational Selection?
Despite the demonstrated performance improvement, how

successful is conformation selection in recovering the proper

peptide conformation for a given complex? During rigid-body

docking, 6000 models are written to disk. Each model is effectively

the results of 10 minimization trials (five, with for each automatic

sampling of the 180u rotated solution), starting from one of the

three conformations. Each conformation is thus represented

equally in the total pool of models and it is up to scoring to

selected the relevant models since the top 400 only is further

refined.

The HADDOCK score at the rigid body stage is a combination

of restraint, van der Waals, electrostatic and desolvation energies,

together with a buried surface area term (HADDOCKrigid-

score = 0.01 Erest +0.01 Evdw +1.0 Eelec +1.0 Edesol –0.01 BSA)

[26,27]. We assessed the pertinence of our scoring scheme for

selecting the best conformation after it0 with respect to the peptide

conformation in the complex. For the 19 helical cases, HAD-

DOCK selected a majority of models coming from a starting

helical conformation (Figure 3A) with 60% of the top 400 ranked

models being in a helical conformation (corresponding to an

enrichment factor of 1.80). The HADDOCK score performs also

well for extended peptides since a majority of the selected models

(,50%) are generated from an ideal extended conformation of the

peptide (Figure 3B) with 46% for the top 400 ranked models

being in an extended conformation (corresponding to an

enrichment factor of 1.32). Unsurprisingly, for cases with a

disordered conformation of the peptide in the crystal structure, all

three conformations are homogeneously selected from our input

ensemble, with a slightly smaller contribution of polyproline II

conformations (Figure 3C). Note that we also investigated

whether our scoring function at the rigid body stage could be

optimized to improve the selection performance by trying to

maximize the number of acceptable models in the top 400 as

described by [48]. Since, no significant improvement could be

found, the weights were kept at their default values, which also

correspond to the defaults settings for protein-protein and protein-

DNA docking. This has the advantage that the same scoring

function can be used for various molecule types or mixtures

thereof.

Unbound/Unbound Docking – A Challenging Task
Having established an efficient protein-peptide docking protocol

using the bound form of the receptor (bound/unbound docking),

we put it to the test on the real case of unbound docking, i.e.

starting from the unbound form of the receptor protein and three

conformations of the peptide. The original PeptiDB benchmark

contains 47 cases with available unbound structures. Further

analysis allowed us to identify 15 additional unbound structures,

resulting in a total of 62 unbound/unbound cases (12 of which

with helical peptide conformations).

To assess the difficulty of the docking in the presence of the

unbound receptor, we measured, next to the conformational

changes of the peptide itself (see above), the conformational

changes occurring between the bound and the unbound forms of

each protein at the interface. Eight out of the 62 unbound

structures undergo conformational changes upon binding larger

Figure 1. Protein-peptide benchmark characteristics. (A) Distribution of positional backbone RMSDs between the bound form of the peptides
present in the benchmark and an ideal extended conformation. These are classified into three categories (easy, medium and difficult) based on the
amplitude of the conformational change upon binding. (B) Percentage of solvent accessible residues computed for all peptides in the crystal
structures of the respective protein-peptide complexes.
doi:10.1371/journal.pone.0058769.g001
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than 2.0 Å (Table B in File S1), with a maximum of 11.5 Å.

Such conformational changes might be large enough to theoret-

ically increase i-RMSD values above our acceptable limit even

when the peptide is perfectly modeled onto the protein.

Applying our conformational selection/induced fit docking

protocol led to an impressive overall unbound/unbound docking

success rate of 69.4%, meaning that 43 out of 62 cases presented

acceptable models in the final stage of HADDOCK (Figure 4).

Among the 19 cases that failed, eight complexes correspond to

cases where the protein undergoes conformational changes above

2.0 Å and four to cases with conformational changes between 1.5

and 2.0 Å. We can also assess the quality of the modeling for the

peptide independently from changes on the protein, by calculating

the RMSD on the interface residues of the peptide after fitting on

the interface of the protein receptor (ligand interface RMSD; l-i-

RMSD). Using this measure, we got acceptable models for 65% of

the cases when considering a 2.0 Å threshold for near-native

solutions. This increases to 83% for a 2.5 Å threshold (Figure A
in File S1).

Determinants for Success: Ranking and Clustering
HADDOCKs’ performance is very promising with acceptable

models in the top 400 for ,70% of the cases in unbound/

unbound docking. How well are those models however scoring?

To evaluate this we assessed the ranking performance of

HADDOCK as a function of the top-scored N models (N ranging

Figure 2. Overall HADDOCK results for (A) bound/unbound (extended), (B) bound/unbound (3 conformations) and (C) bound/
unbound (3 conformations) with enhanced flexibility. The percentages of near-native and sub-angstrom resolution models at the various
stages (rigid-body (it0), semi-flexible (it1) and water refinement (water)) are reported in the left panels and were calculated over the 400 final models
generated by HADDOCK. The right panels show the percentages after water refinement as a function of the docking difficulty.
doi:10.1371/journal.pone.0058769.g002

Figure 3. Performance of the conformational selection at the rigid-body stage of HADDOCK. The top 400 models are selected from the
6000 models generated based on their HADDOCK score. (A) Selection details for the 19 helical peptide cases. (B) Fractions of extended cases (41)
with a predominant selection (i.e. majority of the selected conformations) coming from either extended, helical or polyproline II peptides. (C) Fraction
of other cases (37) with a predominant selection coming from either extended, helical or polyproline II peptides.
doi:10.1371/journal.pone.0058769.g003
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from 1 to 400) (Figure 5). This analysis reveals that we only reach

50% success rate when taking into consideration the top 20 models

considering all cases. This underlines the difficulty of scoring

consistently protein-peptide predictions as reported by a previous

study [49]. On the other hand, the success rate only improves by

,10% when going from top 50 to top 400, indicating that our

scoring function can still reasonably well discriminate the ‘true

negative’ (inaccurate models that have a lower score).

Ranking of individual models is however not the standard

scoring procedure in HADDOCK: scoring is usually performed

after clustering of the solutions and the final scoring is calculated

on a per-cluster basis as the average score of the top 4 ranking

models of each cluster. This has the advantage of smoothening the

rather noisy contribution of individual energy terms, and in

particular the electrostatic energy. Cluster-based ranking success-

fully ranks a near-native cluster at the top in ,50% of the

successful cases (cases for which HADDOCK generated at least

one acceptable model in the top 400), and this quickly reaches

75% if the top three clusters are considered (Figure 6). For

comparison, single structure scoring only ranks an acceptable

model at the top of 21% of the cases (44% if we consider the top 3

ranking models) for which at least one acceptable model was

generated. A few examples of unbound/unbound docking models

obtained for challenging cases are illustrated in Figure 7.

Discussion

Through this study, we developed a specific protocol for the

flexible docking of short peptides (5215 amino acids) onto proteins

using HADDOCK. The protocol starts from an ensemble of three

different conformations for the peptide, inspired by the confor-

mational selection mechanism. This canonical ensemble does not

aim at reproducing the free state conformations sampled by the

peptide, but rather represents conformations often observed in

protein-peptide complexes. Out of these, the favorable conforma-

tions selected at the rigid body stage are then subjected to an

enhanced fully flexible refinement onto the protein, following the

concept of induced fit. This approach enables HADDOCK to

generate near native models for ,80% of the cases for bound/

unbound docking and ,70% of the cases for unbound/unbound

docking, and this, using the largest benchmark assembled to date.

Furthermore, the HADDOCK cluster-based scoring scheme is

shown to be efficient in retrieving an acceptable structure among

the top three clusters in 75% of the successfully predicted cases,

both for bound/unbound and unbound/unbound benchmarks.

This represents quite a solid performance, especially considering

that our method reaches an overall success rate of 93% (Figure B
in File S1) when applied to the bound/bound dataset, which

represents the ideal case and thus defines the upper limit of

achievable success rate. Only seven cases among 101 were out of

reach for HADDOCK because the peptides were deeply buried in

the protein in the crystal structure. A drop of only 13.6% in

success rate is observed from bound/bound to bound/unbound

when we apply our ensemble-based flexible docking approach,

and this is 23.6% for unbound/unbound. The performance of

HADDOCK is however less impressive when considering the

proportion of cases with sub-angstrom resolution models: it drops

from 75% for bound/bound to 25% for bound/unbound docking,

reaching only 17% in the case of unbound/unbound docking.

This is still acceptable considering the difficulty of the problem.

Together, these results confirm the relevance of our unified

conformational selection/induced fit approach to the prediction of

the 3D structure of protein-peptide complexes.

To further analyze our performance, we distinguished three

levels of difficulties (easy/medium/difficult) for the docking based

on the deviation between the bound form of the peptide and an

ideal extended conformation (Figure 1A). This classification gives

a direct indication about the amplitude of the conformational

Figure 4. Unbound/unbound docking performance using the conformational selection/induced fit HADDOCK protocol. The
percentages of near-native and sub-angstrom resolution models (see Methods) at the various stages (rigid-body (it0), semi-flexible (it1) and water
refinement (water)) are reported in the left panels and were calculated over the 400 final models generated by HADDOCK. The right panels show the
percentages after water refinement as a function of the docking difficulty.
doi:10.1371/journal.pone.0058769.g004
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change required to fit the peptide at the interface, starting from an

extended conformation. Interestingly, HADDOCK is not only

able to provide reliable models for the easiest category of cases, but

achieves also high success rates for the medium and difficult

categories. Indeed, for the bound/unbound benchmark acceptable

models are obtained in 87%, 79% and 76% of the easy, medium

and difficult cases, respectively (Figure 2C – right panel). These

percentages become really surprising for the unbound/unbound

docking, with 92%, 57% and 71% of success rate for the respective

easy, medium and difficult categories. This indicates that our

protocol is not limited to the ‘‘easy’’ cases where the peptide binds

as a stretched conformation (for example on SH3 domain) but can

deal with more challenging cases as well.

We analyzed the impact of the flexible refinement stages of

HADDOCK on the quality of the generated acceptable models

after water refinement, considering all unbound/unbound bench-

mark cases. The interface-RMSD improves by 0.7 Å on average

during the semi-flexible refinement (it1), and by up to 5.0 Å for

some cases (Figure 8A), while the change is only moderate

(0.02 Å on average with a maximum of 0.42 Å) during the water

refinement of HADDOCK (Figure 8B). The fraction of native

contacts improves by 0.25 on average during it1, and by up to 0.79

Figure 5. Success rate of unbound/unbound docking as a function of the number of top models considered. A docking is defined as
successful it at least one near-native model is present within the topXX selected models.
doi:10.1371/journal.pone.0058769.g005

Figure 6. Clustering performance of HADDOCK in unbound/unbound docking onto acceptable cases (with at least one acceptable
model) as a function of the number of clusters considered. A cluster is considered near-native if one of its top four member is of near-native
quality or better.
doi:10.1371/journal.pone.0058769.g006
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in some cases (Figure 8C). Some substantial improvement is still

observed during the water refinement for some models with a

maximum of 0.28 (Figure 8D). All together, this shows that

flexibility of the system is mostly handled during the flexible

refinement stage (it1) of HADDOCK, while water refinement has

the most impact on the fraction of native contacts and on the

energetics.

We finally analyzed the impact of the chosen metric and

associated cutoff on the success rate, for both interface-RMSD (i-

RMSD, Figure 9A) and ligand-RMSD (l-RMSD, Figure 9B),

the latter calculated on the entire peptide backbone. Interestingly,

for i-RMSD cutoffs below 1.8 Å we observe that success rates

remains similar for both bound/unbound and unbound/unbound

docking (Figure 9A). Increasing the acceptability threshold above

2 Å results in more significant differences (,10215% in success

rate) between bound/unbound and unbound/unbound bench-

marks. The same analysis for l-RMSD reveals almost identical

success rates for both bound/unbound and unbound/unbound

benchmarks for thresholds below 5 Å (Figure 9B). The differ-

ences in success rates between bound/unbound and unbound/

unbound docking based on various i-RMSD thresholds (which is

not observed for l-RMSD thresholds) suggests that our perfor-

mance for unbound/unbound docking is affected by the confor-

mational changes of the protein when we discuss them with the

CAPRI standard interface-RMSD definition. However, the results

are much less influenced by the flexibility of the protein when only

ligand or ligand-interface RMSD are considered. Ligand-RMSD

based metrics alone therefore overestimate the performance of

protein-peptide prediction algorithms. A proper assessment should

not only measure the quality of the structural refinement of the

peptides, but also address the flexibility of the protein receptor.

Figure 7. Examples of HADDOCK best models for the challenging unbound/unbound cases. The PDB-id as well as difficulty, peptide
length, rank and i-RMSD values are indicated for each case. The model selected for illustration is the acceptable model with the best rank at the end
of the HADDOCK process. The model peptide is shown in purple together with the reference peptide in the crystal structure of the complex in black.
Docking model and crystal structure were superimposed on backbone atoms of the protein. The protein (crystal structure) is shown in surface
representation. (A) 1NX1, (B) 1CZY, (C) 1LVM and (D) 1D4T. Figure generated with PyMol [56].
doi:10.1371/journal.pone.0058769.g007
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Comparison with FlexPepDock and Dynadock
We compared the performance of our protocols with that of

FlexPepDock, the only method that has been applied so far on the

same protein-peptide dataset, concentrating on the bound/

unbound benchmark since FlexPepDock results over the un-

bound/unbound dataset are not available. Both assume knowl-

edge of the binding site: while HADDOCK uses a broad definition

of the surface of interaction on the protein receptor, FlexPepDock

assumes the knowledge of an anchoring residue at the interface.

The two methods have significant differences in their approach of

protein-peptide modeling but both allow a highly flexible sampling

of the peptide. FlexPepDock’s performance, assessed on the

RMSDs of the peptide backbone only, reaches an overall 52%

success rate whereas HADDOCK was able to model acceptable

structures for ,70% of the cases using the same metric

(Figure 10). Noticeably, FlexPepDock was not able to correctly

model any helical cases. When restricted to the non-helical subset

of their dataset, FlexPepDock reaches a success rate of 66%, with

49% of the cases containing at least one acceptable structure in the

top five solutions. We repeated the same analysis for our results

and we observed a similar success rate ,73%, 53% of the cases

with acceptable structures in the top five solutions. After clustering,

however, HADDOCK reaches a similar success rate with 52%

success rate considering the top three clusters. We should however

note that FlexPepDock does generate more sub-angstrom resolu-

tion models, which might be explained by the different informa-

tion used to guide the modeling (ambiguous interface versus

anchoring residue).

Finally, we compared our protocol to the Dynadock method

[49] that uses molecular dynamics simulations to account for the

flexibility of the protein receptor. This method was benchmarked

Figure 8. Difference in interface-RMSD (i-RMSD) and fraction of native contacts (Fnat) between models from various stages of
HADDOCK (it0/it1/water) for unbound/unbound docking using our 3 conformation/enhanced flexibility protocol. The distributions
are calculated from all generated models of the unbound/unbound docking benchmark. A negative i-RMSD difference value reflects an improvement
(move toward the bound form) while a positive value indicates a deterioration of this i-RMSD. For Fnat this is reverse: a positive difference indicates
an improvement. The impact of flexible refinement in torsion angle space (differences between rigid-body docking and flexible refinement (it1–it0)) is
shown in A) i-RMSD diff and C) Fnat diff, and the impact of final water refinement (differences between flexible and water refinement (water-it1) is
shown in B) i-RMSD diff and D) Fnat diff.
doi:10.1371/journal.pone.0058769.g008
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over 15 complexes that overlapped with our dataset. Dynadock

defines a broad interface on the protein side (using a 6.5 Å

threshold based on the crystal structure) and the peptides are

initially ‘‘randomly’’ placed at their binding site, yet their

orientation along the binding groove is restrained during the

initial sampling. Using a ligand-interface RMSD with a threshold

of 2.1 Å, Dynadock gets a final acceptable solution ranked as first

for 11/15 cases. The same analysis for HADDOCK models gives

acceptable solutions for 13/15 cases, including sub-angstrom

solutions for six cases.

Perspectives
Predicting large conformational changes remains a challenge as

indicated by our failure to accurately predict cases where the

protein undergoes large conformational changes upon binding.

Among the eight cases with conformational changes at the

receptor interface above 2.0 Å, two of them reveal a complete

shift of one helix that ‘wraps’ the peptide, and the six others exhibit

mostly local loop variations or secondary structure rearrange-

ments. For the two first cases, a multi-body docking approach

Figure 9. Impact of the (A) i-RMSD and (B) l-RMSD cutoffs defining a near-native solution on the docking performance. In this
analysis, a docking run is defined as successful if at least one near-native model (for the selected cutoff) is generated within the pool of 400 water-
refined models. Results are presented for both bound/unbound (97, black) and unbound/unbound (62, gray) cases.
doi:10.1371/journal.pone.0058769.g009

Figure 10. Comparison of the performance of HADDOCK and FlexPepDock. Percentage of cases with sub-angstrom and near-native
models quality assessed by ligand-interface RMSD. The results are given for the whole bound/unbound benchmark and the ‘non-helical’ subset, as
reported by FlexPepDock.
doi:10.1371/journal.pone.0058769.g010
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where the flexible domain of the protein would be considered as a

separate body for the docking process could significantly improve

the modeling. This was successfully applied in the past to protein-

protein docking [50]. The problem is rather that such changes are

difficult if not impossible to predict. The others cases could benefit

from an initial refinement of the protein receptor alone, by

molecular dynamics simulation for instance.

HADDOCK is a data-driven method that incorporates

information during the docking process to narrow the search. In

this work, we defined a broad binding site on the protein receptor

directly from the crystal structures, which represents a best-case

scenario. When no experimental information is available, one

could rely on bioinformatics predictions or other computational

methods to predict the interaction surfaces. Peptides seem indeed

to recognize ‘‘hot spot’’ residues on the protein [51] that might be

predictable. A number of approaches have been reported to

predict peptide-binding site on proteins [52,53]. Such predictors

could be useful in the context of HADDOCK. Their performance

for docking purposes will however have to be benchmarked in the

future.

Materials and Methods

Protein-peptide Docking Benchmark
We used as benchmark the PeptiDB non-redundant dataset

(sequence identity ,70% for any two receptors) of 103 high-

resolution (X-ray structures; ,2 Å resolution) complexes of

proteins bound to short peptides (5215 amino acids long) [46].

This dataset also contains 47 high quality structures of unbound

protein receptors that we complemented with 15 recently released

unbound structures of the proteins, making together an unbound

dataset of 62 cases (Table C in File S1).

Two complexes were removed from this dataset because of the

total inaccessibility of the peptides binding site in the crystal

structure (1XOC and 2D5W). For bound/unbound docking, four

more cases were removed (1D4T, 1GYB, 2FMF and 2VJ0)

because of problems with the coordinates of the proteins.

Benchmark Classification
We divided our benchmark in three classes (easy/medium/

difficult) based on the backbone RMSD between the conformation

of the peptide in the crystal structure and its ideal extended

conformation.

N easy: RMSDbound/extended #4 Å

N medium: 4 Å,RMSDbound/extended #8 Å

N difficult:RMSDbound/extended .8 Å

The secondary structure of the peptides was assigned with

STRIDE [54]. STRIDE encounters some issues to assign short

amino-acid sequences that do not show consistent torsion angles

for a particular conformation. We therefore considered as

extended peptides those for which at least 80% of the sequence

was in an ideal extended conformation. An ideal extended poly-

alanine shows an intramolecular distance between two consecutive

Ca equal to 3.46 Å. If the average Ca–Ca distance is larger than

3.4660.8 = 2.8 Å, then the peptide was considered as extended.

This can be expressed mathematically in the following manner:

P[ extendedf gIF P1PnkCa=(n{1)§2:8 Að1Þ
�
�

where P indicates the peptide, P1PnkCa

�
� the end-to-end distance

between the first and the last Ca and n the length of the peptide.

Peptides were classified as helices when STRIDE [54] assigned

more than half of their sequence in a helical conformation. All

peptides that did not fall into the helical or extended classes were

considered as disordered.

This classification scheme resulted in 21 helices, 42 extended

and 38 disordered peptides.

To evaluate the conformational change between the unbound

and bound forms of a protein, we calculated the RMSD of the

protein interface, defining as interacting residues those within

10 Å from the peptide in the crystal structure of the complex

(Table B in File S1).

Solvent Accessibility Calculations
Solvent accessibility and buried surface areas were calculated

using NACCESS [55]. We defined a residue as solvent accessible if

its side-chain or its backbone has a relative accessibility over 40%.

Modeling of Peptides Starting Conformations
PyMOL [56] was used to generate the three distinct confor-

mation for every peptide. According to standard Ramachandran

plots, the helical conformations were modeled with phi and psi

angles 257u and 247u, respectively. Polyproline II conformations

were built with 278u for phi and 149u for psi. Finally, the

extended conformations of the peptides were generated using

2139u for phi and 2135u for psi.

HADDOCK Settings
The bound conformations of the protein-peptide complexes

were downloaded from the PDB databank [57]. The interface of

the protein was defined from the crystal structure as follows: active

residues (the defined interface for docking) on the protein side were

defined as those within 5 Å from the peptide chain. Peptide

residues were treated as passive. Random removal of restraints was

turned off. Within the HADDOCK process, active residues are

enforced to be part of the interface as much as possible by applying

ambiguous interaction restraints while passive residue can be part

of the interface. HADDOCK will thus try to satisfy as much

interactions to active residues.

A typical HADDOCK docking run involves three consecutive

steps. First, the molecules are randomly oriented and a rigid body

energy minimization is performed (it0). The top ranked models

(here top 400) are then addressed to the semi-flexible simulated

annealing stage performed in torsion angle space (it1). In this

study, this stage has been turned into a fully flexible simulated

annealing as described below. Finally, the structures obtained after

the semi-flexible simulated annealing are refined in an explicit

solvent layer to further improve their scoring (water).

From preliminary tests on a small representative set (20

complexes), an increase in the number of flexible refinement steps

by a factor four was found to lead to better conformations.

Accordingly, the default number of MD steps for the flexible

refinement stage was increased from 500/500/1000/1000 for the

four stages of the flexible refinement to 2000/2000/4000/4000.

These settings were subsequently applied to the entire benchmark.

The peptides were defined as fully flexible, meaning that side-

chain and backbone flexibility is implemented from the start of the

refinement stage (it1). On the protein side, only residues that are

part of the interface (determined on the fly during docking) are

treated as flexible, first allowing only side-chain flexibility followed

by both backbone and side-chain flexibility in the final simulated

annealing stage of it1. Note that this protocol thus allows for

flexibility in the protein, even when starting from the bound form.

The RMSD clustering cutoff was decreased from 7.5 Å to 5.0 Å to

take into consideration the smaller size of protein-peptide

interfaces. Finally, we specified charged Cter and Nter when we
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had indication of naturally occurring peptides and uncharged

termini when the peptide was a fragment of protein or capped in

the crystal structure.
Bound/unbound (extended) docking runs. The number

of models generated during the three main stages of HADDOCK

(it0/it1/water) was increased to 2000/400/400.
Bound/unbound (3 conformations) docking runs. The

number of models generated during the three main steps of

HADDOCK (it0/it1/water) was increased to 6000/400/400. In

that way, each conformation is sampled 2000 times in the rigid

body stage.
Unbound/unbound docking runs. The only change com-

pared to bound/unbound (3 conformation) docking protocol is

that the structure of the protein receptor in its unbound form was

used, as downloaded from the Protein Data Bank.

All HADDOCK runs were launched on the WeNMR grid

version [58] of the HADDOCK server (http://haddock.science.

uu.nl/enmr/services/HADDOCK/haddock.php) that makes use

of the European Grid Infrastructure (EGI) computing resources.

On average, each run took between five and six hours to complete

on the grid.

Quality Assessment Criteria
In order to assess the quality of models generated by

HADDOCK we criteria as defined by the CAPRI experiment

[34,59]. These were however reduced compare to standard

protein-protein docking to account for the small size of the

peptides. The quality of docking models was assessed using the

interface RMSD (i-RMSD) as follows:

N Not acceptable: i-RMSD .2 Å

N Near-native prediction: 1 Å # i-RMSD #2 Å

N High-quality (sub-angstrom) prediction: i- RMSD #1 Å

The i-RMSD is calculated on the backbone atoms of both

protein and peptide residues that are within 10 Å of the partner

molecules (as defined based on the crystal structure of the

complex). The l-RMSD, when mentioned, is calculated on the

backbone atoms of the peptide only, after fitting on the backbone

atoms of the protein.

We further refer to as ‘‘acceptable models’’ any near-native or

better (sub-angstrom) predictions.

Supporting Information

File S1 Table A - Size of the protein interface measured in the

different crystal structures (Native interface) and respective size of

the surface used to define ambiguous restraints in HADDOCK to

drive the modeling (Docking interface). Calculations have been

done over the 97 cases successfully docked. Table B - Interface-

RMSD between bound and unbound forms of the proteins and i-

RMSD between the closest model generated by HADDOCK and

the bound form of the protein for each case. Table C - List of

protein-peptide complexes identifiers with their corresponding free

forms when available. In red, the new entries added to PeptiDB in

this study. Figure A - Success rate (% of benchmark cases with

acceptable models) as a function of the ligand-interface RMSD

cutoff. In this analysis, a docking run is defined as successful if at

least one acceptable model (as defined by the l-i-RMSD cutoff) is

generated among the 400 water-refined models. Figure B -
Bound/bound docking performance using the default HAD-

DOCK protocol. The percentages of near-native and sub-

angstrom resolution models (see Methods) at the various stages

(rigid-body - it0, semi-flexible - it1 and water refinement - water) are

reported in the left panels. The right panels show the percentages

after water refinement as a function of the docking difficulty level.

(PDF)
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