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Abstract

Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by
Hypoxia Inducible Factors (HIF). HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFa, and a
constitutively expressed subunit, HIF1b. HIF1a and HIF2a, encoded by two separate genes, contribute to the activation of
hypoxia inducible genes. A third HIFa gene, HIF3a, is subject to alternative promoter usage and splicing, leading to three
major isoforms, HIF3a, NEPAS and IPAS. HIF3a gene products add to the complexity of the hypoxia response as they
function as dominant negative inhibitors (IPAS) or weak transcriptional activators (HIF3a/NEPAS). Previously, we and others
have shown the importance of the Hif1a and Hif2a factors in lung development, and here we investigated the role of Hif3a
during pulmonary development. Therefore, HIF3a was conditionally expressed in airway epithelial cells during gestation
and although HIF3a transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities,
including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3a expressing lungs
displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3a expression, the level
of Hif2a was reduced, but that of Hif1a was not affected. Two regulatory genes, Rarb, involved in alveologenesis, and Foxp2,
a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3a expressing lungs.
In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that
Hif3a binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2
promoter region. Moreover, Hif3a affected the expression of genes not typically involved in the hypoxia response, providing
evidence for a novel function of Hif3a beyond the hypoxia response.
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Introduction

The lung originates from the primitive foregut early in the

development of land dwelling organisms, and through a complex

interplay of signaling molecules the future airway epithelium and

surrounding mesenchyme develop into the highly structured

arbor-like bronchial-vascular tree (reviewed in [1,2,3]). Normal

development in mammals occurs in a relative hypoxic environ-

ment, which is beneficial for lung organogenesis [4,5]. Cellular

responses to different levels of oxygen are important for

development and homeostasis [6], and the most important

oxygen-sensing mechanism to protect cells from oxygen toxicity

is the transcriptional response mediated by Hypoxia Inducible

Factors (HIF), which are also expressed in the lungs [7].

HIFs are critical mediators of the hypoxic cellular response and

regulate cellular adaptation by transactivating genes involved in

angiogenesis, metabolism and cellular homeostasis (for recent

reviews see [6,8,9]). HIFs are heterodimeric transcription factors

which have two structurally related subunits, an oxygen sensitive

HIFa subunit and a constitutively expressed HIFß or ARNT

subunit (Aryl hydrocarbon Receptor Nuclear Translocator). Both

subunits belong to the transcription factor family containing a

basic Helix-Loop-Helix (bHLH) and a Per/ARNT/Sim (PAS)

domain at the N-terminus, which mediate heterodimerization and

DNA binding [10,11]. HIFß is expressed ubiquitously and as such,

the level and expression patterns of the HIFa proteins are mostly

determining the activity of the heterodimers [12]. Currently, three

genes have been identified in human and mouse that encode HIFa
isoforms, HIF1a [10,11], HIF2a or EPAS1 [13,14,15], and HIF3a
[16,17,18,19,20]. Aside from the N-terminal bHLH/PAS domain,

the HIFa subunits contain an Oxygen-Dependent Degradation

Domain (ODDD) in the center of the protein, an N-terminal

transactivation domain (NTAD) and a C-terminal transactivation

domain (CTAD) [21,22,23,24,25]. The CTAD is absent in the

HIF3a subunit, which significantly reduces the transcriptional

activity of the protein [16,26]. The three a subunits are post-

transcriptionally regulated by prolyl hydroxylase domain-contain-
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ing enzymes (PHD1-3), which hydroxylate with different specific-

ity the HIFa subunits at two critical prolyl residues in the ODDD

under normoxic conditions [22,27]. The PHD proteins are

dioxygenases which require oxygen for their function and as such

are sensitive to oxygen concentrations, losing their activity under

low oxygen concentration [22]. The hydroxylated HIFa proteins

are poly-ubiquitinylated and targeted for 26S proteosomal

degradation through the von Hippel-Lindau (pVHL)/Elongin

BC/Cul2 ubiquitin-ligase complex [28,29,30,31,32,33,34]. Under

low oxygen conditions, the PHD proteins are inactive, so the HIFa
proteins are not hydroxylated and stable. They will translocate to

the nucleus and dimerize with HIF1b, leading to the transcription

of target genes, such as EPO and VEGF, through the binding to

specific DNA seqences (Hypoxia Responsive Elements, HRE)

[8,35,36]. Aside from the regulation of the stability of the HIFa
isoforms by PHDs, additional regulatory activities are identified.

The oxygen-dependent asparaginyl hydroxylase Factor Inhibiting

HIF (FIH), a member of the Fe(II) and 2-oxoglutarate-dependent

dioxygenase, hydroxylates a conserved asparaginyl residue in the

CTAD, preventing the association of HIFa with the p300

coactivator [37,38,39]. In addition to these hydroxylation depen-

dent regulation of HIFa isoforms, several other posttranslational

modifications have been identified (for review, see [8,40,41]).

The regulation and functions of the HIF3a gene and isoforms is

very complex, contrasting HIF1a and HIF2a. The HIF3a locus

gives rise to different splice variants, resulting in three protein

isoforms, HIF3a, NEPAS (neonatal and embryonic PAS) and

IPAS (inhibitory PAS) [19,20,42]. HIF3a and NEPAS only differ

in the first eight N-terminal amino acids due to alternative exon

usage. IPAS and NEPAS are hypoxia inducible, whereas HIF3a is

not because of alternative usage of promoters [43,44]. HIF3a
expression is induced under hypoxia in several organs, including

cortex, hippocampus, lung, heart, kidney, cerebral cortex

[17,45,46]. NEPAS is almost exclusively expressed during late

embryonic and neonatal stages of development, especially in the

lung and heart, while HIF3a mRNA is rarely detectable during

embryonic and neonatal stages [42]. HIF3a has a high homology

to HIF1a and HIF2a at the N-terminus, but only a low degree of

sequence similarity across the C-terminus [26]. The HIF3a/

HIF1ß (HIF3) and NEPAS/HIF1ß dimers suppress basal and

hypoxia induced reporter gene activation, as well as HIF1

(HIF1a/HIF1ß) or HIF2 (HIF2a/HIF1ß) driven expression

[16,42]. HIF3 binds to HRE sites in promoter regions, but the

transcriptional activity is much weaker than that of HIF1 and

HIF2, because it lacks the CTAD [16,26,42]. Therefore, both

HIF3a and NEPAS serve as competitors of HIF1 and HIF2

dependent transcription, not only by occupying identical promoter

regions, but also by associating with the same HIF1ß partner

[16,42]. The splice variant IPAS lacks both the NTAD and CTAD

domains producing a dominant negative regulator of the HIF1a
and HIF2a dependent pathway [16,18,43]. It was shown that

IPAS directly associates with HIFa isoforms, thereby displacing

Hif1b, and the resulting IPAS/Hifa dimer is unable to bind to

DNA [18]. Both short HIF3a isoforms related to IPAS in human

and the IPAS in mouse have antagonistic effects on the expression

of HIF1 and HIF2 dependent hypoxia regulated target genes [47].

Thus, the HIF3a locus encodes isoforms generally thought to act

as negative regulators of the hypoxic response.

The importance of the hypoxia response was shown by the

identification of mutations in the VHL-HIF pathway in different

human diseases (reviewed in [9]). Specific gene ablation studies in

mice also added to the knowledge on the pleiotropic effects of the

members of the hypoxia response pathway. Complete ablation of

this pathway through inactivation of Hif1ß resulted in a severe

lethal phenotype with defective angiogenesis of the yolk sac and

branchial arches, stunted development and embryo wasting

[48,49]. Hif1a knockout mice also died early during development

with cardiac malformations and vascular defects [50]. Hif2a null

mice displayed a pleiotropic phenotype ranging from premature

death until postnatal abnormalities, depending on the background

of the mouse strain [51,52,53,54]. The neonates that survived

suffered from breathing problems and did not produce sufficient

surfactant phospholipids and surfactant associated proteins [51]. It

is interesting to note that the inactivation and ectopic activation of

Hif2a showed comparable phenotypes, suggesting that type II cells

require different levels of Hif2a at distinct phases of type II cell

maturation [51,55]. Homozygous mutant NEPAS/Hif3a-/- mice

were alive at birth, but displayed enlarged right ventricle and

impaired lung remodelling, suggesting that NEPAS/Hif3a is

important in lung and heart development during embryonic and

neonatal stages [42]. Interestingly, the Hif3a gene contains

hypoxia response elements in its promoter region and has been

shown to be a transcriptional target of Hif1a [56].

In order to understand the precise role of Hif3a during

pulmonary epithelium development, we generated transgenic mice

with an inducible HIF3a gene. Mice expressing the HIF3a
transgene in the developing airways showed a post-pseudogland-

ular branching defect with a reduced number of airspaces and a

clear reduction in the number of alveolar type I and type II cells.

Importantly, expression of the HIF3a transgene did not lead to

changes in the levels of Hif1a, but affected Hif2a. The lungs of the

HIF3a expressing mice showed an upregulation of genes normally

expressed in the proximal parts of the lung, while genes only

expressed in distal parts of the lung were downregulated.

Specifically, Foxp2, a repressor of distal cell markers, and Rarß

were induced in the lungs of Hif3a expressing mice, which may

explain the reduction in the number of distal cell types.

Furthermore, we showed that Hif3a binds a conserved HRE in

the Sox2 promoter and induces the expression of a Sox2 promoter

driven reporter gene, explaining the appearance of aberrant Sox2-

and p63 positive cells. Collectively, our results show that Hif3a is

involved in modulating correct development of the lung epithe-

lium.

Materials and Methods

Generation of transgenic animal
The myc epitope encoding sequence (EQKLISEEDL) was

cloned directly after the endogenous ATG start codon of the full

length human HIF3a cDNA (GenBank: BC080551) and sub-

cloned into a modified pTRE-Tight vector [55]. Transgenic lines

were produced by pronuclear injection of FVB/N fertilized eggs,

and tail tip DNA of transgenic lines was initially genotyped by

Southern blot analysis, after which positive lines were routinely

checked by PCR, using transgene-specific primers (sense: 59-

GTCAAGCTTATGGCGCTGGGGCTGCAGCG; antisense 59-

GCATCTAGATCAGTCAGCCTGGGCTGAGC). Three inde-

pendent lines were initially analyzed, which all produced the same

phenotype as described in this manuscript. Lung-specific expres-

sion of the HIF3a transgene, i-Tg-mycHIF3a, was obtained by

crossing the mycHIF3a lines with the SPC-rtTA transgenic mice

(A generous gift of Jeffrey Whitsett). Administration of doxycycline

to pregnant mothers from gestational age 6.5 onward in the

drinking water (2 mg/ml, 5% sucrose) resulted in lung epithelium-

specific expression. Each experiment was performed with at least

three independent litters containing double transgenic, single

transgenic and wild type pups. All double transgenic animals

receiving doxycycline expressed mycHIF3a in the pulmonary
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epithelium and showed the described phenotype. Mice were

housed under standard conditions at 40–50% relative humidity

and 2161uC (12/12 hour dark/light cycle) with food and water ad

libitum. All animal experiments were performed according to the

Dutch and European guidelines and approved by the local ethics

committee (DEC Nr 1657, 1833 and 2206).

Immunohistochemistry
Immunohistochemistry was essentially performed as previously

described [57]. Briefly, lungs were dissected and fixed in formal

saline (BDH) overnight at 4uC before processing for paraffin

embedding according to routine protocols Antigen retrieval was

performed with microwave treatment in 10 mM citric acid buffer

pH 6.0 or Tris-EDTA. Sections were blocked with 5% BSA or 5%

ELK in PBS for 10min and incubated with primary antibody

diluted in 5% BSA or 5% ELK in PBS overnight at 4. The

following antibodies were used: Myc (9E10, Roche; 4A6,

Millipore), Hif3a (Ab2165, Abcam; NBP1-03155, Novus Biolog-

icals), ß-tubulin IV (bioGenex), proSP-C (Chemicon), T1a
(University of Iowa Hybridoma bank), Ttf1 (Thermo), Ccsp (seven

hills), Sox2 (seven hills), Foxp2 (Abcam), Lpcat1 (Seven hills

Bioreagents), a-Sma (Thermo), Ki67, cGRP Secondary antibodies

against the correct IgG species were conjugated with peroxidase

(Dako).

Lungs were imaged using an Olympus BX41 microscope and

DP71 camera (Olympus, Zoeterwoude, The Netherlands). Subse-

quent airspaces counting were performed with SIS Softward Cell

D (Olympus). Three independent samples of control and double-

transgenic lungs of gestational age E18.5 were used to count the

number of airspaces on a selected surface area (140000 mm2) on

those selected lung samples.

Microarray analysis
Lungs of three control and three double transgenic embryos

were dissected at E18.5 and the middle and caudal lobes were used

for total RNA isolation with Trizol reagent according to the

manufacturer’s instructions (Invitrogen life technologies, Carlsbad,

CA, USA). RNA was purified using the RNeasy MinElute

Cleanup kit. (Qiagen, Valencia, CA, USA) and cDNA was

synthesized from 3 mg RNA using the GeneChip Expression 39-

Amplification Reagents One-Cycle cDNA Synthesis kit (Affyme-

trix, Santa Clara, CA, USA). Biotin-labelled cRNA synthesis,

purification and fragmentation were performed according to

standard conditions. Fragmented biotinylated cRNA was subse-

quently hybridized onto Affymetrix Mouse Genome 430 2.0

microarray chips. After normalization, the data were analysed

with OmniViz software, version 3.6.0 (Omniviz, Inc., Maynard,

MA, USA).

Functional annotation of the statistical analysis of microarrays

results was done using Ingenuity Pathway Analysis (Ingenuity,

Mountain View, CA) and DAVID (http://david.abcc.ncifcrf.gov).

The results are shown for biological processes, which are

significantly (P ,0.05) enriched after multiple testing.

RT-PCR
RNA isolation and subsequent quantitative PCR analysis was

essentially performed as previously described [7]. Gene-specific

primer sets were Abca3: 59-TTACGGTCCAAGTTCCTGAG-39

and 59-TAACATCAGCACCTTAGAGCC-39; Aqp5: 59-

GTGGTCATGAATCGGTTCAG-39 and 59-CAAGTAGAAG-

TAGAGGATTGCAG-39; Epas1: 59-CTGTGACGACA-

GAATCTTGG-39 and 59-GGCATGGTAGAACTCATAGG-

39; Foxp2: 59-TGTCATCAGAGATTGCCC-39 and 59-

ATAGCCTGCCTTATGAGTG-39; Rarß: 59-AACTGCGT-

CATTAACAAGGTC-39 and 59-TCATTCCTAACA-

GACTCTTTGG-39; Scd1: 59-GAGCCACAGAACTTA-

CAAGG-39 and 59-GTACACGTCATTCTGGAACG-39; Sftpd:

59-GGAAGCAATCTGACATGCTG-39 and 59-GAGGCTCTT-

CATTTCTGCTC-39. Standard deviations of the duplicates are

calculated with the SPSS program (Independent-samples T test),

which also generated the P values.

Luciferase reporter activity assays
HEK293T cells were transfected in duplo with Lipofectamine

2000 (Invitrogen) with a total concentration of 500 ng DNA/well,

using 9*HREluc (Gift from Manuel Landazuri), pGL3-mpSox2

and pGL3-mpSox2delta (Named Sox2-Luc and DSox2-Luc; Gift

from Victoria Moreno), Hif2a-pcDNA3, (gift from Carole

Peyssonnaux), Hif3a-pcDNA3 or pcDNA3. Cells were lysed with

passive lysis buffer (Promega) 24-hours after transfection and

processed for lucifease analysis by the addition of the LARII

reagent (Promega), which was subsequently quantified with the

VICTOR luminometer. A construct containing the renilla gene

(10 ng/well) was co-transfected in each well to serve as an internal

control for transfection efficiency. The renila luciferase activity was

quantified by addition of Stop&Glio reagent and also detected

with the VICTOR luminometer. The experiment was repeated

three times, and all samples were measured at least in duplo. The

average luciferase activity was calculated and divided by the

average of renilla activity. Standard deviations were measured

with the SPSS program (Independent-samples T test), which also

generated the P values.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed essentially as previously described

[58], with some modifications. Chromatin-protein complexes of

confluent A549 cells were fixed by adding 1% formaldehyde to the

cultures. Nuclear extracts were made and chromosomal DNA was

fragmented by sonication. Equal amounts of DNA was diluted

1:10 with ChIP dilution Buffer (0.01% SDS, 1.1% Triton X-100,

1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1 and 167 mM NaCl)

and the samples were pre-cleared with 80 ml prot A/G agarose

beads for 1 hour, after which the sample was split in equal volumes

and incubated O/N with 6 mg antibody specific for HIF3a (NBP1-

03155) or control IgG (rabbit). Immune complexes were

subsequently purified by adding 80 ml of prot A/G beads, which

were washed several times before the immune-precipitated DNA

was eluted with elution buffer (1% SDS and 0.1 m NaHCO3).

After de-crosslinking the DNA-protein complexes by incubation at

65uC O/N with 200 mM NaCl, the eluted DNA was phenol-

extracted, precipitated and qPCRs were performed to analyze the

enrichment of HIF3a specific binding to the HRE in the SOX2

gene using the following primer set 59-CAAGTGCATTTTAGC-

CACAAAG-39 and 59-CCCAAGAGGGTAATTTTAGCCG-39,

while the primers for the ARRDC3 and EGLN3-D were described

previously [36,59]. The data are the average of two independent

ChIP assays, which were each analyzed by duplicate qPCRs, and

are represented as the fold enrichment of the specific immune

precipitation compared to the control IgG precipitation.

Results

Ectopic expression of mycHIF3a causes late branching
defects

Previously, it was shown that homozygous NEPAS/Hif3a
knockout mice were viable, but displayed an enlarged right

ventricle and impaired lung remodelling, suggesting that Hif3a
plays an important role during pulmonary development. However,

Hif3a Inhibits Distal Pulmonary Epithelium
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the precise role of Hif3a during the formation of the lung is not

fully understood. We first analyzed the endogenous expression of

Hif3a in normal fetal lungs isolated at the end of gestation (E18.5)

and in lungs of adult mice (8 weeks). Hif3a positive cells were

present in the epithelium of the developing lung, as well as in the

type II pneumocytes of the adult lung (arrows in Figure 1A, B). In

order to determine the precise role of Hif3a in the epithelium

during lung development, and more specifically in type II

pneumocytes, we generated transgenic mice carrying a myc-

epitope tagged HIF3a under the control of a doxycycline-

inducible tet-on promoter (i-Tg-mycHif3a; Figure 1C). Expression

of mycHIF3a in embryonic lung epithelium was established by

crossing the i-Tg-mycHIF3a transgenic line with the established

SPC-rtTA line, which drives the expression of the rtTA gene in

epithelial cells of the embryonic lung [60]. Pregnant females from

timed matings between SPC-rtTA and i-Tg-mycHIF3a mice

received doxycycline to induce the expression of the HIF3a
transgene in double-transgenic fetuses. Lungs isolated from

doxycycline-induced or non-induced single i-Tg-mycHIF3a or

SPC-rtTA transgenic mice, or lungs from non-induced double

transgenic i-Tg-mycHIF3a/SPC-rtTA animals appeared indistin-

guishable from wild type lungs. Doxycycline-induced, double-

transgenic pups were born at Mendelian ratio and did not show

obvious external abnormalities compared to their control litter

mates.

In order to determine whether expression of mycHIF3a leads to

pulmonary development defects, we analyzed lungs of double-

transgenic animals and control lungs at different gestational ages.

Macroscopic analysis of isolated lungs did not show clear

abnormalities in double-transgenic animals at gestational ages

E16.5, E17.5, E18.5 days and postnatal day 1 (PN1) (Figures 1E

and F, I and J; Figure S1). Histological examinations at E16.5 did

not show clear differences between control and mycHIF3a
transgenic lungs (Figures S1C and D). However analysis of a

series of developmental ages clearly showed aberrant alveolar

airspaces in mycHIF3a expressing lungs starting at E17.5

compared to controls (Figure S1G, H). mycHIF3a expressing

lungs contained significant fewer alveolar spaces compared to

control ones at E18.5 and PN1 (Figures 1D). Staining with a

specific antibody against the myc-epitope confirmed the expres-

sion of transgenic mycHIF3a protein in the epithelium of double-

transgenic lungs (Figures 1H and L, Figure S1). The abnormal

alveolar spaces remain present in the PN1 stages, but apparently,

the mice do not suffer from respiratory distress, indicating that the

initial requirements for life are present. So, we conclude that

mycHIFa expression in epithelial cells leads to aberrant alveolar

formation and affects late branching morphogenesis during

pulmonary development.

This post-pseudoglandular branching defect prompted us to

analyze the expression of the mycHIF3a at early embryonic stages

of development. This showed that the transgene is expressed in a

non-uniform manner in the epithelium of early E11.5 lungs

(Figure 2A), but gradually all epithelial cells express the transgene

(Figure 2B-D). Next, we analyzed whether the primary airway

branches appropriately expressed some of the major branch-

inducing genes [2]. Therefore, embryonic lungs of controls and

double transgenic animals were isolated at gestational age 12.5. At

this stage of development, the primary bronchi are already

present, and these branches start to form secondary and tertiary

branches. The expression of Fgf10, the growth factor with a very

potent branch-inducing activity, was found in the mesenchymal

compartment, alongside the epithelium that is in the process of

branching (Figure 2E and I, arrows). Moreover, its receptor,

FgfR2, was detected at the tips of the epithelium, in close proximity

of the Fgf10 signal (Figure 2F and J). Next, we also analyzed the

expression of two genes known to be induced as a result of the

Fgf10-FgfR2 signalling, Shh and Bmp4. Both genes were also

expressed in the epithelium at the same location as the FgfR2,

indicating that the Fgf10-FgfR2 signalling cascade is intact (Figure

2G and K; H and L). In addition, quantitative PCR analysis of

embryonic lungs isolated at E12.5, E15.5 and E17.5 of controls

and double transgenic mice using primers specific for FgfR2,

FgfR2-IIIb, FgfR2-IIIc, Bmp4 and Spry did confirm the absence

of differential expression of these important branch-inducing genes

(data not shown). In conclusion, no differences in expression

pattern were observed for the early branch-inducing genes

between controls and double transgenics, suggesting that the

initiation of the branching process occurred normally.

mycHIF3a expression inhibits Clara cells differentiation
Since we observed significant alveolar changes and aberrant

branching morphogenesis, we analyzed the integrity and differen-

tiation potential of fetal transgenic lungs by immunohistochemistry

with cell-specific markers. The smooth muscle cell component of

the mesenchyme (a-Sma) did not reveal striking differences

between control and transgenic lungs (Figures 3A, B). Thyroid

transcription factor (Ttf1) was expressed in nearly all epithelial

cells in both control and transgenic lungs (Figures 3C, D). Ciliated

cells (b-tubulin) and neuroendocrine cells (cGRP) were present in

proximal conducting airways of control and transgenic lungs at

gestational age E18.5 (Figures 3E, F and 3G, H, arrows).

Moreover, both type I (T1a; Figure 4A, B) and type II

pneumocytes (Lpcat1; Figures 4C, D) were present in the alveolar

regions. These results indicate that differentiation into the various

epithelial cell types is not hampered by Hif3a, although the total

number of each cell type may be different. In addition, no

differences were observed in the proliferation of epithelial or

mesenchymal cells between control and transgenic lungs as

indicated by Ki67 staining (Figure 4E, F).

Next, three mycHIF3a-expressing lungs and three control lungs

were processed at gestational age 18.5 days for microarray

analysis, to elucidate the origin of the aberrant branching

morphogenesis. Hierarchical clustering of differentially expressed

genes revealed large differences between controls and double

transgenic lungs (Figure 5A) and the major biological processes

(Figure 5B) and molecular functions (Figure 5C) are indicated.

Although mycHIF3a does not prevent the differentiation of

epithelial cells into Clara cells, we noticed that the number of

Clara cells was significantly reduced. Both in the microarray

analysis as well as the qPCR validation showed downregulation of

the Ccsp gene in mycHIF3a transgenic mice. These gene

expression results were confirmed by immunohistochemistry,

showing that Ccsp positive cells were less prominent in the

proximal airways of the Hif3a expressing lungs compared to

control lungs (Figures 6A-D). Quantification of the total number of

Clara cells revealed a significant reduction in the double

transgenic mice (Figures 6H). So, our data show that mycHIF3a
expression inhibits Clara cells differentiation during pulmonary

development.

mycHIF3a induces airway epithelial cells to differentiate
into proximal cell types

Analysis of the microarray data revealed that genes associated

with proximal cell types of the lung appeared to be upregulated,

whereas genes specifically expressed in distal epithelial cells were

downregulated (Table 1 and Table 2). The induction of proximal

markers is reflected by the significant downregulation of genes

specific for the distal lung epithelium. The type 1 pneumocyte cell

Hif3a Inhibits Distal Pulmonary Epithelium
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marker Aquaporin 5 (Aqp5) was dowregulated in the Hif3a
expressing mice, as were three genes specifically expressed in type

II pneumocytes, stearoyl-coenzyme A desaturase (Scd1), surfactant

associated protein D (Sftpd) and ATP-binding cassette (ABC)

subfamily A3 (Abca3) (Figure 6E) [61,62,63]. Quantification of the

number of type II pneumocytes present in the Hif3a expressing

lungs using Sftpd in reference to Ttf1 confirmed a significant

reduction in these cells (Figure 6G). Since we are inducing the

Hif3a family member of hypoxia inducible genes, we analyzed the

expression of Hif1a and Hif2a in the transgenic lungs. Although

no apparent difference could be detected for Hif1a (Figure 6F), but

we did notice a significant downregulation of Hif2a (Epas1) (Figure

6E). Previously, we showed that Hif2a is involved in maturation of

type II pneumocytes, so the reduction of Epas1 expression could be

directly related to the loss of type II cells.

Among the upregulated genes are two transcription factors

known to play important functions during lung development,

Foxp2 and Sox2 [57,64]. Foxp2 is important during lung

Figure 1. Enhanced expression of HIF3a results in late branching defect. Endogenous expression of Hif3a was detected in epithelial cells at
gestational age E18.5 (A, arrows) and in type II pneumocytes in adult mice (B, arrows). (C) Graphic representation of the tet-inducible Hif3a/NEPAS
cDNA construct used to generate transgenic mice. TRE is the Tet-responsive element containing minimal promoter, II and III refer to exon 2 and 3 of
the ß-blobin gene and AAAAAA is the poly-adenylation signal. Indicated are the position of the myc-epitope, and the bHLH, PAS and NTAD domains
(see text) (D) Quantification of the number of airspaces in the lung. Three independent samples of control and double-transgenic lungs at gestational
age E18,5 were used to count the number of airspaces. External appearances of control (E, I) and double transgenic mycHIF3a (F, J) lungs at E18.5
days of gestation (E18.5) and post natal age 1 (PN1) do not show apparent differences. Histological analysis of control (G, K) and double transgenic
lungs (H, L) showed decreased number of alveolar spaces and reduced branching in the double transgenic lungs (H and L). Anti-Myc epitope staining
confirmed the expression of the mycHIF3a transgene in double transgenic lungs (H and L), which is absent in control lungs (G and K). Scale bars: Scale
bars: 25 mm (A, B), 2 mm (E, F, I, J) or 200 mm (G, H, K, L).
doi:10.1371/journal.pone.0057695.g001
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development and is expressed in the distal parts of the lung. It

represses the transcription of several distal cell markers, such as

T1a, Spc, and Ccsp [65]. In our microarray analysis, Foxp2 was

significantly upregulated, which we validated by quantitative PCR

(Table 1 and Figure 7G). Staining with a Foxp2 antibody show

that the distribution of Foxp2 positive cells in Hif3a double

transgenic lungs was expanded compared to control lungs (Figures

7A, D), suggesting that Hif3a suppressed the transcription of genes

specific for alveolar epithelial cells through the induction of Foxp2.

In addition, Rarb, which is expressed at proximal sites in the lung

from embryonic day 11 to 12 and not in the distal epithelium of

the lung [66,67], was significantly induced in Hif3a transgenic

mice (Figure 7G), confirming the expansion of proximal cell

makers in these lungs [64,65].

Sox2 is important for pulmonary branching morphogenesis,

epithelial cell differentiation and is exclusively expressed in the

proximal parts of the lung [57]. However, in mycHIF3a
expressing lungs, Sox2 is present in epithelial cells of both

proximal airways and certain alveoli at postnatal day 1, suggesting

that Hif3a is able to induce proximal cell fate (Figures 7B, E,

arrows). The basal cell marker p63 is expressed in the esophagal

and tracheal epithelium, and previously we showed that ectopic

Sox2 expression induced the appearance of p63 positive cells in

the epithelium of the bronchioles and enlarged distal airspaces

[57]. Therefore, we analysed the distribution of basal cells in the

mycHIF3a expressing lungs and found that p63 is abnormally

expressed in the alveolar epithelial cells of mycHIF3a expressing

lungs, contrasting the unique expression in the trachea (Figures 7C

insert, arrows F). Collectively, our data indicate that mycHIF3a
expression leads to the induction of crucial genes, such as Sox2,

Foxp2 and Rarß, which cause airway epithelial cells to differen-

tiate into proximal cell types.

Hif3a binds the promoter region of Sox2 and induces
transcription of Sox2

The promoter region of the Sox2 gene contains two functional

HREs, which are bound by Hif2a [68]. Since Sox2 is upregulated

in Hif3a transgenic lungs, we analyzed whether Hif3a can directly

induce the transcription of Sox2. Therefore, we first performed

transcription reporter assays using a luciferase reporter construct

under the influence of the Sox2 promoter containing two HREs,

or two mutated HREs (Sox2-Luc and DSox2-Luc [68]). Hif3a
induced the expression of the Sox2-Luc promoter about 2 fold,

whereas the DSox2-Luc promoter was hardly induced compared

to controls (Figure 7H). The positive control, HRE, was

considerably induced by Hif2a, but only mildly by Hif3a,

corresponding with the weak transcriptional activity of Hif3a
[16,42]. Under hypoxia-mimicking conditions, induced by adding

CoCl2 to the medium, which inhibits prolyl hydroxylases by

displacement of Fe(II) from their catalytic center [22], Hif3a could

induce the 9*HRE-Luc considerably, and the difference with the

Hif2a induced expression was much reduced (10 times versus

2 times). Moreover, the induction of the Sox2-Luc construct by

Hif3a was 4 times higher than under normoxic conditions, and

was comparable between Hif2a and Hif3a (Figure 7H). Subse-

quent analysis of the 1 kilobase region immediately upstream of

the Sox2 transcriptional start site revealed that the most upstream

of the two putative HRE sites was highly conserved between mice

and human [68]. In order to investigate whether Hif3a could

directly bind this conserved HRE site, we performed a chromatin

immunoprecipitation of chromatin-protein complexes isolated

Figure 2. Expression of genes involved in branching morphogenesis. Analysis of the distribution of mycHIF3a early in lung development in
double transgenic animals at E11.5 (A), E12.5 (B), E13.5 (C) and E14.5 (D). Whole mount in situ hybridization to detect the expression and localization
of Fgf10 (E and I), FgfR2 (F and J), Bmp4 (G and K) and Shh (H and L) in lungs isolated at gestational age E12.5 from control (E–H) and mycHIF3a
double transgenic animals (I–L). Tr: Trachea; Es: Esophagus. Scale bars: 200 mm.
doi:10.1371/journal.pone.0057695.g002
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from human A549 cells. Analysis of the HIF3a precipitated

chromatin showed that the region containing the conserved HRE

site in the SOX2 promoter region was indeed preferentially

enriched compared to the IgG fraction (Figure 7I). ARRDC3 was

used as a potential positive control, as it is bound by both HIF1a
and HIF2a, and the enhancer region D of the EGLN3 gene served

as negative control [36,59]. Indeed, HIF3a did not bind to the

EGLN3-D region, but did bind to the ARDDC3-HRE. This

indicated that HIF3a could bind the HRE site present in the Sox2

promoter, suggesting a potential direct regulatory role of Hif3a in

the transcription of Sox2.

So, Hif3a binds to the conserved HRE in the Sox2 promoter

and weakly induces Sox2 expression, resulting in an abnormal

Sox2 expression in airway epithelial cells of HIF3a transgenic

lungs.

Discussion

Hypoxia inducible factors are an important family of proteins

involved in the regulation of the cellular response to hypoxia. Its

functions are required from the earliest steps of mammalian life to

the correct development of multiple organs and tissues, like the

placenta, trophoblast formation, bone development, heart and

vascular development (reviewed in [6,8]). The importance of the

hypoxia response was shown by the identification of human

mutations in the VHL-HIF pathway in different diseases [9]. Gene

ablation studies in mice have revealed in more detail the specific

and important roles of the different subunits of the Hifa/Hifß

heterodimers. Inactivation of the stable subunit, Hif1ß, resulted in

severe embryonic defects and premature death [48,49]. The

disruption of the different Hifa genes identified specific roles for

the individual Hifa isoforms. Hif1a knockout mice die early at

gestation, have multiple developmental defects in neural tube-

forrmation, vascularization, heart development, neural crest

migration [69,70,71], whereas depending on the genetic back-

ground of the mouse strain, Hif2a knockout out mice ranging from

early embryonic lethality to adulthood [51,52,53,54].

Hif genes and lung development
The lung is under continuous exposure of external oxygen and

several (patho)-physiologic conditions trigger global or local

hypoxia in the lung, resulting in pulmonary abnormalities to

which HIFs contribute, such as lung cancer, acute lung injury and

pulmonary hypertension (reviewed in [72]). Long term changes in

oxygen levels, as experienced at high altitude gives rise to lung

damage as a result of chronic mountain sickness. Recently, the

EPAS1 gene, encoding for HIF2a, was shown to be associated with

adaptation of living at high altitude [73,74,75,76].

Inactivation of Hif2a in mice resulted in respiratory distress and

surfactant deficiency in newborns on a mixed genetic background

[51]. Remarkably, heterozygous Hif1a+/- or Hif2a+/- mice showed

a reduced increase in pulmonary arterial pressure and right

ventricular hypertrophy upon exposure to chronic hypoxia in

comparison with wild type mice [77,78]. Ectopic expression of an

oxygen-insensitive Hif1a transgene in lung epithelial cells during

development resulted in defective branching, impaired epithelial

maturation and respiratory distress. Moreover, increased expres-

Figure 3. Normal differentiation of proximal epithelial cells in
mycHIF3a transgenic lungs. The site and expression pattern of a-
Sma (A and B), Ttf1 (C and D), b-tubulin (E and F) and cGRP (arrows in G
and H) are comparable between control and mycHIF3a double
transgenic lungs at gestational age E18.5. Scale bars: 100 mm.
doi:10.1371/journal.pone.0057695.g003

Figure 4. Normal differentiation of distal epithelial cells in
mycHIF3a transgenic lungs. The site and expression pattern of T1a
(A and B), Lpcat1 (C and D) and Ki67 (E and F) are comparable between
control and mycHIF3a double transgenic lungs at gestational age E18.5.
Scale bars: 100 mm
doi:10.1371/journal.pone.0057695.g004
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sion of VegfA and VegfC was observed, leading to sub-pleural

hemorrhaging [79]. We recently showed that the transgenic

expression of an oxygen-insensitive mutant of Hif2a also lead to a

late branching defects with enlarged alveoli and altered epithelial

differentiation [55]. Contrasting the Hif1a transgenic study, we

did not find increased levels of VegfA or endothelial abnormalities,

even though the transgenes were expressed in the same manner.

This indicates that Hif1a and Hif2a have different effects. In

addition, the expression of Hif1a had not changed, whereas Hif3a
expression was reduced in our Hif2a transgenic mice [55]. It

seems that the effects of Hif1a are more widespread, whereas the

number of affected genes by Hif2a is restricted, which is in line

with previous reports describing target genes of Hif1a and Hif2a
[35,36,80,81,82,83,84,85].

The occurrence of the Hif3a isoforms is well described

transcriptionally, but the functional analysis is complicated by

the appearance of different splice variants [19,26,42,43,86]. Hif3a
isoforms act as negative regulators of the traditional Hif1 (Hif1a/

Hif1ß) and/or Hif2 (Hif2a/Hif1ß) driven hypoxia response by

functioning as dominant negative modulators, effectively resulting

in the transcriptional competition with Hif1 and Hif2

[16,18,26,42,43]. Gene ablation of Hif3a/NEPAS/IPAS, resulted

in mice that were born alive with enlarged right ventricles and

impaired lung remodelling [42]. Furthermore, they showed that

expression of endothelin-1 is negatively influenced by Hif3a/

NEPAS, by regulating the binding of Hif1a and Hif2a to the HRE

sites if the ET-1 promoter, which may contribute to the observed

phenotype. Remarkably, the expression of Vegf, a direct target of

Hif1 and Hif2, had not changed, even though the expression of

Hif1a and Hif2a was not affected. This hinted at a selective

regulation of target genes by NEPAS/Hif3a during pulmonary

development. Therefore, we conditionally expressed mycHIF3a in

airway epithelial cells during embryonic development in order to

further elucidate the role of Hif3a in pulmonary development.

Cellular effects of mycHIF3a transgene expression
Since the NEPAS/Hif3a knockout mice suggested a selective

regulation of genes by Hif3a, and our Hif2a transgenic mice

showed a selective reduction in Hif3a expression, we conditionally

expressed mycHIF3a in airway epithelial cells during embryonic

development in order to further elucidate the role of Hif3a in

pulmonary development. Analysis of mice expression a transgenic

mycHIF3a in lung epithelium revealed a late branching morpho-

Figure 5. Transcriptome analysis of mycHIF3a expressing lungs. Treescape showing that the transcriptome of the lungs of the mycHIF3a
expressing animals are significantly different from that of the control lungs (A). The red color indicates the upregulated genes and the blue color
indicates downregulated genes. The expression of the genes presented in the treescape is at least 1.5 fold changed with a false discovery rate (FDR)
of 10%. The top 10 biological processes (B) and molecular functions (C) of the differentially expressed genes are shown.
doi:10.1371/journal.pone.0057695.g005
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genesis defect with a reduced number of alveoli and changes in the

differentiation of epithelial cell types.

Surprisingly, no apparent defects are observed early during lung

development, even though the transgene is expressed. This may be

due to the fact that at these stages of development, putative

associating factors of Hif3a, like Hif2a and Hif2a, are not

expressed yet. After the pseudoglandular stage of lung develop-

ment, endogenous Hif2a becomes expressed in the cells positive

for mycHIF3a and the effect of the mycHIF3a transgene starts to

be noticeable. Histological analysis and gene expression profiling

revealed changes in the differentiation of the developing pulmo-

nary epithelium. We found reduced numbers of Clara cells,

alveolar type I and type II cells, and in addition, basal cells were

observed in atypical spatial positions. The expression pattern of

diverse sets of genes was affected, and revealed that mycHIF3a
expression mainly affects Hif2-directed transcription, although not

all Hif2 target genes are equally affected. We show that expression

of mycHIF3a in epithelial cells results in a down regulation of

Hif2a, but not of Hif1a. This suggests that Hif3a is not a global

regulator of the hypoxic response, but that Hif3a may selectively

function to modulate Hif2a controlled target genes, supporting

previous work [42]. The reduction in the expression level of Hif2a
late in gestation may be due directly to the presence of mycHIF3a,

or due to the impaired differentiation of the type II cells. However,

it is clear that mycHIF3a does affect the differentiation of

epithelial cells, and this could partly be explained by the aberrant

activation of specific genes that are not part of the hypoxic

response. Gene expression analysis does not show significant

changes in typical hypoxia responsive genes, which indicates that

Hif3a may have specific functions beyond the hypoxia response.

Therefore, we provide first evidence for novel Hif3a functions

beyond the hypoxia response.

The apparent increase in the mesenchymal compartment after

the pseudoglandular stage does not seem to be induced by

proliferation, as we did not observe an increase in mitotic cells in

the mycHIF3a lungs. It may be due to either a delayed

development of the double transgenic lungs, or, alternatively, to

a specific response in epithelial cells triggered by mycHIF3a. Lysyl

oxidase may be activated, which subsequently activates a cascade

of proteins, such as Snail, involved in the repression of E-cadherin,

Table 1. Significant upregulated genes in the mycHIF3a expressing lungs.

Gene symbol Gene name Entrez ID Fold Change

Dub2a deubiquitinating enzyme 2a 384701 6,22

Naaladl2 N-acetylated alpha-linked acidic dipeptidase-like 2 635702 2,16

Cldn6 claudin 6 54419 2,14

Hspa1a heat shock protein 1A 193740 2,14

Fbn2 fibrillin 2 14119 2

ATP6 ATP synthase F0 subunit 6 17705 1,87

Rimklb ribosomal modification protein rimK-like family member B 108653 1,83

Sema3e sema domain, immunoglobulin domain (Ig), short basic domain, secreted,
(semaphorin) 3

20349 1,8

Tinag tubulointerstitial nephritis antigen 26944 1,71

Mia1 melanoma inhibitory activity 1 12587 1,68

Plac1 placental specific protein 1 56096 1,68

Cdh16 cadherin 16 12556 1,64

Cnksr2 connector enhancer of kinase suppressor of Ras 2 245684 1,64

Mthfd2l methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 665563 1,63

Pcgf1 polycomb group ring finger 1 69837 1,61

Pfn2 profilin 2 18645 1,61

Hspe1 heat shock protein 1 (chaperonin 10) 15528 1,58

Fmod fibromodulin 14264 1,54

Cdh3 cadherin 3 12560 1,54

Maob monoamine oxidase B 109731 1,54

Rpl23a ribosomal protein L23a 268449 1,53

Flrt2 fibronectin leucine rich transmembrane protein 2 399558 1,53

Lgals12 lectin, galactose binding, soluble 12 56072 1,53

Nnat neuronatin 18111 1,53

Rasef RAS and EF hand domain containing 242505 1,53

Egfl6 EGF-like-domain, multiple 6 54156 1,53

Ctnnd2 catenin (cadherin associated protein), delta 2 18163 1,52

LOC674930 similar to suppressor of initiator codon mutations, related sequence 1 674930 1,5

Sox2 SRY-box containing gene 2 20674 1,57

Foxp2 forkhead box P2 114142 1,51

doi:10.1371/journal.pone.0057695.t001
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and ultimately leading to epithelial-mesenchymal transition, as

described for metastatic tumors [87,88].

Genes affected by mycHIF3a
The appearance of proximal cells at the expense of distal cells in

the mycHIF3a lungs is paralleled by transcriptional changes in

several genes, such as Sox2, Rarß and Foxp2. At this point, it

remains to be seen whether all effects observed are directly related

to mycHIF3a, or that the expression of mycHIF3a affects Hif1a
and Hif2a specific complexes, thereby interfering with transcrip-

tion of specific genes. The increased expression of mycHIF3a
could lead to the formation of complexes that normally are not

present in the cell, which would shift the balance between Hif2a
and Hif3a.

We observed Sox2 positive cells at unusual sites in the lung,

which was supported by the aberrant presence of p63 positive

basal cells. Previously, we showed that Sox2 directly induces the

appearance of basal cells [57]. Since a link was found between

Hif2a and Sox2 transcription [68], we analyzed the putative

regulation of the Sox2 gene by Hif3a. We show that Hif3a is

capable of inducing basal expression of a reporter construct under

the control of the Sox2 promoter containing two HRE sites. In

addition, we show that HIF3a binds to the conserved HRE

sequence in the Sox2 promoter, which suggests that Hif3a may

contribute directly to the regulation of Sox2 expression. However,

the minimal transcriptional activity of Hif3a, as also shown

previously, may explain the appearance of only scattered Sox2

positive cells in the lungs of mycHIF3a mice [16,26,42]. In

addition, depletion of individual HIFa genes by siRNA in human

ES cells suggested that HIF3a upregulates HIF2a, which

subsequently induced the expression of stem cell marker genes,

like SOX2 [89]. Although this hypothesis is intriguing, no direct

relationship was established, yet. It was also shown that ectopic

expression of HIFs in cancer cell lines can induce embryonic stem

cell markers, like SOX2 and NANOG [90]. The combination of

weak transcriptional activity and the ability to act as a dominant

negative modulator of Hif2a may be responsible for the

transcriptional regulation of Sox2. These results directly show

that through the expression of HIF3a, Sox2+ and p63+ basal cells

appear and suggest that the balance between Hif2a and Hif3a
may function as a modulator of basal cell emergence [68].

Besides the aberrant induction of Sox2 and p63, the expression

domain of Rarb was expanded distally in the mycHIF3a transgenic

lungs. Rarb knockout mice exhibited premature septation, and

formed alveoli twice as fast as wild-type mice [66,67,91]. So,

upregulation of Rarb in mycHIF3a transgenic mice may in part

explain the observed inhibition of pulmonary alveoli formation.

We also detected an increase of Foxp2, which is a transcriptional

repressor able to inhibit the expression of Ccsp and markers

specific for distal epithelial cells, such as Spc and T1a [64,65,92].

Therefore, the reduced numbers of Clara cells (Ccsp+), alveolar

type I (Aqp5+) and alveolar type II (Sftpd+) cells could be directly

related to the upregulation of Foxp2. Recent findings showed that

depletion of cells with CCSP promoter activity was associated with

Table 2. Significant downregulated genes in the mycHIF3a expressing lungs.

Gene symbol Gene name Entrez ID Fold Change

Olfr767 olfactory receptor 767 258315 0,45

Ass1 argininosuccinate synthetase 1 11898 0,53

Pgam2 phosphoglycerate mutase 2 56012 0,56

Gipr gastric inhibitory polypeptide receptor 381853 0,58

Olfr6 olfactory receptor 6 233670 0,6

Igfbp6 insulin-like growth factor binding protein 6 16012 0,61

Nppa natriuretic peptide precursor type A 230899 0,61

Dio3 deiodinase, iodothyronine type III 107585 0,63

Mphosph6 M phase phosphoprotein 6 68533 0,64

Plscr2 phospholipid scramblase 2 18828 0,64

Ccin calicin 442829 0,65

Fabp5 fatty acid binding protein 5, epidermal 16592 0,65

Nudcd3 NudC domain containing 3 209586 0,65

Olfr171 olfactory receptor 171 258960 0,65

Rtl1 retrotransposon-like 1 353326 0,66

Rasgrf2 RAS protein-specific guanine nucleotide-releasing factor 2 19418 0,66

Fabp12 fatty acid binding protein 12 75497 0,66

Scnn1a sodium channel, nonvoltage-gated 1 alpha 20276 0,66

Surfactant related genes

Scd1 stearoyl-Coenzyme A desaturase 1 20249 0,31

Sftpd surfactant associated protein D 20390 0,65

Clara cells marker

Scgb1a1(ccsp) secretoglobin, family 1A, member 1 (uteroglobin) 22287 0,65

Type I pneumocytes marker

Aqp5 aquaporin 5 11830 0,65

doi:10.1371/journal.pone.0057695.t002
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Figure 6. mycHIF3a reduces the number of Clara cells. The expression of the Clara cell marker, Ccsp, was strongly decreased in mycHIF3a
transgenic lungs at gestational age E18.5 compared to controls (A and C versus B and D). (E) Alveolar epithelial cell markers are downregulated in
Hif3a transgenic lungs at gestational age E18.5 as shown by quantitative PCR. Epas1 (0,4 + 0.1 versus control 0.87 + 0.1, n = 3 each, P = 0.012), Aqp5
(0.33+ 0.1 versus control 0.96 + 0.1, n = 3 each, P = 0.005), Abca3 (0.25 + 0.1 versus control 0.92 + 0.1 n = 3 each, P = 0.002), Scd1(0.35 + 0.1 versus
control 0.92 + 0.1, n = 3 each, P = 0.001). (F) There is no significant change in the mRNA expression of Hif1a gene (0,8 + 0.1 versus control 0.7 + 0.1,
n = 3 each, P.0.05). Quantification of the number of (G) type II pneumocytes (Sftpd over Ttf1, 0.36 + 0.1 versus control 0.9 + 0.1; n = 3, P = 0.01) and (H)
Clara cells (Ccsp over Ttf1, 0.3 + 0.1 versus control 0.82 + 0.1; n = 5, P = 0.01) showed a significant reduction of in the Hif3a double transgenic animals.
White bars represent control lung samples, black bars represent mycHIF3a double transgenic lung samples. Scale bars: 100 mm (A, B) and 50 mm
(C,D).
doi:10.1371/journal.pone.0057695.g006
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alveolar hypoplasia and respiratory failure, adding to the idea that

Ccsp downregulation as a result of Hif3a-mediated Foxp2

upregulation, directly leads to reduced numbers of Clara cells [93].

The increase d expression of key genes in lung development,

which lead to major changes in epithelial differentiation, was

confirmed by the loss of expression of other cell type specific

markers,, such as Sftpd, Scd1 and Abca3 for type II cells. At this

point it is not clear if the reduced expression of the type II cell

markers is the cause, or the result of the loss of type II cells.

Previously, we showed a significant downregulation of Scd1 and

Figure 7. mycHIF3a induces the expression of proximal differentiation markers. mycHIF3a induces an expansion of the Foxp2 positive
cells in the double transgenic lungs at gestational age E18.5 (A, D), as well as an expansion towards the distal parts of the lungs of Sox2 (B, E) and p63
(C, F). Sox2 was expressed in both proximal airways and alveolar epithelial cells in mycHIF3a transgenic lungs (arrows, E) at PN1. Basal cells are absent
in control lungs (C), but are expressed in basal cells of trachea (C, insert). However, p63 is expressed in the proximal airways and alveolar epithelial
cells in mycHIF3a transgenic lung (arrows, F). Scale bar: 200 mm (A and D) and 100 mm (B, C, E, F). (G) Foxp2 and Rarb are significantly upregulated in
Hif3a transgenic lungs at gestational age E18.5 as shown by quantitative PCR. (Foxp2: 1.25 + 0.1 versus control 0.87 + 0.1, n = 3, P = 0.007; Rarb: 1.55 +
0.1 versus control 0.87 + 0.1, n = 3, P = 0,009). White bars represent control lung samples, black bars represent mycHIF3a double transgenic lung
samples. (H) Hif2a (black bars) and Hif3a (white bars) induce the 9*HRE-Luc (HRE) and Sox2-Luc (Sox2) as measured by the amount of luciferase
activity. The fold induction of the HRE promoter is higher with Hif2a (20,3 fold and 24,5 fold under hypoxic conditions-CoCl2) than with Hif3a (2,4 fold
and 13,4 fold under hypoxic conditions-CoCl2). The induction of the Sox2 promoter is higher with Hif2a than with Hif3a under normoxic conditions
(4,8 versus 2,5), but equally strong under hypoxia mimicking conditions (8,8 versus 7,3). Data are presented as the induction (n-fold) relative to cells
transfected with the corresponding reporter plasmid and control vector (pcDNA3). The values are the average of two duplicates, and standard
deviations are: 0,04 (HRE-Hif2a), 0,02 (Sox2-Hif2a), 0,03 (DSox2-Hif2a), 0,08 (HRE-Hif3a), 0,24 (Sox2-Hif3a), 0,06 (DSox2-Hif3a), 0,53 (HRE-Hif2a+CoCl2),
0,007 (Sox2-Hif2a+CoCl2), 0,03 (DSox2-Hif2a+CoCl2), 0,88 (HRE-Hif3a+CoCl2), 0,02 (Sox2-Hif3a+CoCl2), 0,1 (DSox2-Hif3a+CoCl2). (I) Chromatin
immunoprecipitation (ChIP) using anti-HIF3a antibody and chromatin isolated from A549 cells. Graph represents the fold enrichment of the HIF3a-
specific binding to the conserved HRE of the SOX2 promoter compared to the IgG control ChIP. HIF3a also bound the ARRDC3 HRE region, and the
enhancer region D of the EGLN3 gene served as negative control (EGLN3-D).
doi:10.1371/journal.pone.0057695.g007
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Abca3 in Hif2a expressing transgenic mice, which suffered from

respiratory distress and surfactant deficiency [55]. However, the

mycHIF3a transgenic mice appeared to produce sufficient levels of

Scd1 and Abca3 to support respiration, even though the

expression of Hif2a is decreased.

Thus, the increased expression of Sox2, Rarß and Foxp2 in the

developing mycHIF3a lungs may directly contribute to the cellular

changes observed and explain the phenotypic abnormalities

observed in these lungs. The effects may also be cell type specific,

as increased HIF3a expression in vascular cells resulted in an

antagonistic effect on hypoxia induced HIF1/HIF2 target genes

[47].

Concluding remarks
Although we cannot conclude that the dominant negative role

of Hif3a as part of the hypoxic response is absent, our previous

and current data do suggest that Hif2a and Hif3a have different

target genes, during pulmonary development [55]. This is in line

with previous findings describing common targets, as well as

specific genes induced by Hif1a and Hif2a [80,81,82]. However,

these studies used overexpression of Hif1a and Hif2a, which may

cause aberrant complexes and loss of target gene specificity, as was

reported for certain tumor cells [94]. Using siRNA and chromatin

immuno-precipitation approaches, HIF1 and HIF2 target genes

were identified [35,36,83,84,85]. Interestingly, it was shown that

ETS transcription factors were involved in the regulation of HIF1

and HIF2 driven gene activation in MCF7 cells [83]. Knock down

of ELK1 resulted in a reduction of hypoxia induced HIF2

dependent transcription. These data suggested a cooperation

between ETS family members and HIF1 and HIF2 in the selection

of target genes. An interesting idea is that target selection by HIFs

may be cell specifically regulated by additional factors, adding to

the complexity of the hypoxic response [8,95]. This is also

observed in the analysis of the different transgenic mouse models

expressing Hif1a [79], and our studies with HIf2a or Hif3a,

showing similarities and differences [55].

Thus, in spite of the limited functional significance of Hif3a/

NEPAS in development as a global regulator of the hypoxia

response, we demonstrate that Hif3a does contribute by balancing

the function of the Hif regulated genes. Furthermore, Hif3a
contributes to late branching morphogenesis, alveolar formation

and epithelial differentiation. Moreover, the level of Hif3a, as well

as Hif1a and Hif2a, is tightly regulated to ensure balance between

the total number of proximal cells and distal cells.

Supporting Information

Figure S1 Expression of mycHIF3a leads to late branch-
ing defect. External appearances of control (A and E) and

mycHIF3a transgenic lungs (B and F) at E16.5 and E17.5 showed

no apparent differences. Histological analysis of control (C and G)

and mycHIF3a transgenic (D and H) lungs showed a gradual

decrease in the number of air spaces and aberrant, late branching

morphogenesis in mycHIF3a transgenic lungs. Anti-Myc epitope

staining confirmed the expression of the mycHIF3a transgene in

double transgenic lungs (D and H), which is absent in control lungs

(C and G). Scale bars: 2 mm (A, B, E, F) or 200 mm (C, D, G, H).

(TIF)
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