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Abstract

Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years.
Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component
Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers
comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both
performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA,
A2DPCA, (2D)2PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased
comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For
comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET
evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and
anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for
each of the algorithms under consideration.
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Introduction

Due to growing requirements of non-invasive recognition

systems, Face Recognition has recently become a very popular

area of research. A variety of algorithms for face recognition have

been proposed and a few evaluation methodologies have also been

used to evaluate these algorithms. However, current systems still

need to be improved to be practically implementable in real life

problems.

A recent comprehensive study [1], categorizes and lists the

popular face recognition algorithms and databases. This study has

categorized face recognition algorithms into five categories namely

linear and non-linear projection methods, neural network based

methods (another non-linear solution), Gabor filter and wavelets

based methods, fractal based methods and lastly thermal and

hyperspectral methods. However [2], in their study grouped the

approaches of face recognition into two broad categories, namely

appearance based and feature based. Although many feature

based algorithms have been proposed [3–6] etc, they have

limitations due to their heavy dependency on feature detection

methods, which are mostly prone to error. Moreover, due to

inherent variability of facial structure, the feature metrics are not

reliable under varying expressions and temporal changes.

Appearance based face recognition algorithms, on the other hand,

despite being dependent on primitive pixel values are still

considered to be a better choice [2]. Among the appearance

based methods, the so called subspace methods which rely on the

dimensionality reduction of face space while preserving the most

relevant information are the most famous.

Another recent and robust face recognition algorithm [7] based

on sparse representation of facial data has achieved great fame due

to better performance. In this algorithm however learning stage is

virtually non-existent and all the training data is used directly in

the classification stage. In the classification stage, an objective

function is minimized using the test image and all the training data

and classification is based on the solution vector of this

optimization problem. Therefore using this algorithm, precise

choice of feature space is no more a critical matter, which is the

focal point of our study. The sparse approach for face recognition

is obviously computationally intensive at the classification stage

especially for large scale systems. Therefore sparse approach does

not come under the scope of our study where the feature

extraction approaches and choice of distance metrics are focused,

emphasizing on computational efficiency especially in the classi-

fication stage.

A large variety of subspace face recognition algorithms have

been proposed in different studies including some recently

proposed methods. An interesting observation about these studies

is that each proposed method claims to give the best recognition

rates. However, since every study use their own datasets and

implementation parameters specifically designed to highlight their

own performance, individual performance analysis are misleading.

Therefore it is of great significance that an unbiased comparative

analysis of these algorithms under equal and testing working

conditions is done. The evaluation methodology is therefore very
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important and it should be designed to simulate the real world

problems. It is very difficult to find such comprehensive evaluation

methodologies in the literature, the only exemplary evaluation

method being that of the FERET evaluations run by National

Institute of Standards and Technology (NIST) [8].

A comparative analysis should be fair not only in terms of the

databases and testing methodology but also in terms of operating

conditions such as trying a complete group of classifiers for all

candidate subspace methods. Trying different classifiers/distance

metrics may actually bring out the strengths of a subspace

projection algorithm, which may not be visible on a single metric.

However, very few studies been directed towards comparative

analysis of subspace based algorithms and even fewer studied the

effect of different distance metrics on the algorithms for their

comparison.

One of the early studies [9] used FERET [10] database with

425 gallery and training images of their own choice. The study

[11] also used FERET database, but the system was trained on

675 images belonging to 225 classes and tested on 640 images

belonging to 160 classes. Another study [12] did follow the

FERET evaluation methodology, but just compared two algo-

rithms PCA [13] and ICA [14] and three distance metrics not

including Mahalanobis based distance metrics. The study [15]

compared different hybrid approaches and used FERET database

with their own selection of 762 images belonging to 254 classes for

training and 254 images for testing purposes. Another study [16],

which represents a face image as a spatial arrangement of image

patches and derives optimal Voltera Kernels compared the

performance of their proposed method with traditional and state

of the art algorithms on three databases. Recently, an improved

version of the said method was also introduced which employs a

modern stochastic optimization algorithm [17]. A comparatively

larger and latest study [18], compared three algorithms PCA, ICA

and LDA [19] on the FERET database. They adopted the

FERET recommendations by using the recommended test and

gallery sets but they used their own training set of 675 images

belonging to 225 classes.

This study was motivated due to the lack of comprehensive

comparative study of many subspace methods with many distance

metric combinations. Comparative studies found in the literature

are limited in their scope in terms of the testing methodology and

the number of test vectors and test parameters being used in the

analysis. This study, unlike earlier studies, compares different

algorithms based on theoretical aspects, such as resultant data

structure sizes and algorithm complexity, as well as recognition

rates on different facial databases. Three different databases have

been used, namely FERET, YALE [19] and ORL [20]. Due to

obvious reasons, the evaluation criteria chosen is the same as of

FERET evaluation tests and almost similar to that for YALE and

ORL. The evaluation methodology also ensures that every

candidate subspace algorithm is operated at its optimal perfor-

mance by using various distance metrics against each algorithm

and choosing the best one.

Six subspace projection methods have been included in the

comparison, which are evaluated using four distance metrics.

These methods include, 1DPCA [13], 2DPCA [21], A2DPCA and

(2D)2PCA [22], LPP [23] and 2DLPP [24]. Selection of these six

algorithms is due to their efficiency and the property of being

scalable to large databases. ICA has not been included in the study

because it has already been thoroughly investigated in other

comparative studies. LDA has also not been included because it

needs class information during training and does not suit

generalized evaluation methodology adopted here. The evaluation

of 2DPCA and LPP is interesting due to the fact that the original

studies did not use FERET database and hence missed an

important facial database to present their results. The results of

2DLPP were also shown on limited test vectors using subsets of

FERET database or using different training or testing sets than the

ones specified by FERET evaluations.

The rest of the paper is organized as follows: Section 2 describes

the subspace algorithms under consideration, Section 3 explains

the evaluation methodology followed, Section 4 presents the

results and related discussion and section 5 concludes the whole

study and proposes future work to be done.

Subspace Algorithms to be Evaluated

Three basic steps of recognition system are training, projection,

and recognition. During the training phase, the basis vectors of the

subspace for each algorithm are calculated and saved. During

projection, these basis vectors are loaded and then all the database

images are projected onto these basis vectors, which convert them

to the lower dimensional subspace. These projected images are

saved as templates to be later used in distance calculation in the

recognition phase. The whole process is shown in figure 1.

Since all the algorithms used in this study are well known, they

will be described briefly for the sake of completeness. These

algorithms are referred to as subspace methods because they

project the images to lower dimensional space to perform

recognition task which is not computationally feasible to be done

in high dimensional space. These algorithms retain maximum

possible discriminative information while converting the images to

Figure 1. Face Recognition Process.
doi:10.1371/journal.pone.0056510.g001
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lower dimensional space. Their property of retaining maximum

discriminative information is what prioritizes them over each

other.

Table 1 summarizes the basic implementation parameters for all

the algorithms discussed in this study, listing the matrix dimensions

and the time/computational and space complexity. Therefore this

table is used as a reference for the purpose of comparison based on

memory and computational requirements besides the recognition

rates mentioned in results section. The algorithm complexity

section of the table has been extended from [24]. The size of

images is mxn (m is the number of rows and n is the number of

columns of an image), N is the number of training images and M is

the number of images projected on the projection matrix resulting

from training. Number of retained basis vectors is d (d1 and d2 in

case of 2D2PCA algorithm) which determines the number of

dimensions preserved. A summarized description of the six

subspace projection algorithms is given in the following subsec-

tions.

1. Eigenfaces (PCA/1DPCA)
Principal Component Analysis (PCA) [13] relies on a set of basis

vectors which correspond to maximum variance direction of the

image data. As suggested by the study, the calculation of

covariance matrix is reduced by calculating the ATA matrix as

the covariance matrix rather than AAT as in equation 1, where A is

the matrix containing all the image vectors. This reduction is

compensated by later multiplying the images A with Eigen vectors

of the ATA matrix as in equation 2. This finally results into

Eigenfaces, which are the basis vectors and serve as the projection

matrix. This training process of PCA is shown in Figure 2, where

both options of direct covariance and indirect covariance methods

are shown. These basis vectors are normalized before further use

and the reason is discussed in section 3.2.3. A specific number of

vectors are retained corresponding to the same number of highest

Eigen values of the covariance matrix. The images are then

projected onto these retained basis vectors to find a set of weights

(templates) describing the contribution of each basis vector in

image reconstruction.

Suppose there are N images of size mxn, reshaping each image to

a vector will result into a matrix A of size mnxN containing all

images in the form of vectors of length mn. The image covariance

matrix G of the size NxN is calculated as shown in equation 1.

G ~ Ak { A
� �T

Ak { A
� �

ð1Þ

Where Ak is the k’th image in vector form from matrix A and A is

the average image. Solving Eigen values of G will result into NxN

Eigen vectors. Multiplying the images with these Eigen vectors will

result in the basis vectors B, which is represented by equation 2.

B~A|eigenvectors of G ð2Þ

These mn dimensional basis vectors B are then normalized.

Corresponding to the d largest Eigen values calculated above, d

vectors out of N vectors of B are chosen. These chosen vectors, also

called Eigen faces, form the projection matrix P which is of size

mnxd.

In the projection phase the desired M number of images vectors

E are projected onto this projection matrix to get the templates

which are of the of size dxM as shown in equation 3

Templates ~ P
T | E ð3Þ

Table 1. Matrix Dimensions, Time/Computational Complexity and Space Complexity for Subspace Algorithms.

Matrix Dimensions/Size Algorithm Complexity

Algorithm
Training
Images

Covariance
Matrix

Projection
Matrix

Projected
Images/Templates

Training
Time

Testing
Time

Memory
Space

PCA mn x N NxN mn x d d x M O(m2n2d) O(MNd) O(m2n2)

2DPCA m x n x N n x n n x d m x d x M O(n2d) O(mMNd) O(n2)

A2DPCA m x n x N m x m m x d n x d x M O(m2d) O(nMNd) O(m2)

2D2PCA m x n x N n x n & m x m n x d1& m x d2 d2 x d1 x M O(n2d1+ m2d2) O(d2MNd1) O(m2+ n2)

LPP mn x N NxN (at PCA step) mn x dLPP dLPP x M O(m2n2d + mnN2) O(MNd) O(m2n2)

2DLPP m x n x N N/A n x d m x d x M O(n2d + mnN2) O(mMNd) O(n2)

doi:10.1371/journal.pone.0056510.t001

Figure 2. PCA Training Process.
doi:10.1371/journal.pone.0056510.g002

Analysis of Facial Recognition Algorithms

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56510



2. Two Dimensional PCA & Alternative Two Dimensional
PCA (2DPCA & A2DPCA)

In 2-D PCA [21] and Alternative 2-D PCA [22], image

covariance matrix is calculated directly using the 2D images. As

evident from table 1, size of covariance matrix for 2DPCA is

smaller than the one for PCA. Though 2DPCA is computationally

better than PCA in training phase, it requires more storage space

for the templates and more computations in the recognition phase

as compared to PCA. Since 2DPCA works along the row direction

of images, it preserves the variation between rows of an image

taken as feature vectors. In A2DPCA however, the variation

between columns of an image taken as feature vectors are

preserved.

Suppose there are N images of size mxn. The image covariance

Matrix G of size nxn is calculated using equation 4,

G ~
1

N

XN

k~1

Ak { A
� �T

Ak { A
� �

ð4Þ

Where Ak is the k’th image and A is the average image. The next

step is solving for d Eigen vectors of G corresponding to the largest

d Eigen values. These chosen d Eigen vectors compose the

projection matrix P of size nxd. During projection, the images are

projected one by one on this projection matrix. If there are a total

of M images to be projected, the resulting templates will be of size

m x d x M.

In case of A2DPCA, it works in column direction of images;

therefore the difference is in calculating the image covariance

matrix G, now with size mxm as shown in equation 5.

G ~
1

N

XN

k~1

Ak { A
� �

Ak { A
� �T ð5Þ

Therefore for A2DPCA, the projection matrix P will be of size

mxd and the resulting templates will be of size n x d x M.

3. 2-Directional 2-Dimensional PCA ((2D)2PCA)
As discussed above, 2DPCA and A2DPCA preserve the

variance between rows and between columns of the image

respectively. The disadvantage of 2DPCA and A2DPCA is that

they have a relatively bigger template size as compared to that of

PCA which is evident from table 1. Template size is an important

factor in characterizing the storage and computational require-

ments at the recognition stage. (2D)2PCA [22] possesses a

comparatively reduced template size. In (2D)2PCA, the images

are projected simultaneously on both row based and column based

optimal matrices.

Suppose there are N images of size mxn. For (2D)2PCA

algorithm, two covariance matrices are needed to be calculated

using equation 4 and 5. One is G1 of size nxn and the other is G2 of

size mxm. Solving for d1 Eigen vectors of G1 and d2 Eigen vectors of

G2 corresponding to the d1 and d2 largest Eigen values respectively,

two projection Matrices P1 of size nxd1 and P2 of size mxd2 are

achieved.

In the projection phase the two dimensional images Ek are

simultaneously multiplied with both projection matrices to

transform them into the new lower dimensional space as shown

in equation 6. The projected size is d2 x d1 x M, where M is the

number of images to be projected.

Figure 3. Basic Modules of Evaluation Methodology.
doi:10.1371/journal.pone.0056510.g003

Table 2. Testing Variables.

Databases FERET ORL YALE

Probe Sets fafb fafc dup1 dup2 probe probe

Algorithms PCA 2DPCA A2DPCA (2D)2PCA LPP 2DLPP

Distance Metrics Euclidean Cosine Mahalanobis Mahalanobis Cosine

doi:10.1371/journal.pone.0056510.t002
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Templates ~ P
T
2 | Ek | P1 ð6Þ

4. Laplacianfaces (LPP)
Laplacianfaces (LPP) algorithm [23] is a subspace algorithm

that applies dimensionality reduction while preserving the locality

information of feature space. In LPP, each input face is first

projected to PCA subspace and stored as a single vector in the data

matrix A, which acts as an input to LPP. An adjacency matrix S of

a fully connected graph is computed, where each node represents

an image Ak in the face-space. Weights are assigned to the edges in

the connected graph on the basis of a fixed neighborhood of K

samples. The weight of an edge is determined by the measure of

closeness of nodes.

Sij~e{
Ai {Aj

�� ��2

t ð7Þ

In equation 7, Sij represents the weight of the edge connecting

node Ai and Aj in the adjacency graph S. The parameter t in the

above equation controls the spread of the neighborhood and that

encompasses K nearest neighbors. In this study the parameter t is

computed using equation 8.

t~
1

N

XN

i~0

Dist(K ,Ai)

" #2

ð8Þ

Where, N is the number of training set images, Dist is the distance

matrix in which each column contains sorted distances of an image

with all images. The matrix A contains all input images projected

into PCA subspace as vectors; Ai represents a particular image in

the matrix A on the index i. A diagonal matrix, D is computed by

adding all elements in a row of the matrix S, and placing the sum

in the diagonal elements. Laplacian Matrix L is calculated by

subtracting adjacency matrix S from diagonal matrix D. An

optimized embedding is then computed by solving the generalized

Eigen problem given in equation 9 that yields the Eigen values l
and Eigen vectors w. These Eigen vectors are used as subspace

basis vectors, referred to as PLPP in equation 10.

ALAT w~lADAT w ð9Þ

These d vectors are chosen corresponding to the d smallest Eigen

values, referred as dLPP. The complete projection matrix P is

shown in equation 10, wherePPCAare the subspace basis vectors of

PCA subspace.

P~PPCA � PLPP ð10Þ

In the projection phase, using equation 3, the desired M number

of images E are projected to get the templates in the Laplacian

subspace which are of the size dLPP x M.

5. Two Dimensional Laplacianfaces (2DLPP)
Two Dimensional Laplacianfaces (2DLPP) [24] is a recently

proposed method for face recognition. In 2DLPP the 2D images

Table 3. Databases, training and test set details.

Evaluation Against Probe Set Names No. of Gallery Images No. of Images in Probe Set

FERET Database

Expression Fafb 1196 1195

Illumination fafc 1196 194

Aging dup 1 1196 722

Aging dup2 1196 234

No. of images in the training set 501

No. of Subjects 1196

No. of images per subject 1 to 25

No. of total images 3368

ORL Database

General Evaluation probe 40 200

No. of images in the training set 200

No. of Subjects 40

No. of images per subject 10

No. of total images 400

YALE Database

General Evaluation probe 15 75

No. of images in the training set 90

No. of Subjects 15

No. of images per subject 11

No. of total images 165

doi:10.1371/journal.pone.0056510.t003
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are used directly without converting into vectors first. The

adjacency matrix S, neighborhood spread t, diagonal matrix D &

Laplacian matrix L are calculated as in LPP method. For computing

the optimized embedding, the generalized Eigen problem of

equation 11 is solved which is different from the one used in LPP

method. The reasoning for such change is given in [24].

Table 5. Average Recognition Rate over 50 ranks for YALE database and ORL database.

YALE Database % of basis vectors ORL Database % of basis vectors

Algorithm Classifier 5 10 25 50 75 Algorithm Classifier 5 10 25 50 75

PCA Cos 0.62 0.70 0.73 0.74 0.74 PCA Cos 0.65 0.68 0.70 0.68 0.67

Euc 0.59 0.68 0.73 0.72 0.72 Euc 0.68 0.70 0.71 0.70 0.69

Maha 0.56 0.69 0.69 0.65 0.55 Maha 0.67 0.69 0.65 0.46 0.35

MahCos 0.61 0.73 0.73 0.72 0.62 MahCos 0.66 0.67 0.64 0.49 0.39

2DPCA Cos 0.68 0.66 0.61 0.59 0.57 2DPCA Cos 0.61 0.60 0.54 0.47 0.42

Euc 0.76 0.76 0.75 0.74 0.74 Euc 0.76 0.76 0.75 0.71 0.68

Maha 0.74 0.73 0.64 0.62 0.59 Maha 0.72 0.70 0.55 0.31 0.20

MahCos 0.74 0.73 0.66 0.63 0.61 MahCos 0.70 0.68 0.53 0.38 0.32

A2DPCA Cos 0.72 0.71 0.61 0.60 0.57 A2DPCA Cos 0.65 0.69 0.60 0.52 0.48

Euc 0.77 0.77 0.74 0.73 0.72 Euc 0.73 0.76 0.74 0.71 0.69

Maha 0.76 0.73 0.60 0.53 0.45 Maha 0.73 0.75 0.61 0.32 0.18

MahCos 0.75 0.73 0.61 0.53 0.43 MahCos 0.73 0.75 0.61 0.46 0.34

(2D)2PCA Cos 0.68 0.67 0.61 0.59 0.57 (2D)2PCA Cos 0.55 0.59 0.54 0.46 0.42

Euc 0.77 0.77 0.75 0.75 0.74 Euc 0.74 0.75 0.75 0.71 0.68

Maha 0.77 0.70 0.51 0.53 0.49 Maha 0.71 0.69 0.42 0.13 0.08

MahCos 0.78 0.71 0.55 0.56 0.54 MahCos 0.71 0.70 0.54 0.35 0.29

LPP Cos 0.40 0.42 0.46 0.47 0.48 LPP Cos 0.23 0.26 0.28 0.25 0.29

Euc 0.25 0.45 0.54 0.44 0.45 Euc 0.17 0.18 0.30 0.26 0.28

Maha 0.08 0.09 0.10 0.10 0.11 Maha 0.05 0.05 0.07 0.08 0.10

MahCos 0.09 0.12 0.13 0.12 0.14 MahCos 0.05 0.06 0.08 0.08 0.14

2DLPP Cos 0.36 0.40 0.47 0.48 0.48 2DLPP Cos 0.21 0.22 0.21 0.24 0.25

Euc 0.49 0.48 0.53 0.54 0.53 Euc 0.17 0.20 0.18 0.16 0.17

Maha 0.70 0.69 0.69 0.68 0.68 Maha 0.58 0.54 0.56 0.64 0.67

MahCos 0.72 0.73 0.75 0.74 0.72 MahCos 0.58 0.63 0.67 0.67 0.67

doi:10.1371/journal.pone.0056510.t005

Figure 4. Average recognition rates of PCA based algorithms against distance metrics for FERET.
doi:10.1371/journal.pone.0056510.g004
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AT LAw~lAT DAw ð11Þ

The d selected Eigen vectors corresponding to the smallest d

Eigen values constitute the projection matrix P. An image in the

face-space can thus be projected onto the 2DLPP subspace.

Evaluation Methodology

The evaluation methodology followed in this study is explained

by addressing the training and projection method and the testing

variables used in the evaluation. A MATLAB based evaluation

platform that is constructed as a result of this study is also

described.

1. Basic Modules of Evaluation System
Four basic modules of the evaluation methodology include

Training, Projection, Distance Calculation and Result Calculation

as shown in figure 3. To ensure a uniform evaluation for all

methods, the images used for training and testing are predeter-

mined and stored in the form of image lists. For example the

image list ‘‘all_feret’’ contains the names of all the images for the

FERET database. ‘‘train_feret’’ is the image list containing

training images from FERET database. Similarly four probe

image lists for FERET and one each for YALE and ORL contain

the names of images to be used for testing the system. The

‘‘gallery’’ list contains the names of the images against which the

probe set images are to be compared. Given a query face image,

the probe, the system has to find most similar out of the known

faces in the gallery, while the system has been trained on the

training set that is a small subset of the database.

For FERET, the training, gallery and probe sets are already

defined by FERET evaluation tests [8]. Similar arrangements are

done for image lists for YALE and ORL. More details regarding

the structure of database and image sets have been given in

Section 3.2.1.

Prior to training, FERET and Yale images have been pre-

processed by first alignment using eye coordinates to compensate

head tilt, then illumination adjustment using histogram equaliza-

tion, then cropping using an elliptic mask so that only face is

visible, and finally resizing to 1506130 pixels. ORL isn’t processed

because it has minimal background variation and limited head tilt.

In case of FERET the eye coordinate file is supplied along with the

database. For YALE database, eye coordinates are manually

selected and a similar eye-coordinates file is maintained.

During the training phase, the projection matrix is trained using

the images from the training image list of a particular database by

the projection algorithm to be evaluated. The size of the projection

matrix is determined by the retained percentage of basis vectors.

In the projection phase, the images listed in the ‘‘all’’ image list

of the specific database are projected onto the face subspace using

the projection matrix and saved as the output of this phase. The

training and projection operation along with the rest of operations

is shown in figure 3.

In distance calculation phase, the distances between a projected

probe image and all other projected images in the gallery are

calculated and written in a file named after the name of the

projected image. The same is repeated for every projected image

against the distance metric of our choice. These distance files are

later used in the result calculation phase.

In the result calculation phase, the gallery and probe image lists

are read and the distance file for each probe image is loaded to

check if the closest match is among the images named in gallery

list. Here the match scores are calculated against each Rank. Rank

1 means the first match and Rank 50 means 50th match. The

results are calculated for all the probe sets and saved.

2. Testing Variables
Table 2 summarizes all the testing variables used in the

evaluation process.

2.1. Databases. Three databases are selected for our

comparative study, namely FERET, YALE and ORL. The

description and reasons for choosing these databases is given in

the following paragraphs.

FERET database has been extensively used by FERET

evaluation tests, face recognition vendor tests (FRVT) and by

many researchers for different research algorithms as well as

commercial face recognition systems [8]. FERET has been chosen

to test the performance of the algorithm combinations under

conditions where there is a variation in facial expressions, lighting

conditions and temporal changes. The experiments here use the

standard image subsets as in FERET evaluation test. These image

subsets include an image set for training which consists of 501

images of randomly selected 428 subjects and the images per

subject range from minimum 1 to maximum 3. A gallery set of

1196 images and four probe sets namely fafb, fafc, dup1 & dup2

totaling 2345 images are used. The gallery set consists of one

image for each of the 1196 subjects with neutral expression. The

probe sets are used to assess the performance of the algorithm

against several conditions. For evaluation against change in

expression, the probe set ‘‘fafb’’ is used. Similarly for evaluation

against different illumination conditions, the probe set ‘‘fafc’’ is

used. For evaluation against temporal/aging changes the dup1

and dup2 probe sets are used. It is necessary to mention that

among the total 3368 frontal images used in this study, there are

subjects having images with and without glasses. The details of

number of images per set are shown in table 3.

The ORL database [20] is one of the famous older databases.

The reason why it is chosen is because it has been used by the

authors of the algorithms under discussion in our study. There are

10 different images for each of 40 distinct subjects hence totaling

to 400. For some of the subjects, the images were taken at different

times and slight variations in illumination, facial expression, facial

detail, head tilt, pose angle and scale of face area in an image are

present. All the images were taken with constant dark background

and most of them are frontal. The training set is chosen to be the

first five images for every subject which becomes 200 images in

total. One frontal image with neutral expression is manually

selected for each of the 40 subjects to be included in the gallery set.

Only one probe set is used which consists of the last 5 images for

every subject which totals to 200 images. This training and probe

set combination has already been used by 2DPCA and (2D)2PCA

authors. The database and its relevant details are summarized in

table 3.

The YALE database [19] consists of 165 images belonging to 15

subjects thus having 11 images per subject. Images belonging to

this database possess 3 variations in lighting condition, 6 variations

in facial expression, with glasses and without glasses. This makes

one image per variation for each subject. Our experiments on this

database use the same testing criteria as that of [23]. Training set is

constructed by randomly picking six images per subject so that all

11 variations get the chance of being part of training set, therefore

90 images in total are used for training. The rest of the database is

considered to be the only probe set having a total of 75 images.

The gallery comprises of one image with normal facial expression

for each subject i.e. 15 images. The specifics of image sets are

given in table 3.
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2.2. Distance Metrics. Four distance metrics are chosen

including Euclidean (L2) and Cosine for the image space and their

counter parts in Mahalanobis space, Mahalanobis (L2) &

Mahalanobis Cosine. These metrics are referred throughout the

study as Euc, Cos, Maha and MahCos, respectively. The

Mahalanobis space based distance metrics are applied by

transforming the templates from image space to Mahalanobis

space. For each vector pair u and v in image space the transformed

vector pair m and n in Mahalanobis space is given as in equation

12

mi ~
ui

si

& ni ~
vi

si

ð12Þ

Here si is the standard deviation of the ith dimension. Calculation

of this standard deviation/spread is discussed in section 3.2.3.

For the sake of completeness, mathematical description of each

distance metric is given below.

Euclidean/(L2)/(Euc): The Euclidean/L2 distance between two

vectors u, v in image space is calculated as in equation 13.

DEUC u,vð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

( ui { vi )2

vuut ð13Þ

Cosine/(Cos): The Cosine distance between two vectors u, v in

image space is calculated as in equation 14

SCOS u,vð Þ~{
u:v

DuDDvD
~{

PN
i~1

( ui vi )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

( ui )2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

( vi )2

s ð14Þ

Higher similarity means higher score in this case; therefore the

actual distance is calculated by subtracting the above calculated

value from 1 as in equation 15.

DCOS u,vð Þ~1{ SCOS u,vð Þ ð15Þ

Mahalanobis/(L2)/(Maha): It is equivalent to Euclidean com-

puted in Mahalanobis space. The Mahalanobis/(L2) distance

between two vectors u, v in image space is calculated by equation

16.

DMahL2 u,vð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

( mi { ni )2

vuut ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

(
ui

si

{
vi

si

)
2

vuut ð16Þ

Mahalanobis Cosine/(MahCos): It is equivalent to Cosine

computed in Mahalanobis space. The Mahalanobis Cosine

distance between two vectors u, v in image space is calculated as

in equation 17.

SMahCos u,vð Þ~{
m:n

mj j nj j~{

PN
i~1

( mi ni )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

( mi )2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

( ni )2

s

~{

PN
i~1

(
ui

si

vi

si

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(
ui

si

)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(
vi

si

)
2

s
ð17Þ

Similar to Mahalanobis, the actual distance is calculated by

subtracting the above calculated value from 1 as in equation 18.

DMahCos u,vð Þ~1{ SMahCos u,vð Þ ð18Þ

2.3. Computing the data spread for Mahalanobis space

transformation. As discussed in section 3.2.2, it is important to

compute the standard deviation/spread to be used in calculating

Mahalanobis space based distance metrics. The variance of the

face data along its principal component directions is determined

by the Eigen values of the image covariance matrix along all the

dimensions. Therefore the spread in a specific dimension will be

the square root of the Eigen value corresponding to that

dimension. For PCA based algorithms, the Eigen values of the

initial covariance matrix can be used as the spread at later stage to

calculate Mahalanobis based distance metrics but for Laplacian-

faces the Eigen values of initial covariance doesn’t represent the

actual spread of Laplacian projected images. Therefore the Eigen

values of the covariance matrix (of projected images) have to be

calculated, to finally get to the spread.

It has been confirmed that the Eigen values of the initial

covariance matrix and the Eigen values of the covariance matrix of

projected images are same. An exception exists for 1D PCA, if the

vectors of projection matrix/basis vectors are not normalized then

the spread of projected images is square of the spread of training

images. Therefore basis vectors in 1D PCA are normalized before

further usage.

For the sake of similarity and generalization in the platform

code, in case of 2D algorithms, the projected images are reshaped

into vectors first. It is confirmed that it yields the same result either

two dimensional projected images are used directly or if they are

reshaped into vectors first.

3. Platform
As a part of this study, a MATLAB based platform FaceR-

ecEval has also been implemented which serves the purpose of

evaluating and comparing different algorithms. This platform is

developed being inspired by the CSUFaceIdEval System [25]. The

authors have already extended the CSUFaceIdEval System and

have also ported the whole platform to the Windows operating

system [26]. This work was done in context to the studies [27–28].

FaceRecEval will serve as a very useful tool for the fellow

researchers who are more acquainted with MATLAB. Currently

version 1 of this platform is available for free download [29].

All the main functionalities described in section 3.1 including

training, projection, distance calculation and result calculation are

incorporated in form of modules. The result calculation module

calculates the results as described at start of this section. The

reason behind projecting all the images and calculating the

Analysis of Facial Recognition Algorithms
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distances between all projected images is to accommodate any

changes in gallery and probe image lists, because no rework prior

to this module will be needed.

Results and Discussions

For the sake of completion and to avoid confusion due to

diversity of testing parameters, the results and discussions have

been grouped based on recognition tasks, facial databases, distance

metrics, algorithms, memory and computational complexities and

comparison to previous work. Table 4 and 5 summarize the results

for FERET, YALE and ORL databases. The recognition rates

being displayed are the average of 50 ranks. The comparative

recognition rates for each rank may vary a little and can be

downloaded from [29], but the general trend remains the same,

therefore here average recognition rates are shown. Recognition

rates do vary for different percentage of retained basis vectors as it

is evident from results and also supported by [28].

1. Based on Recognition Tasks
1.1. Illumination Task. Starting with algorithm perfor-

mance against illumination variations, it can be noted from table 4

that the recognition rates are generally lower against FAFC probe

set. It is because the Eigen vectors corresponding to highest Eigen

values were not dropped for the sake of similarity and

generalization. For PCA based algorithms the top Eigen vectors

encode most of the illumination information. Removing few of

them, depending on the count of training images, might improve

results of some algorithms against this task.

Two dimensional PCA algorithms perform relatively better

when 25% of basis vectors are retained. LPP along with simple

Cosine and Euclidean distance metrics achieves good recognition

rates against this task but it is while retaining the highest

percentage of basis vectors. PCA along with Mahalanobis distance

variants generally perform the best for different percentages of

retained basis vectors against this task. The best performing

algorithms for this task are PCA-MahCos, with 50% retained basis

vectors, and A2DPCA-Cos, with 25% retained basis vectors.

1.2. Expression Task. The FAFB set is used to evaluate

performance of an algorithm against change in expression. This is

the easiest task with highest recognition rates as evident from

table 4. All PCA based algorithms with Euclidean distance metric

perform equally well and generally have the best recognition rates.

The best performers generally for this task are PCA-MahCos with

25% retained basis vectors and 2D2PCA-Euc with 25% retained

basis vectors. No direct conclusion can be made about the most

suitable algorithm for such tasks. But the algorithms that result

into the smallest template size, i.e. PCA-MahCos and 2D2PCA-

Euc may be the best choices.

1.3. Aging Task. Dup 1 and Dup 2 are the two sets provided

to test the performance of algorithms against temporal changes.

Dup 2 being the harder task has lower recognition rates as

compared to that of Dup 1. PCA based algorithms perform

generally better for both Dup 1 and Dup 2, as compared to LPP

based algorithms. The best performing algorithm is A2DPCA-

Cos, with 25% retained basis vectors, for both Dup 1 and Dup 2

sets.

1.4. Overall. PCA-MahCos and A2DPCA-Cos are generally

the best performers on the FERET database as they each achieve

the top recognition rates in three out of four of the face recognition

tasks. They perform well on YALE and ORL database too, but the

top recognition rates are achieved by 2DPCA-Euc on ORL and

2D2PCA-MahCos on YALE.

2. Based on Facial Databases
For FERET, the best algorithms that perform equally well on all

probe sets are PCA-MahCos and A2DPCA-Cos. For YALE, the

best performing algorithm is 2D2PCA-MahCos. PCA-MahCos

and A2DPCA-Cos along with 2DPCA-Euc are close too. ORL

images include slight pose variations and here the best performing

algorithm is 2DPCA-Euc. Other algorithms close in performance

are 2D2PCA-Euc and A2DPCA-Euc. The algorithms performing

the best on average over all databases are A2DPCA-Cos and

PCA-MahCos.

3. Based on Distance Metrics
Though variants of Mahalanobis distance metric did not work

well with 1D LPP on all three databases, yet they perform well

with all PCA based algorithms and 2D LPP for all face recognition

tasks on all databases. The need for experimenting with variants of

Mahalanobis distance metrics was pointed out in [18]. Euclidean

distance metric performs satisfactorily on average with all two

dimensional PCA based algorithms, followed by Cosine distance

metric, on all face recognition tasks over all databases. MahCos is

the best performing distance metric with PCA on average over all

face recognition tasks and databases, a result similar to that of [27]

and [28].

It is worth noting that the Euclidean distance metric works well

against the expression task which actually leads to the local

geometrical distortions in a facial image. On the other hand,

Cosine distance metric which is close to the correlation of image

vectors, works well against illumination changes which are non-

geometrical distortions. This general trend is evident from the

results in table 4 against the facial tasks fafc (illumination) and fafb

(expression). As the local geometrical distortion such as change in

expression effects only a small portion of a facial image, only a few

components of image vector show significant variations among

genuine candidates also. While the non-geometrical distortion

such as change in illumination affects the major portion of an

image, therefore maximum components of image vectors show a

consistent difference. The Euclidean distance handles larger

variations in fewer components better as compared to correlation

therefore it shows generally better results in expression tasks.

Cosine on the other hand is more suitable to handle illumination

variations which cause consistent change. Against the aging tasks

(dup1, dup2) the results show mixed trends as evident from table 4

due to the fact that such task incorporates both the local

geometrical and non-geometrical changes.

4. Based on Algorithms
It should be noted that there is quite a lot of variations in the

performance of different algorithms and thus in the performance

ranking for different type of datasets. 2D2PCA generally gives the

highest recognition rates on both YALE and ORL database as well

as for the expression test set on FERET. PCA recognition rates are

highest for FERET database. A2DPCA is on average the best

algorithm over all the three databases. The reason is, because this

algorithm works along the rows of images. All the images of the

three databases have more rows than columns, therefore this

algorithm had chance to retain more information as compared to

2DPCA which works along columns. For the same number of

retained basis vectors, A2DPCA consumes lesser testing time as

compared to 2DPCA, because length of rows is lesser than the

length of columns. To conclude, PCA based algorithms perform

the best overall on all the three databases, though 2DPCA based

algorithms give better recognition rates than PCA on average but

with bigger template sizes. Another thing worth noting from table 4

and 5 is that all the 2DPCA based algorithms give maximum
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recognition rate (shaded values) for almost the same percentage of

retained basis vectors. An important observation is that 2DLPP

outperforms 1DLPP for almost every face recognition task on all

the three databases.

5. Based on Memory and Computational Complexities
The sizes of covariance matrix, projection matrix, templates and

the time and memory complexity of each algorithm are

summarized in table 1. The dimensions m,n,N,M and d have been

already defined in section 2. From the matrix dimensions section

of the table, one can clearly understand the dimensions of the

output of training and projection phase. Based on these

dimensions, the algorithm complexity can easily be understood.

The training time complexity depends upon both the size of the

covariance matrices and the number of retained basis vectors.

Therefore for PCA it is O(m2n2d) and for 2DPCA it is O(n2d) due

to a smaller covariance matrix. The A2DPCA has O(m2d) because

it works along the columns and for 2D2PCA it is O(n2d1+ m2d2)

because it has to calculate two covariance matrices, one along rows

and other along columns. For LPP and 2DLPP an extra cost

O(mnN2) to construct the adjacency matrix S is bared.

The testing time is calculated by the number of tests to perform

and the time complexity for each test. This time also reflects the

computational complexity during recognition which is very critical

especially for identification systems. This turns out to be O(MN)

for the number of tests, and time complexity for each test is O(d)

for one dimensional algorithms and O(md) for two dimensional

algorithms. So PCA and LPP have the time complexity of

O(MNd), 2DPCA and 2DLPP have O(mMNd), A2DPCA has

O(nMNd) and 2D2PCA has O(d2MNd1).

The memory cost depends on the size of the covariance

matrices. Therefore for PCA and LPP it is O(m2n2), for 2DPCA

and 2DLPP it is O(n2) and for A2DPCA it is O(m2). The 2D2PCA

algorithm has a memory cost O(m2+ n2) due to the fact that it

calculates two Eigen equations.

To summarize the above discussion, it is obvious that PCA

variants are computationally efficient as compared to LPP

variants. In an identification system the training and projection

is usually done offline, while the distance calculation and

recognition is done online, mostly real time, which has critical

timing constraints. The above analysis shows that the training time

and memory space complexity for 1D PCA, which generally

demonstrates better recognition rates, is higher due to bigger

covariance matrix. However it is very efficient at matching stage

due to smaller template size and thus suitable for identification

systems. On the other hand A2DPCA is efficient during training

due to smaller covariance matrix but has a bigger template size

and needs more online processing time during recognition as

compared to PCA. 2D2PCA on average has a comparatively

smaller template size and it is also efficient during matching,

therefore it is the most efficient in both respects among the two

dimensional PCA algorithms.

6. Based on Comparison to Previous Work
For comparing the results of this study, similar studies which

have used one or more of the algorithm and distance metric

combinations are considered here. Variation of results as

compared to previous studies can be attributed to different pre-

processing technique and the standard testing methodology not

used by most of these studies. But as this study is an independent

comparative analysis, it serves the purpose.

Regarding FERET evaluation methodology tasks, we found

that the FAFB task is the easiest with highest recognition rates

which is consistent with [8] [18] and FAFC is comparatively the

hardest task with lowest recognition rates (on average) which is

consistent with [12]. But no concrete claim could be made about

either FAFC or DUP2 to be the hardest task based upon the

recognition rates against them.

PCA with variants of Mahalanobis based distance metrics is

experimented as more investigation was recommended by [18]

and they perform very well on all the three facial databases which

is consistent to [28] and [11]. 2DPCA-Euc is better than PCA-Euc

on both ORL and YALE databases and similar trends hold for

FERET too, which is consistent with [21]. But in this study,

2DPCA wasn’t compared with PCA using other distance metrics

and in our study it is found that PCA-MahCos does equate and

even surpass 2DPCA-Euc’s performance in some cases.

While using Euclidean as a distance metric, the recognition

rates of all the two dimensional PCA algorithms on all three

databases are pretty close to each other which is in agreement with

[22]. There is also a disagreement with [22], as it states that

2D2PCA-Euc always performs better than both PCA-Euc and

2DPCA-Euc for lower number of retained dimensions. Our study

shows that such claim holds valid against PCA-Euc only because

2DPCA-Euc is almost equal in performance over all the three

databases.

Regarding the 2DLPP algorithm, our results are not in

agreement with [24]. Though for some of the distance metrics,

the recognition rate of 2DLPP is comparable to that of 2DPCA,

but for the Euclidean distance metric, 2DLPP is clearly behind

2DPCA-Euc for all the three databases.

Conclusion and Future Directions

The aim of this study was to independently compare and

analyze the relative performance of famous subspace face

recognition algorithms against the same working conditions. As

mentioned in the testing methodology section, we have followed

the FERET evaluations methodology which closely simulates real

life scenarios. Six popular subspace face recognition algorithms

were tested accompanied with four popular distance metrics.

An important and novel contribution of this study is that it

introduced an unbiased comparative analysis of popular subspace

algorithms under equal and testing working conditions, such as

same pre-processing steps, same testing criteria, same testing and

training sets and also introduced the favorable performance

conditions for each of these algorithms. After thorough experi-

mentations it was shown that Algorithm 1D PCA performed best

with distance metric Mahalanobis-Cosine, and 2DPCA variants

and 1D LPP performed generally much better with simple

Euclidean and Cosine distance metrics. Similarly 2DLPP per-

formed much better with distance metrics Mahalanobis and

Mahalanobis-Cosine. In addition to this it was shown that Cosine

based distance metrics, MahCos and Cos, gave better results than

Euclidean based metrics. The algorithm-metric combination of

PCA-MahCos was clearly ahead in performance under difficult

conditions of illumination changes. As evident from figure 4,

generally for all tasks A2DPCA-Cos was found to be better than

other combinations especially against aging tasks.

A thorough computational complexity analysis was also

performed on the subject algorithms. It was shown that though

2D algorithms have lower complexity during training, they need

more computations during recognition which is critical for

identification systems. On the other hand 1D algorithms have

higher computational complexity during training but generally

require less computations during recognition stage.

It was also noted that the performance variations are very

significant for different databases. Any algorithm alone cannot be
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qualified as the best performing algorithm for all the variations of a

facial image. To extract the optimal performance on all facial

variations, it may be necessary to combine several subspace

techniques in a computationally economical unified classifier

which makes a good research topic for future.

A MATLAB based evaluation platform was also constructed in

result of this study which may serve as a useful tool for researchers

in this field.
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