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Abstract

The identification of interactions between drugs and target proteins plays a key role in genomic drug discovery. In the
present study, the quantitative binding affinities of drug-target pairs are differentiated as a measurement to define whether
a drug interacts with a protein or not, and then a chemogenomics framework using an unbiased set of general integrated
features and random forest (RF) is employed to construct a predictive model which can accurately classify drug-target pairs.
The predictability of the model is further investigated and validated by several independent validation sets. The built model
is used to predict drug-target associations, some of which were confirmed by comparing experimental data from public
biological resources. A drug-target interaction network with high confidence drug-target pairs was also reconstructed. This
network provides further insight for the action of drugs and targets. Finally, a web-based server called PreDPI-Ki was
developed to predict drug-target interactions for drug discovery. In addition to providing a high-confidence list of drug-
target associations for subsequent experimental investigation guidance, these results also contribute to the understanding
of drug-target interactions. We can also see that quantitative information of drug-target associations could greatly promote
the development of more accurate models. The PreDPI-Ki server is freely available via: http://sdd.whu.edu.cn/dpiki.

Citation: Cao D-S, Liang Y-Z, Deng Z, Hu Q-N, He M, et al. (2013) Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics
Approach. PLoS ONE 8(4): e57680. doi:10.1371/journal.pone.0057680

Editor: Anna Tramontano, University of Rome, Italy

Received May 4, 2012; Accepted January 27, 2013; Published April 5, 2013

Copyright: � 2013 Cao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is financially supported by the National Nature Foundation Committee of P.R. China (Grants No. 21075138, No. 21275164, and No. 11271374).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yizeng_liang@263.net (YZL); qnhu@whu.edu.cn (QNH)

Introduction

The identification of drug-target interaction networks is an area

of intense research in drug discovery [1,2,3]. The emergence of

molecular medicine and the completion of the human genome

project provide more opportunity to discover new drug targets.

Much effort has been made in the past few years to achieve this

goal. There are thousands of FDA-approved drugs on the market

and potential drugs in the later phases of clinical trials. The

identification of drug-target interactions helps researchers to find

new targets for an old drug as well as new drug candidates for a

drug target [4]. Finding potential applications in other therapeutic

categories of those FDA-approved drugs by predicting their

targets, known as drug repositioning, is supported by the core

observation that a single drug often interacts with multiple targets

[5]. It offers an appealing strategy, and can be regarded as a very

efficient and time-saving method in drug discovery [6,7,8]. The

identification of potential targets for a drug provides insights into

its potential toxicity and/or its new application to the therapy of

other diseases. Additionally, predicting drug-target interactions

could help decipher the underlying biological mechanisms from

the network perspective [9,10,11]. More importantly, the deter-

mination of drug-target interactions remains very challenging and

time-consuming at the experimental level. It is almost impossible

to carry out all experiments detecting the toxicity of a drug

candidate by checking the interactions between this candidate and

related proteins.

Currently, two computational approaches are generally used for

studying the drug-target relations: ligand-based virtual screening

and docking. The ligand-based approach is to predict the drugs

interacting with a given protein based on the chemical structure

similarity in a classic SAR framework. Keiser et al. proposed a

method to predict protein targets based on the chemical similarity

of their ligands [12]. Likewise, Campillos et al. used side effect

similarity to relate drugs to novel targets [13]. These two kinds of

approaches, however, do not take advantage of the information in

the protein domain. Docking is a powerful molecular modeling

approach that predicts the preferred orientation of a drug

molecule to a protein by dynamic simulation, and a series of

ranked drug-target relations can be generated by the size of energy

scores [14,15,16,17]. However, a major limitation is that docking

approaches need 3D structures of proteins. Moreover, the problem

is especially serious for membrane proteins, e.g., very few GPCRs

have been crystallized. Recently, Several statistical methods have

been developed to predict compound – protein interactions

[18,19,20,21,22]. An example was the pairwise kernel that

measures the similarity between drug-target pairs [23,24].

However, the drawback of the pairwise kernel is that there will
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be a large number of samples to be classified (i.e., number of drugs

multiplies number of targets) which poses remarkable computa-

tional complexity. Another problem is that the negative drug-

target pairs are selected randomly without experimental confir-

mation. More recently, Bleakley et al. proposed a bipartite local

model by transforming edge-prediction problems into binary

classification problems [25]. Laarhoven et al. developed a

Gaussian interaction profile kernel for predicting drug-target

interactions [26].

It is worth noting that, among these prediction methods, the

quantitative information of drug-target pairs was not taken into

account. It seems preferable that the classifier predicts not only

whether one drug-protein pair has an interaction or not, but also

whether this pair has a stronger interaction or not. A considerable

portion of drug discovery focuses on lead finding and optimization

by evaluating its affinity to the primary target [27]. In fact,

pharmacologists are more interested in those drug-target associ-

ations with strong binding affinities, which are a good starting

point for further experimental research [28]. Ki is the inhibition

constant for a drug; the concentration of competing ligand in a

competition assay which would occupy 50% of the receptors if no

ligand is present. Ki can quantitatively describe the degree to

which the drug binds to the target protein. Distinguishing tight

binding from moderate binding (nM vs mM level inhibitors) is an

urgent task. If this was overcome, one could identify candidate

compounds over a handful of leads and significantly reduce false

positives. Also, more accurate modeling by quantitative biochem-

ical data on targets takes us one step closer to predict selectivity,

toxicity and druggability [29]. Based on recent studies in systems

biology, it is possible to see that quantitative data will inform

models of drug action and uncover new pharmacological

hypotheses. In this study, we try to make full use of quantitative

drug-target interactions to construct a predictive model and to

avoid some problems such as unknown drug-target interactions, -

being assumed as non-interaction.

In this article, we present a discriminative computational

framework to identify drug-target associations in human species

by developing a chemogenomics approach using integrated

molecular features and Ki [30]. We aim at integrating chemoin-

formatics (e.g., drugs) and bioinformatics (e.g., targets) into an

interaction informatics platform for genomic drug discovery. We

used a random forest (RF) model to differentiate drug-target

Figure 1. Outline of our methodology. (A) Interaction features are calculated by combing the fingerprint descriptors from drugs and the CTD
and amino acid composition descriptors from protein sequences. These feature vectors are used to find the optimal RF parameters which most
accurately separate the positive and negative training sets. The independent validation sets are used for further validation for the RF model. (B) Once
the RF model is constructed, we can predict new unknown drug-target associations or screen all cross-linking associations.
doi:10.1371/journal.pone.0057680.g001
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interactions from non-interactions or tight binding from moderate

binding. RF has been successfully applied in many biological

contexts: cancer tissue classification [31,32,33], protein domain

classification [34], nucleosome positioning, etc. In our case,

because of potentially diverse mechanisms between drugs and

targets, we use a complete set of drug-target interaction features to

predict new drug-target associations. To demonstrate the reliabil-

ity of our methodology, we investigate the discriminative models

using only drug features, target features and integrated features,

respectively. In addition to five-fold cross validation, we evaluate

our method by predicting drug-target pairs from external

validation sets collected from public resources.

We further apply our RF approach to predict putative drug-

target interactions. Many of novel drug-target pairs obtained high

prediction probability and some have been validated from public

biological resources. Network reconstruction with high confidence

drug-target pairs provides an impressive picture about drug-target

associations, helping in further understanding drug and target

actions [35,36]. The successful identification of tight binding drug-

target associations provides powerful independent evidence for the

validity of our approach. The interactions can provide comple-

mentary and supporting evidence to experimental studies. Finally,

a web-based drug-target prediction server was established to

facilitate the use of scientific researchers.

Results

Drug-target interactions can be accurately predicted
from integrated features

Our primary concern is to construct a predictive model that can

accurately differentiate drug-target interactions with strong

binding affinity from those with weak binding affinity, and to

investigate the degree to which we can predict drug-target

interactions in human species using integrated features. We

mainly focus on the drug-target pairs available on two popular

databases: the Binding database and the PDSP Ki database. As a

starting point of investigation, cross-linking associations in human

species were extracted. We initially chose a commonly used Ki

threshold to tune the positive set (drug-target pairs with Ki value ,

the given threshold) and the negative set (drug-target pairs with Ki

value $ the given threshold). In practice, 10 mM Ki value is

usually used as a critical value to differentiate whether one drug-

target pair interacts or not [3]. Thus, the entire data set was firstly

divided into 8745 positive samples and 4334 negative samples. We

initially used this Ki value to assess the predictive capability of our

constructed model.

To represent drug-target interactions, we used a chemoge-

nomics framework. In brief, an interaction could be efficiently

represented by simultaneously considering drug descriptors and

protein descriptors. The basic approach is outlined in Figure 1A.

In our approach, drug molecules were represented by chemical

hashed fingerprints of a 1024 bits length [37]. Target proteins

were represented using composition, transition and distribution

(CTD) descriptors and amino acid composition descriptors (167

descriptors). Thus, each interaction sample (positive or negative)

was finally characterized as a 1024+167 = 1191 dimensional vector

by concatenating drug descriptors and protein descriptors. Each of

these factors could be considered as a separate coordinate

spanning a multidimensional space, and in this sense a drug-

target interaction is an event in this type of multidimensional

space. We used the full set of 1191 descriptors as our model input.

Because many drug-target interactions have yet to be determined,

we prefered the application to an unbiased, general, and complete

set of molecular features. The result of scanning unknown drug-

target pairs is shown in Figure 1B, and the result of identifying

novel and experimentally confirmed associations is discussed in

detail below.

To evaluate classification performance, we first used a five-fold

cross validation method. Initially, the whole data set to be

classified was randomly partitioned into five subsets. One subset

was then reserved as a validation data set, and the classifier was

trained in the remaining four subsets. The constructed classifier

was then used to predict the reserved validation data set to assess

its accuracy. The process was repeated five times so that every

drug-target association was classified. Because there is a trade-off

between sensitivity and specificity, we measure the quality of the

classifier by calculating the area under the ROC curve (auROC),

as shown for Ki = 10 mM threshold in Figure 2. An ROC curve

shows the false-positive rate along the x-axis and the true-positive

rate along the y-axis, as the classification threshold varies for

declaring a prediction to be a real site [38]. A model with no

predictive ability would yield the diagonal line. We ultimately

averaged five validation set auROCs to obtain a summary statistic

of classification performance [39].

We employed the random forest (RF) algorithm to construct our

predictive model because of its excellent reputation amongst the

bioinformatics communities [40,41,42]. In RF, two parameters,

the number of randomly selected variables mtry and the number of

trees grown ntree, needed to be further optimized. To achieve the

better performance, we screened mtry values ranging from 5 to 100

with a step of 5. We also selected an appropriate number of trees

to be grown to achieve a low error rate of convergence. Ensemble

of 600 trees (ntree = 600) was finally used to construct RF

(Figure S1). All optimal models were determined using five-fold

cross validation before proceeding to prospective validation of the

model. In addition, we tested and compared a commonly used

alternative approach, the Naı̈ve Bayes classifier, which learns these

parameters for each feature independently (the RF classifier learns

the interaction of features at the same time). Despite this

assumption of independence, the Naı̈ve Bayes classifier has

Table 1. Prediction results of five-fold cross validation using different models.

TP FN TN FP Sen Spe Acc auROC auPRC

RF 8003 742 3603 731 91.52 83.14 88.74 95.84 91.04

Naı̈ve Bayes 7212 1533 3134 1200 82.47 72.32 79.10 81.47 70.32

RF-drug 7648 1097 3447 887 87.46 79.54 84.83 88.12 79.28

RF-target 7838 907 2155 2179 89.63 49.72 76.40 73.35 63.57

BGL 5661 3084 4274 60 64.74 98.62 75.96 90.42 82.27

TP: true positives; FN: false negatives; TN: true negatives; FP: false positives; Sen: sensitivity; Spe: specificity; Acc: accuracy.
doi:10.1371/journal.pone.0057680.t001
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performed very well on a broad range of machine learning

applications.

To test the sensitivities of various Ki thresholds with our RF

model, we repeated these cross validation experiments on different

positive/negative sets divided by different Ki thresholds ranging

from 10 to 90 with a step of 5. Although the ROC curve is a

standard metric, the precision-recall (P-R) curve is a more reliable

measure of performance than the ROC curve. Precision is the

ratio of true positives to predicted positives, and recall is identical

to the true positive rate in the ROC curve. The P-R curve can be

quantified by the area under the P-R curve (auPRC), or average

precision.

Our main result is that using this Ki threshold (10 mM), the RF

can successfully distinguish the drug-target interactions with

auROC = 0.96 and auPRC = 0.91, and prediction accuracy of

88.74% can be obtained (see Table 1). The ROC curve reveals a

sensitivity of 90% at a false positive rate of 18%. This is

significantly better than the false positive rate of 90% from random

predictions at this sensitivity (p -value ,10e-78). The Naı̈ve Bayes

classifier is significantly less accurate in distinguishing the drug-

target interactions (auROC = 0.81 and auPRC = 0.70), indicating

that the assumption of conditional independence among interac-

tion features impairs its performance. Figure 2 shows the

summaries of comparison between auROCs and auPRCs of RF

and Naı̈ve Bayes. Observation of error bars for two curves found

that RF is more robust than Naı̈ve Bayes. In Figure 3, we plot the

figure of Ki versus prediction probability on five-fold cross

validation. Clearly, a significant trend can be found that Ki values

increase as prediction probabilities decrease. The linear relation-

ship with correlation coefficient of 0.65 can be found (p-value

,2.2e-16). This indicates that the drug-target pairs with tight

binding (low Ki values) have high prediction probabilities, and vice

versa. Further analysis found that the drug-target pairs predicted

wrongly are located in the range from 2 to 6 (the logarithm of Ki).

For example, for positive samples, 89% of positive samples

predicted wrongly are located in the range from 2 to 4, again

implying that the drug-target pairs at the classification margin are

Figure 2. ROCs and precision-recall curves for Naı̈ve Bayes (green) and random forest (red) with full and selected features. (A) ROCs
(B) precision-recall curves.
doi:10.1371/journal.pone.0057680.g002

Table 2. Prediction results for independent validation sets by
RFs.

Total number
Predicted
correctly Accuracy

Validation Set 1 2041 1829 89.61%

Validation Set 2 5127 4155 81.04%

Validation Set 3 30102 23674 78.64%

Validation Set 4 334 316 94.61%

Validation Set 5 1560 1291 82.76%

Validation Set 6 43 31 72.09%

doi:10.1371/journal.pone.0057680.t002

Figure 3. The plot of Ki versus prediction probability on 5-fold
cross validation. non-interaction: red and interaction: green. Linear
relationship between Ki and prediction probability could be observed
with correlation coefficient of 0.65.
doi:10.1371/journal.pone.0057680.g003
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more difficult to distinguish.

For classification of drug-target pairs tuned by different Ki

values, auROC is almost unaffected by the Ki threshold

(Figure 4A), but auPRC drops (Figure 4B) as Ki threshold

decreases. However, the trends of auROC and auPRC are

consistent. The densities of prediction probability using varying Ki

thresholds are plotted in Figure S2. The trend in this plot is

consistent with the one in the P-R curve. It can be seen that the

optimal discriminative value increases from about 0.1 to 0.6 as the

Ki threshold increases. Furthermore, the choice of large Ki

threshold significantly increases the number of positive samples

with high prediction probability. Taken together, these results

indicate that the degree to which drug-target pairs are successfully

predicted is dominated by their binding affinities. The model using

quantitative information on targets can efficiently differentiate

interactions from non-interactions, even strong binding from weak

binding.

The features from drugs and target proteins collectively
contribute to the discrimination of drug-target
interactions

Next, we investigate which subsets of features allowed RF to

successfully discriminate drug-target interactions. The RF itself has

a built-in feature evaluation program that allows user to rank

features. We conduct the RF classification again, using only the

subset of integrated features with large importance. The RF using

the top 300 features achieves auROC of 0.91. This indicates that

the features with larger importance predict drug-target interac-

tions with similar accuracy, although the auROC slightly

decreases compared to the result with the full set of features

(Figure 2A). However, we failed to find single feature that greatly

contributes to our discrimination. By combining many features,

the full RF and the RF with the top 300 features achieve greater

accuracy than single feature. The RFs outperform the Naı̈ve Bayes

that assumes features independence, which indicates that these

features contribute cooperatively. We also investigate how the

omission of protein characteristics can affect the performance.

Table 3. Prediction statistics on different false discovery
rates.

FDR Recall Threshold Number Ratio

0.3% 25.60% 0.993 3786 0.22%

0.5% 32.40% 0.990 4343 0.25%

1.0% 45.20% 0.950 11907 0.68%

1.5% 56.50% 0.910 27252 1.56%

2.0% 61.54% 0.880 47160 2.70%

2.5% 66.07% 0.850 77543 4.44%

3.0% 69.93% 0.830 106799 6.12%

3.5% 74.60% 0.790 195722 11.12%

4.0% 77.77% 0.760 293383 16.82%

4.5% 80.21% 0.740 374204 21.46%

5.0% 82.58% 0.710 515375 29.55%

FDR: false discovery rate, Number: Number of drug-target pairs predicted as
interactions, Ratio: the ratio between drug target pairs predicted as interactions
and all screening pairs on specific FDR.
doi:10.1371/journal.pone.0057680.t003

Figure 4. ROCs and precision-recall curves with different Ki thresholds using RF. (A) ROCs (B) precision-recall curves. The auPRCs drop with
the decreasing of Ki thresholds. However, the varying trend of auROCs is consistent with that of auPRCs.
doi:10.1371/journal.pone.0057680.g004

Figure 5. The predictive probability plot of screening all cross-
linking drug-target pairs. The size of predictive probability
gradually varies from green to red.
doi:10.1371/journal.pone.0057680.g005
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Information of a protein property is omitted at every turn

(Table S2). Each omission affects performance only mildly,

suggesting that none is very critical to our performance, but each

improves it slightly (Figure S3). This may imply complicated

interactions in drug-target pairs and reflects the difficulty of

interpreting specific molecular feature to a certain degree.

A striking feature of our approach is that integration of

information from drugs and targets are quite helpful for

representing the drug-target associations. We assume that drug-

target interactions can be determined by structural features from

drugs and targets, which comprise of a pharmacological space.

Chemogenomics research aims to relate the chemical space with

the genomics space in order to identify potentially useful

associations in the pharmaceutical space. To demonstrate the

reliability of our assumption, we re-establish our RF model using

only the structural content from single space (i.e., chemical space

or genomics space), that is, two RF models are constructed using

1024 drug features and 167 protein features, respectively. As can

be seen from Figure S4, the RFs with 1024 drug features and 167

protein features obtain relatively inferior prediction (auROC:

0.88 vs 0.73), respectively (see Table 1). The comparison between

RFs with separate spaces and RF with integrated features indicates

that the structural contents from drugs and targets contribute to

the discrimination of drug-target associations cooperatively.

Random forest model validation using external validation
sets

To further demonstrate the prediction ability of the models,

they should also be validated by predicting the interactions of

other drug-target associations not used in the training set, but

Figure 6. Drug-target interaction network using drug-target pairs with prediction probability above 0.99. Drugs and targets are
presented by red circle and blue triangle, respectively. Drug-target interactions are represented by the edges connecting related drugs and targets.
doi:10.1371/journal.pone.0057680.g006
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whose interactions have been experimentally determined (i.e.,

independent validation set). Herein, six independent validation

sets are employed (see Methods section). The results that applied

our RF to these validation sets are listed in Table 2. For

validation set 1, 1829 drug-target pairs are successfully predicted

from 2041 associations and prediction accuracy of 89.61% is

obtained. For validation set 2, we successfully predict 4155 drug-

target pairs, and prediction accuracy of 81.04% was achieved.

Considering more number of targets than those from the reference

set, our prediction for this validation set seems satisfactory.

Validation set 3 is a larger validation set from the ChEMBL

database compared to the above two validation sets. Our

prediction reveals that 23674 out of 30102 drug-target associations

are correctly predicted and prediction accuracy of 78.64% is

obtained. Validation sets 4 and 5 are used to demonstrate the

ability of our model to discriminate the protein-ligand complexes

from decoy complexes. The results effectively illustrate predict-

ability of our approach (94.61% for protein-ligand complexes

versus 82.76% for decoy complexes). For validation set 6, these

associations are identified by some non-structural similarity

inference way. We aim at using these to validate the assumption

of our model (i.e., structural similarity principle). Finally, we

successfully identify 31 out of 43 interaction pairs. Such a result

indicates that our approach has the ability to identify those

associations found by indirect inference to a certain degree.

Although predicting some associations correctly, we also find that

these predictive probabilities are relatively low. Our model may be

insufficient to identify such associations because it is based on only

structural similarity principle. The predictions from these valida-

tion sets, together with those from cross validation, collectively

demonstrated that our approach is able to accurately predict drug-

target associations.

Genome-wide RF predictions identify novel drug-target
associations

To predict additional drug-target pairs that are not included in

our training set, we scan the entire drug-target associations

systematically with our RF. Thus, a 51463393 prediction matrix is

finally obtained to record prediction probabilities. We found the

significant enrichment of drug-target associations according to our

RF prediction probability (Figure 5). By using alternative

thresholds, our approach may be tuned to predict a subset of

drug-target pairs with high confidence at the cost of a false

discovery rate (the expected fraction of predicted positives which

are false positives, FDR = FP/(FP+TP)). We can estimate FDR

from the P-R curves in Figure 2B. For example, 83% of the

interactions are detected at a FDR of 5% (p-value ,10e-93). To

trade off precision and recall, we choose a cutoff which

corresponds to 45% recall, which at 10 mM Ki threshold is RF

prediction probability of 0.95. For large Ki thresholds, precision is

about 99% when recall is 45%, and therefore we estimate our

FDR to be about 1%. In other words, at this cutoff (RF .0.95), on

the training set, we capture 45% of the drug-target interactions.

Although there is a small recall at this FDR, we could guarantee

better precision and higher confidence drug-target pairs predicted

by our approach. Certainly, we can alter FDRs to obtain different

success rates, as listed in Table 3.

At a RF threshold of 0.95, we predict 11907 drug-target

interactions, and 5987 new drug-target interactions after excluding

those appearing in the training set. We expect about 5927 of these

associations to be true drug-target interactions. These associations

only take up 0.68% of all cross-linking associations. This threshold

appears to be a good trade-off for identifying many biologically

significant drug-target interactions with an acceptable FDR. The

full list of these associations together with their prediction

probabilities is included in Supporting Material J in File S1.
Further analysis reveals that 2191 drug-target pairs obtain

prediction probability of 1.0. After excluding 1973 pairs in

training set, we obtain 218 new predictions. We are more

confident that these drug-target pairs should be correctly

predicted. The RF classifier identifies more drug-target associa-

tions in the cross-linking set than the training set. This may be due

to two factors: (1) These predicted pairs may be false positive

associations; (2) They may be true positive associations that are

unidentified by binding assays. However, we believe that these

associations should be novel interactions at such a small FDR.

Thus, when experimental resources are limited and even a few

drug-target interactions would be valuable, our method can

provide a list of candidate drug-target pairs that is highly enriched

for drug-target interactions.

To comprehensively assess the validity of our RF, we manually

search in the literature, databases and find some drug-target

interactions published as supporting of our predictions [43,44].

Herein, we only search the first 775 predicted drug-target pairs

with prediction probability .0.99. These associations together

with the retrieved Ki values can be found in Supporting
Material K in File S1. Clearly, most of these associations have

been validated from experiments, demonstrating the predictability

of our approach. In summary, our RF model has the ability to

predict those drug-target interactions which are still not deter-

mined from experiments.

Network construction of Drug-target associations with
high prediction confidence drug-target pairs

We construct a drug-target network using those pairs with high

confidence to comprehensively understand the drug and protein

action. To guarantee the reliability of our constructed network, we

limit FDR at the level of 0.5% (i.e., RF .0.99). Thus, the total set

of 4343 drug-target pairs is reliably predicted to be interactions.

After excluding 3628 associations in the training set, we

additionally predict 775 new associations involving 67 targets

and 517 drugs, about 63% of which have been validated from

public biological resources (see Supporting Material K in
File S1). It should be noted that we do not intend to construct a

whole network, but to conveniently observe the network action of

our predicted drug-target pairs (see also Figure S5 for total

network).

Figure 6 shows the predicted drug-target network using these

775 interactions. Significant features from the network can be

found: (1) It is clear from data mining of binding affinities between

drugs and targets that many drugs show clinically relevant

polypharmacology (that is, they are ‘dirty drugs’) [45]. There are

four large hubs corresponding to different target clusters, and

highly connected nodes in the network. They almost take up

.95% of all interactions. This indicates high binding affinity for

some specific class of targets, such as delta opioid receptors and

dopamine receptors. Quite expectedly, closely related members of

the gene family will show significant drug promiscuity, and as a

result of the generally similar function of these proteins, give rise to

complex clinical pharmacology. This could be very well illustrated

by biogenic amine receptors. For example, clozapine has a highly

complex pharmacological profile, with high affinities for serotonin

receptors (5-HT2A, 5-HT2C, 5-HT6 and 5-HT7), dopamine

receptors (D2, D4), adrenergic receptors (a1- and a2-subtypes)

and other biogenic amine receptors [46]. (2) Delta opioid receptor

possesses the largest number of connections with drugs, such as

opioid analgesics (e.g., nalbuphine, dermorphin, butorphanol,

cyclorphan, buprenornhine, diprenorphine, phenazocine, brema-

Predicting Drug-Target Interactions
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zocine), and opioid receptor blockers (e.g., nalmefene, naloxone,

clocinnamox, naltrexone, naltrindole, hydromorphone). Most of

these drugs have been successfully applied in preclinical or clinical

therapy. Among all predictions, we found that delta opioid

receptor-drug interactions are very strong since most of their

associations have high prediction confidence (prediction probabil-

ity of 1.0) [47,48]. Search for Ki in PubChem and ChEMBL

databases has also demonstrated strong interactions between delta

opioin receptor and these drugs (that is, most of drugs are at nM

level). Other targets cluster with delta opioid receptor include mu

opioid receptor, cannabinoid CB1 receptor, pregnane X receptor,

delta opiate receptor and mu opiate receptor. These targets have

similar biological function. (3) Serotonin receptors (5-HT1A, 5-

HT1B, 5-HT1D, 5-HT2A–2C, 5-HT6 and 5-HT7), alpha adrenergic

receptor (e.g., 1A, 2A, 2B and 2C), cholinergic receptors (e.g.,

M1–M5), histamine receptors (e.g., H1, H3) and dopamine

receptors are cross-linked together. Dopamine receptors keep the

largest number of connections. Dysfunction of dopaminergic

neurotransmission in the CNS has been implicated in a variety of

neuropsychiatric disorders, including anxiety disorder, social

phobia, Parkinson’s disease, schizophrenia, neuroleptic malignant

syndrome, attention-deficit hyperactivity disorder, and drug/

alcohol dependence. Clearly, most of presently used antipsychotic

drugs have a complex pharmacology, with appreciable affinities

for a variety of biogenic amine receptors [49]. Recent studies have

implicated that histamine receptor H1, the 5-HT2C receptor and

a1-adrenoeptors – sites for which many antipsychotic drugs have

high affinity – for causing weight gain and associated metabolic

side effects [50]. It is found that most of drugs connected to

dopamine receptor are drugs used for anxiety disorder (e.g.,

fluphenazine, sertindole, thioridazine, and trifluoperazine), for

Parkinson’s disease (e.g., pergolide, lisuride, and apomorphine), for

alcohol and drug dependence (e.g., terguride), and antipsychotic

drugs (e.g., fluspirilene, loxapine, and clozapine). Some of them as

landmark drugs have been routinely applied in practice. (4) The

third largest cluster is some receptors related to hormones, such as

glucocorticoid receptor, progesterone receptor, androgen receptor,

mineral corticoid receptor and so on. Corresponding drugs include

CP-409069 (glucocorticoid receptor modulator, antiobesity drugs),

mifepristone (progesterone inhibitor), prednisolone, dexametha-

sone, and their derivatives and so on, which have been approved

to treat related diseases. The fourth largest cluster is carbonic

anhydrase, which is mainly the binding site for antiglaucoma

agents (e.g., benzolamide, dorzolamide), and diuretics (e.g.,

acetazolamide, furosemide). In summary, the network analysis

provides further insights into drug action and target action such as

target binding, drug selectivity, polypharmacology and toxicity,

although these clinically used drugs have been routinely used.

Comparison to alternative approaches
We also compare our approach to other alternative modeling

approaches. Three commonly used machine learning approaches

are employed: support vector machine (SVM), standard back-

propagation network (BPN), and k-nearest neighbor (k-NN). The

ROC curves are plotted in Figure S6 for three modeling

approaches. As shown in this plot, one can see that three

alternative approaches obtained auROCs of 0.95, 0.89 and 0.84,

respectively. The results of BPN and k-NN are significantly inferior

to those of RF and SVM, and SVM gives similar prediction to RF.

However, in view of high computational complexity of SVM and

various auxiliary equipments of RF, we prefer RF to construct our

predictive model. Additionally, we also compared our approach

with the recent bipartite graph learning (BGL) model (Table 1).

Clearly, better prediction performance can be achieved from the

RF model.

Web-based online prediction server – PreDPI-Ki

To share our results with pharmacologists and chemists, we

finally constructed a web-based prediction server: PreDPI-Ki. The

PreDPI-Ki can be freely accessed at http://sdd.whu.edu.cn/dpiki.

It is running upon Linux/Apache/Dijango platform and support-

ed by background Python language, which enables multiple

accesses simultaneously. To evaluate the drug-target interaction,

the users only need to input a drug molecule in the SMILES

format and a target protein in the FASTA format, respectively.

For convenience, the user is allowed to draw a drug molecule via

JME editor. Examples with standard input formats are also

provided to guide the users. After submission, the back-end server

can calculate a 1191 dimensional vector representing the

interaction, and then RF can give a predictive probability for

this drug-target pair.

Discussion

In modern genomic drug discovery, chemogenomics is urgently

needed to screen potential drug candidates for clinical trials and to

identify targets that have expected binding affinities [51,52,53]. In

this study, we have shown that a RF can accurately predict the

drug-target interactions based on integrated features, following the

spirit of the chemogenomics approach. The application to several

external validation sets has further demonstrated the reliability of

our approach. When targets lack 3-D structures, our approach

provides an effective and alternative way to study the action of

drugs and targets.

When scanning the whole cross-linking set to predict the

putative associations, we predict that 99% of 9659 drug-target

interactions with RF probabilities above 0.95 are true positives.

This is a conservative estimate of our ability to identify novel drug-

target interactions. These predicted associations are useful for

experimentalist, especially in solving problems related to drug-

target selectivity and polypharmacology. Our network analysis

demonstrates this point. In addition, the reliability of our

chemogenomics framework is further demonstrated by only

considering chemical space or genomics space. Clearly, combining

two spaces could significantly improve the prediction of drug-

target interactions, implying the close cooperation. Furthermore,

analysis and comparison of protein features indicate the complex-

ity of drug-target interactions and the difficulty of interpreting

specific protein feature.

The main advantages of our proposed approach are summa-

rized as follows: 1) The model directly encodes the drug-target

pairs using integrated features called the pharmaceutical space.

Application to RF effectively explores the complex interaction

relationship in the pharmaceutical space. The system is suitable for

simultaneously screening huge numbers of drug candidates and

candidate targets from a systematic level; 2) Most previous

algorithms are assumed that unknown interactions are considered

as non-interactions (i.e., negative set); thereby cause a model bias

which enables a large number of true interactions without

experimental confirmation to be predicted as non-interactions

(i.e., false negatives). However, a series of problems caused by such

an assumption could be overcome by Ki values. 3) Compared with

the structure-based simulation methods, this approach is not

limited by the 3D structure data of targets, and it is also fast and

convenient; 4) The approach can assist in discovery of multi-target

drugs by recognizing the group of proteins targeted by a particular

ligand. 5) Applying binding affinity data to prediction helps to
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distinguish strong drug-target interactions from those weak

interactions or non-interactions, accelerating the discovery of

drugs at mM even nM level. However, a limitation of our approach

is that it may be insufficient or invalid to identify those interactions

deviating from structural similarity principle since our approach is

based on the assumption that the drug-target pairs with similar

structure should have similar properties [54,55]. Detecting such

interactions may need the development of specific modeling

approaches [12,56,57,58].

(Quantitative) structure-activity relationship (QSAR/SAR), as a

classical drug research approach, assumes that molecules with

similar structure should exhibit similar activity. These classical

QSAR/SAR models only take into account multiple molecules

active in a single protein target, yet they completely neglect our

extensive knowledge on the similarities of targets to each other and

drug-target interactions. Therefore, they are not able to rationalize

why an inhibitor is active on one protein but not on another

[59,60]. In fact, our chemogenomics framework can easily be

considered as a natural extension of classical QSAR/SAR. At a

reductionist level, our chemogenomics framework can be ratio-

nalized by similarities of key molecular fingerprints in drugs when

the targets that bind drugs are invariant; and when comparing

proteins from different families, the framework can be rationalized

by similarities or differences in the physicochemistry properties of

the residues of proteins (the drugs are invariant).

Our prediction approach offers several other applications.

Predicted drug-target associations can guide experimental identi-

fication of drug-target interactions and may be used to infer

protein function by predicting if a protein has similar function to

its interacting partner(s). Application to binding-affinity-related

endpoints for all drug-target pairs enables us to construct a more

reliable and robust model. Identification of tight binding

associations could also greatly accelerate the finding of drug

molecules at mM even nM level. However, it should be noted that

the ability of a protein to bind a small molecule with the

appropriate chemical properties at the required binding affinity

might make it druggable, but does not necessarily make it a

potential drug target for that honor belongs only to proteins that

are also linked to disease. This framework may also be useful in

predicting drug-target interactions experimented on other species.

Certainly, the RF models developed in the current work are far

from perfect, because the dataset used here is limited. A sufficiently

accurate set of experimental data relevant to Ki for the validation

is crucial in the development of the prediction models. So, based

on increasing data, the learning/modeling will need to be an

ongoing, iterative process in which the models are continuously

refined.

Materials and Methods

Data sets of drug-target interactions
The training set was composed of 514 target proteins and 3393

drug-like ligands, with 13079 associated drug-target interactions.

The drug-target interactions were extracted from the Binding

database and the PDSP Ki database [61]. For each drug-target

pair, we also extracted its corresponding Ki values in these two

databases. Maybe these two databases included one or even

several Ki values for one drug-target pair due to the integration of

different sources. Thus, we used a median of these Ki values as a

reference Ki to assure reliability. We defined a target as a protein

that physically binds to the drug and a ligand as a compound that

physically binds to the target protein. Although some target

proteins in two databases also bind drug-like ligands, they were

excluded from our training set because our main focus was to

predict specific drug-target pairs in human species. We used a

heuristic approach to identify only human-specific drug-target

pairs by excluding those from other species, such as ‘‘rat’’,

‘‘rabbit’’, ‘‘bovine’’, ‘‘sheep’’, ‘‘calf’’, ‘‘pig’’, ‘‘mouse’’, ‘‘guinea

pig’’, ‘‘dog’’ and ‘‘undefined’’. These associations together with

those drugs and targets are included in Supporting Materials
A–C in File S1.

We also collected six independent validation sets from different

sources to validate our model from different aspects. The first one

is 2041 drug-target associations involving 435 effect-mediating

targets and 989 drugs, which are extracted from the DrugBank

database [62,63]. Many of these have been approved and applied

to the treatment of diseases. The second is a gold standard dataset

released by Yamanishi et al. [64], which covers 5127 drug-target

interactions involving 989 targets and 932 drugs. The third is

30102 drug-target interactions involving 295 targets and 12984

drugs from the ChEMBL database [44]. The fourth is 334 protein-

ligand complexes involving 233 targets and 198 drugs from the

AffinDB database [65]. The fifth is 1560 decoy protein-ligand

complexes involving 39 targets and 1545 drugs from the DUD

database [66]. The final is from the research work of Keiser and

Campillos [13,67]. 43 drug-target associations were masterly

discovered by two different screening strategies and were then

further confirmed by in vitro binding assays. All drugs and target

proteins used in the validation are included in Supporting
Materials D–I in File S1. The number of drugs, targets and

their interactions in the training set and independent validation

sets are listed in Table S1.

Random forest
RF, developed by Bremain and Culter [68], is capable of

describing the relationship between independent and dependent

variables with high flexibility and sufficient accuracy. An extended

depiction and study of theory on RF can be referred to the Web

site of Bremain or the papers of Svetnik et al. [69]. The RF

algorithm grows a collection, called a forest, of the unpruned

classification trees and uses these for classifying a data point into

one of the classes. Two types of randomness, bootstrap sampling of

samples and random selection of input features, are used in the

algorithm to make sure that the classification trees grown in the

forest are dissimilar and uncorrelated from each other. A forest is

grown by using ntree bootstrapped samples, each of size N

randomly drawn from the original data of N training samples

with replacement. This first type of randomization helps to build

an ensemble of trees and to increase diversity among the trees. In

each bootstrap sample, about two-thirds of the original training

samples are used to grow a classification tree. About one-third of

the samples are left, called Out Of Bag (OOB) samples. These

samples are used to obtain unbiased estimates of correct

classification rates and feature importance measure. The second

type of randomness is used during building each tree. For each

node of a tree, the RF algorithm randomly selects mtry features and

uses only them to determine the best possible split using the Gini

index as the splitting criterion [70]. Predictions for test data are

carried out either by the majority vote of classification trees or are

based on a threshold selected by the user. The number of trees

(ntree) to be grown is chosen appropriately to achieve low error rate

of convergence. Furthermore, RF includes a method for assessing

the importance of features in the model. When each feature is

replaced in turn by random noise, then the resulting deterioration

in model quality is a measure of variable importance. The

deterioration in model quality can be assessed by the change in

misclassification rates for the OOB validation. Finally, RF can

produce scores or probability outputs that serve to rank
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predictions according to confidence and have a useful probabilistic

interpretation.

Representing drug molecules and protein targets
For drug descriptors, the open-source OpenBabel was used to

calculate two-dimensional topological Daylight fingerprints using

default settings of 1024 bits array length and path lengths of 2–7

atoms. Proteins are represented using amino acid composition

descriptors and CTD descriptors (composition, transition and

distribution) [71]. Amino acid composition descriptors reflect the

fraction of each amino acid type in a protein sequence.

Composition is the number of amino acids of a particular

property (e.g., hydrophobicity) divided by the total number of

amino acids in a protein sequence. Transition characterizes the

percent frequency with which amino acids of a particular property

is followed by amino acids of a different property. Distribution

measures the chain length within which the first, 25%, 50%, 75%,

and 100% of the amino acids of a particular property are located,

respectively.

The CTD descriptors can be calculated as follows: Firstly, the

sequence of amino acids for a protein sample is transformed into

sequences of certain structural or physiochemical properties of

residues. In this work, seven feature properties are used to describe

the physiochemical characteristics of each amino acid, which have

been used routinely for the prediction of protein-related problems.

The ranges of these numerical values and the amino acids

belonging to each group are shown in Table S2. Twenty amino

acids are thus divided into three groups representing the main

clusters of the amino acid indices [72]. For each attribute, every

amino acid is replaced by the index ‘1’, ‘2’, or ‘3’ according to one

of three groups to which it belongs. Take MTEITAAMVKEL-

RESTGAGA for an example; according to hydrophobicity, its

amino acid sequence is encoded as: 32132223311311222222. A

schematic diagram indicating the construction process of three

descriptors is shown in Figure S7. There are five ‘1’, ten ‘2’ and

five ‘3’ in this protein sequence. The composition for three

symbols is n16100.00/(n1+n2+n3) = 25.00, n26100.00/

(n1+n2+n3) = 50.00 and n36100.00/(n1+n2+n3) = 25.00, re-

spectively. There are 2 transitions from ‘1’ to ‘2’ or from ‘2’ to ‘1’

in this sequence, and the percent frequency of these transitions is

(2/19)6100.00 = 10.53. The transitions from ‘1’ to ‘3’ or from ‘3’

to ‘1’ in this sequence can similarly be calculated as (4/19)

6100.00 = 21.05. The transitions from ‘2’ to ‘3’ or from ‘3’ to ‘2’

in this sequence can also similarly be calculated as (3/19)

6100.00 = 15.79. For distribution D, for example, there are 10

residues encoded as ‘‘2’’, the positions for the first residue ‘2’, the

2th residue ‘2’ (25%610 = 2), the 5th ‘2’ residue (50%610 = 5),

the 7th ‘2’ (75%610 = 7) and the 10th residue ‘2’ (100%610) in

the encoded sequence are 2, 5, 15, 17,20 respectively, so the D

descriptors for ‘2’ are: 10.0 (2/206100), 25.0 (5/206100), 75.0

(15/206100), 85.0 (17/206100), 100.0 (20/206100), respectively.

Likewise, the D descriptor for ‘1’ and ‘3’ is (15.0, 15.0, 50.0, 55.0,

70.0) and (5.0, 5.0, 20.0, 40.0, 60.0), respectively. Overall, the

CTD descriptors for this sequence are C = (25.0, 50.0, 25.0), T =

(10.53, 21.05, 15.79), and D = (15.0, 15.0, 50.0, 55.0, 70.0, 10.0,

25.0, 75.0, 85.0, 100.0, 5.0, 5.0, 20.0, 40.0, 60.0). Thus, for each

given structural or physiochemical property of residues, we can

obtain 3+3+15 = 21 protein descriptors. Descriptors for other

properties can be computed by a similar procedure, and a total of

147 descriptors are calculated to form the feature vector. Finally, a

total set of 167 protein descriptors were obtained.

Supporting Information

File S1 The reference set used for constructing RF
models and the validation sets used for validating RF
models. A: the reference set; B: drugs in the reference set; C:

targets in the reference set; D: validation set 1 from DrugBank; E:

validation set 2 from KEGG; F: validation set 3 from ChEMBL; G:

validation set 4 from AffinDB; H: validation set 5; I: validation 6; J:

11907 predicted drug-target interactions at a RF threshold of 0.95;

K: 775 new drug-target interactions at a RF threshold of 0.99.

(XLS)

Figure S1 The plot of OOB error rate versus two tuned
parameters in the RF model: ntree and mtry, respec-
tively. (A) 1200 classification trees are grown to seek for a suitable

ntree value. About RF model of 600 trees can achieve a low OOB

error rate of convergence. (B) mtry values in the range from 5 to

100 with a step of 5 are screened to find a low OOB error rate. For

each mtry value, we run the RF model five times to obtain a stable

OOB error rate. We finally select mtry = 90 to construct our RF

model.

(TIF)

Figure S2 Probability density of prediction probability
for different Ki thresholds.

(TIF)

Figure S3 Performance comparison when different
protein properties are omitted. Number 1 corresponds to

the auROC value for the full feature set. Number 2–8 corresponds

to the auROC value when hydrophobicity, normalized van der

Waals volume, polarity, polarizability, charge, secondary struc-

ture, solvent accessibility and amino acid composition are omitted,

respectively.

(TIF)

Figure S4 Receiver operator characteristics curve on 5-
fold cross validation data using integrated features,
drug features and protein features, respectively.

(TIF)

Figure S5 Drug-target interaction network using both
predicted drug-target pairs and those in the training set.
Drugs and targets are presented by red circle and blue triangle,

respectively. Drug-target interactions are represented by the edges

connecting related drugs and targets.

(TIF)

Figure S6 Receiver operator characteristics curve on 5-
fold cross validation data using four modeling algo-
rithms. For SVM, the parameters gamma and cost are tuned

over an exponential range. For BPN, principal component analysis

(PCA) is first used for extracting the first few principal components

(PCs) that explain variations of 95%, and then standard three-

layer BPN algorithm is performed in these PCs as input. The

number of hidden nodes is scanned from 2 to 10. For k-NN, the

size of k is scanned from 1 to 9 with step of 2.

(TIF)

Figure S7 Sequence of a hypothetic protein indicating
the construction of composition, transition and distri-
bution descriptors of a protein. Sequence index indicates the

position of an amino acid in the sequence. The index for each type

of amino acids in the sequence (‘1’ ‘2’ or ‘3’) indicates the position

of the first, second, third, ... of that type of amino acid. 1/2

transition indicates the position of ‘12’ or ‘21’ pairs in the sequence

(1/3 and 2/3 are defined in the same way).

(TIF)
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Table S1 The number of drugs, targets and interactions
in the training set and independent validation sets.

(DOC)

Table S2 Amino acid attributes and the division of the
amino acids into three groups for each attribute.

(DOC)
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