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Abstract

We often need to learn how to move based on a single performance measure that reflects the overall success of our
movements. However, movements have many properties, such as their trajectories, speeds and timing of end-points, thus
the brain needs to decide which properties of movements should be improved; it needs to solve the credit assignment
problem. Currently, little is known about how humans solve credit assignment problems in the context of reinforcement
learning. Here we tested how human participants solve such problems during a trajectory-learning task. Without an
explicitly-defined target movement, participants made hand reaches and received monetary rewards as feedback on a trial-
by-trial basis. The curvature and direction of the attempted reach trajectories determined the monetary rewards received in
a manner that can be manipulated experimentally. Based on the history of action-reward pairs, participants quickly solved
the credit assignment problem and learned the implicit payoff function. A Bayesian credit-assignment model with built-in
forgetting accurately predicts their trial-by-trial learning.
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Introduction

When a golfer decides to swing, the movement decision involves

judging, among other things, the target distance, wind strength

and direction, and how to handle the chosen club. The error in the

resulting trajectory and the end position of the ball has many fewer

dimensions than the golfer’s swing decision. In fact, most

movement decisions we face have many choice dimensions that

determine the final outcome. Often the feedback we obtain

regarding the success of our decisions is low-dimension and may

not tell how well we did with regard to every choice dimension. In

such many-to-one mapping situations efficient learning should

involve discovering what properties of the movement contributed

to error and correcting them accordingly in order to achieve the

desired outcomes.

Learning what property of a decision has resulted in an error is

referred to as the credit assignment problem in the domains of machine

learning and neurobiology [1,2,3]. However, little is understood

about the behavioral strategies people use to solve the credit

assignment problem during movement decision-making [4]. For

efficient motor learning, it is necessary to discover the important

movement properties and optimizing them to maximize rewards.

This can be difficult due to the aforementioned many-to-one

mapping between movement properties and movement outcome.

More often than not, the results of movement decisions may not

speak directly to each individual movement property. When a

basketball player makes a jump shot, a short shot to the basket

might be caused by an early release of the ball, insufficient

acceleration of the wrist rotation, or lower-than-expected jump

height, or a combination of all these movement properties. The

challenge left to the player is to determine what properties of the

movement decision should be blamed for a failure.

The many-to-one mapping between movement properties and

movement outcome, traditionally referred to as the degrees of

freedom problem, has been extensively investigated in motor

control [5,6]. Previous studies put emphasis on how different

movement properties are coordinated and controlled to produce a

desired movement goal. However, few studies have been

conducted, from the perspective of reinforcement learning, on

the reverse yet mathematically equivalent problem [7] of how the

nervous system learns to differentially adjust different properties of

a movement based on limited reward information. This type of

credit assignment problem can be conveniently investigated in

goal-directed movement tasks such as throwing or shooting [8,9].

In these tasks a combination of movement properties can uniquely

determine a single performance score. This opens the window for

us to quantitatively vary reward functions and to examine whether

and how people assign credits to different movement properties

during movement reinforcement learning.

Here we investigate how people solve the credit assignment

problem while learning a motor skill with reinforcement.

Participants were asked to match their reaching movements to

invisible target trajectories that varied in both direction and

curvature. These two movement properties were differently

weighted to determine the monetary reward that was presented

at the end of each trial. Across two different groups of participants
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we varied the weighting of movement direction and curvature to

the rewards. By examining the differences in learning strategies

between groups we were able to investigate how participants learn

to assign credit to different movement properties. We find that

participants’ exploratory strategies are sensitive to the weighing of

reward functions, suggesting that they are able to solve the credit

assignment problem quickly with limited feedback. Furthermore

participants use reward information efficiently in trial-by-trial

exploration behaviors, in a manner consistent with a Bayes-like

strategy.

Methods

The Experiment
Experimental techniques were approved in accordance with

Northwestern University’s Policy statement on the use of humans

in experiments and with federal guidelines. Informed written

consent was obtained from sixteen right-handed, healthy partic-

ipants (five males; mean age of 28.14 years (SD = 5.07)).

Participants were seated in a chair facing a computer screen

(Fig. 1A). They were asked to draw trajectories with their

dominant hand using the stylus of a PHANToM Premium 1.0

haptic robot (SensAble Technologies, Inc., Woburn, MA).

Trajectories were made by sliding the tip of the robot’s stylus

along the surface of a desk. With the stylus, participants controlled

the position of a cursor on the computer screen. Each participant

attempted to match 50 different, invisible target trajectories that

varied randomly in both direction and curvature. For each target

trajectory participants made 25 successive attempts to approxi-

mate as closely as possible each desired target trajectory, resulting

in a total of 1250 movements for the experiment. All movements

started from the same position at the center of workspace, 10 cm

from the table edge in front of the subject. The reaches ended

when the cursor reached a displayed line 7 cm in front of (Y-

direction) from the starting position. A beep was played by

computer speakers to indicate the end of the trial. The shape (X

and Y coordinates) of the target trajectory was defined by

x~ayzb sin (py) ð1Þ

where the x-coordinates (x) of the target trajectory are determined

by two parameters, direction (a) and curvature (b). For each target

trajectory, these two parameters were chosen randomly within the

interval [21, 1] with a fixed incremental size of 0.1. As a result, all

target trajectories were confined in a quadrangular table-top space

of 21.7 cm in width and 7 cm in depth. Note the Phantom robot’s

measuring range is 25.4 cm wide and 12.7 cm deep. The stylus is

also light-weighted with small inertial. Thus, neither the partic-

ipants’ biomechanics, nor the mechanical constraints of the robot

are likely to limit the ability to accurately match the target

trajectories.

Each attempted trajectory resulted in a monetary score that

provided participants with information on how closely the hidden

target trajectory was matched. The score was shown on the top-left

corner of a computer screen after each trial. The score had a

maximum achievable amount of 50 cents. Participants were

informed that they would receive the highest monetary reward

they achieved from the 25 trajectory attempts for each target

trajectory. Received monetary amounts were summed for all 50

target trajectories making 25$ the maximum achievable partici-

pation stipend. To determine the score, the position of the cursor

was recorded at an approximate sampling frequency of 250 Hz.

The participants’ attempted trajectory was then fitted to eq.1 to

obtain the estimates of a and b. The magnitude of the monetary

reward was determined using the difference between the estimated

and the target a and b. These two errors were weighted differently

for different experimental conditions.

Participants were split into two groups with eight participants in

each group. One group learned target trajectories where the

rewards were computed using a reward function with a large

weight on the a parameter:

rewards~1{(Da|WzDb|w) ð2Þ

where Da and Db are the normalized, absolute error for direction

and curvature, respectively. They will usually take the values

between 0 and 1 if the actual direction and curvature are within

the range of target trajectories. W and w stand for large and small

weights for penalizing the direction and curvature error,

respectively. They were set at 0.8 and 0.2 in this condition. The

resulting rewards will then be multiplied by 50 cents as the actual

monetary reward shown at the end of each trial. The effect of this

differential weight is that that errors in the direction of attempted

trajectories lead to larger reductions in obtained monetary rewards

than errors in the curvature of trajectories. In rare cases the

curvature and direction that participants performed with can

exceed the range of target trajectories, resulting in a large error

and a negative reward value. However, we only displayed a zero-

reward for these trials.

The other eight participants learned target trajectories while

provided with feedback using a heavily weighted b parameter of

the reward function:

rewards~1{(Da|wzDb|W ) ð3Þ

Where the curvature of the attempted trajectory has a larger

weight W and the direction has a smaller weight w. The two

conditions associated with these two reward functions were termed

a-reward and b-reward conditions, respectively.

One of the unique affordances of this experimental design is that

the composite reward function above can be weighted differently for

each dimension of movement (direction or curvature). By suppress-

ing or augmenting the consequences of errors made in each

movement dimension individually, we can study people’s behavioral

structural credit during movement reward learning.

The Bayesian Model
A good learning strategy would efficiently explore different

movement properties while maintaining a memory of past move-

ments and their associated rewards. Within a decision theoretic

framework such a strategy can be formalized using Bayesian decision

theory. The optimal decision to approximate the target trajectory

combines the best present estimate (likelihood) with information about

past (prior) trajectories as shown in the following equation:

P(targeta,b~posa,bDs1:t,r1:t)

~
1

Z
P(s1:t{1,r1:t{1Dtargeta,b~posa,b) memory decay

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

past

P(st,rtDtargeta,b~posa,b)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

present

P(targeta,b~posa,b)

ð4Þ
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At any trial t, the prior is defined as the probability that the past

rewards (r1:t21) and attempted trajectory (s1:t21) would have been

observed under the assumption of a given target (targeta,b = posa,b).

The likelihood probability is defined as the probability of the

current trajectory and reward (st,rt) given the target shape

(targeta,b = posa,b). Furthermore, it is known that peoples’ memory

of past decisions is less than perfect on such tasks [10]. To

incorporate this a memory decay term (bounded in [0,1]) was

added. Finally, the probability that the target trajectory (targeta,b)

has a given shape (posa,b) at trial t is equal to probability of

combining the prior, the likelihood and the memory decay.

For implementing Bayesian updating, we assume participants

maintain a probability map of the to-be-learned curvature and

direction, and iteratively update that map after receiving the

reward upon each trial (Fig. 2). The map codes the probability of

each curvature-direction combination and decays linearly in

between trials as captured by the memory decay term l:

Mapt{1~lMap’t{1 ð5Þ

Where Mapt{1 and Map’t{1 are the probability maps updated

at the previous trial and before the current trial, respectively. We

further assume that participants implicitly approximate the reward

function by giving weights to errors in curvature and in direction.

Hence, the predicted reward, rewardpred , is computed as

rewardpred~Weight1|(Da)2zWeight2|(Db)2

Where (Da)2 and (Db)2 are the squared errors in both dimensions

on a trial. This predicted reward is compared with the actual

reward achieved on that trial (rewardactual ) and the discrepancy

(prediction error) is then used to update the probability map with a

constant learning rate g:

Mapt~Map’t{1{g|(rewardactual{rewardpred )

Where Map’t{1 and Mapt are the probability map before and

after the current trial, respectively. Thus the model has 4 free

parameters: the memory decay term l, weights for errors Weight1
and Weight2, and the learning constant g. They were estimated

by fitting the model to all 50 learning sequences for each

participant.

Results

Here we designed a reinforcement learning task requiring the

actor to assign varying credits to different movement properties

based on single monetary rewards. By assessing trial-by-trial

exploration behavior, we can examine whether participants can

solve this credit assignment problem efficiently and whether

reward-movement pairings are sufficient to support this learning.

We first examined whether participants could learn the hidden

target trajectory with monetary rewards as feedback (Fig. 3). Data

from a typical participant in the a-reward condition indicates that

the movement trajectories incrementally match the hidden target

trajectory in terms of the direction and the curvature (Fig. 3A). For

this particular participant, the learning of two trajectory properties

reaches a plateau within 25 trials. However, not all the target

trajectories are learned equally well. A typical participant from the

b-reward condition exhibits improvement in trajectory curvature

early on but fails to minimize direction error within 25 trials

(Fig. 3B).

Figure 1. The experimental setup. A): The cartoon illustration of the setup. Participants sat before a desk and made movement trajectories on the
horizontal desktop with a hand-held stylus. The hand displacement was registered by a robot. The feedback was provided via a computer monitor
placed on the desk. B): A graphical representation of how trajectories were varied in both direction (a) and curvature (b). C): The learning progress of
matching trajectories to a hidden target trajectory within a session of 25 trials.
doi:10.1371/journal.pone.0055352.g001
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A group analysis reveals a similar picture. For both reward

conditions, participants exhibit exponential learning and their

performance (in terms of rewards received) asymptotes around the

20th trial (Fig. 4A). The average highest monetary reward achieved

across participants and across all 50 target trajectories is 45.6 cents

(SD = 3.8), which is very close to the maximum possible reward of

50 cents. Participants demonstrate better initial performance in the

a-reward condition, perhaps suggesting that the reach direction is

inherently easier to learn than its curvature. The learning curves of

the reward from the two conditions are similar but those of two

movement properties are different (see below). Overall, these

results suggest that participants are very adept at learning new

target trajectories in 25 attempts.

Figure 2. The implementation of the Bayesian model. The implementation assumes a two-dimension probability map that is updated
iteratively trial by trial. It is a 2006200 matrix to code the probability of each a-b combination. Each value in the matrix is normalized such that the
sum of all possibilities on the map equals 1. The pink cross denotes the current target direction and curvature. The gray dot denotes the best solution
before the current trial t and the black dot denotes the best solution after finishing the current trial. The map from a previous trial is degraded by
memory decay and it then serves as the prior before the current trial. The prediction error, the difference between the predicted reward based on the
direction and curvature used in the current trial and the actual received reward, serves as likelihood distribution to update the probability map. By
combining the prior and the likelihood, the probability map is updated to form the posterior distribution. The learning is demonstrated in that the
best solution of the posterior, compared to that of the prior, becomes closer to the target solution. The data are from a typical trial (the 4th trial in a 25
learning sequence) from a single participant.
doi:10.1371/journal.pone.0055352.g002

Figure 3. Learning data from typical participants from the a-reward condition (upper panels, A) and the b-reward condition (lower
panels, B). A): Five individual trial trajectories (blue) along with its corresponding hidden target trajectory (red) are shown in separate panels from
left to right. The rightmost panel displays the absolute error in trajectory direction (a) and curvature (b). The direction of targets is learned earlier than
curvature. B): Panels follow the same format as the upper panels. Curvature learning occurs early but the errors in the direction of targets remain high
throughout the session.
doi:10.1371/journal.pone.0055352.g003
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If one of the movement properties was weighted more in the

rewards, we would expect that participants should preferentially

explore that property. This is indeed the case (Fig. 4B). The error

in the weighted property is corrected more rapidly. By fitting an

exponential function to the average learning curve of each

property, we find that the decay constant in the a-reward

condition is 3.3 and 8.1 for a and b, respectively. In contrast, in

the b-reward condition it is 11.8 and 3.7 for a and b, respectively.

These results indicate that the weighted movement property is

learned faster than the un-weighted one. Participants also settle at

different asymptotes after 25-trial learning in two conditions: for

the a-reward condition both a and b errors settles at 0.23, while

for the b-reward condition a error settles at 0.48 and b error at

0.15. In the b-reward condition, a error remains high late into the

learning sequence even though the reward reaches a plateau. In

sum, the learning rate of the weighted property is substantially

faster than that of the less-weighted despite that learning of the two

properties is completed to different extents.

The preferential improvement in the weighted property can be

further demonstrated by casting the two learning curves into a

two-error-dimension space (Fig. 4C). Learning happens predom-

inantly in direction of the trajectory when the reward function is a
(direction) weighted and predominantly in curvature when the

reward function is b (curvature) weighted. These results suggest

that participants are able to infer the most important dimension in

the movement learning task based on a feedback history of uni-

dimensional monetary rewards.

In order to understand how participants used information about

trajectory and rewards, a Bayesian model was developed and fitted

to the participants’ movement data. The average changes in

trajectory properties between subsequent attempts are shown in a

quiver plot (Fig. 5). Vectors are sparse as only a limited set of

possible transitions are observed among our participants. Those

long vectors, indicating large corrections over successive trials,

mostly appear when large curvature and/or direction errors occur.

Some trials resulted in small or even negative rewards but they

constitute only a small fraction of total trials (1.19% and 0.09% for

the a- and b-reward conditions, respectively). Note that zero is the

lowest reward feedback given on any trials. Overall, the Bayesian

model captures the trial-by-trial changes in trajectory properties,

shown by the close match between data and model vectors in the

terms of direction and magnitude. The Bayesian model explains

42.9% and 49.6% of total variance in participants’ trajectories

decisions for the a- and b-reward conditions, respectively. This

suggests that participants might employ a near optimal strategy for

updating information about trajectory shape and rewards, and use

this knowledge to inform subsequent trajectory decisions. Inter-

estingly, the memory decay term is 0.3260.1 and 0.5460.1 for a-

and b- reward conditions, respectively. This suggests that

participants relied on only a fraction of past information to guide

the current search.

Is it possible that the ability of matching invisible targets was

improved gradually over the course of experiment? We test this

possible meta-learning effect by evaluating learning curves for

different parts of the experiments. The total 50 target trajectories

are grouped into 5 sessions, 10 targets each. The learning curves,

based on a error, b error and rewards are shown separately (Fig. 6).

We quantified the amount of learning by taking the average of the

last 5 trials and compared them across sessions. For the a-reward

condition, there is no significantly difference in time for all three

variables despite an overall improving trend during the course of

experiment. For the b-reward condition, the amount of learning is

significantly larger in terms of b error and rewards between the

first session and the last sessions (post-hoc Tukey tests, p,0.05).

Taken together, a meta-learning effect is present but it is confined

to the initial learning stages during the b-reward condition only.

Figure 4. Learning-related changes. A): The monetary rewards, averaged over all target trajectories, are plotted as a function of trials. The two
shaded curves stand for mean6SEM over participants for two reward conditions separately. B): The learning curves of two trajectory properties,
direction (a) and curvature (b), are plotted in black and red, respectively. The green and the gray lines denote their corresponding exponential fits.
The results from the two reward conditions are presented in two separate subplots. C): The same learning curves from B) are re-plotted in the a-b
space. The arrows indicate directions of changes and their sizes are proportional to magnitude of changes.
doi:10.1371/journal.pone.0055352.g004
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Discussion

We have examined how people learn to move to match invisible

target trajectories with only single monetary rewards as feedback

after each movement. We show that participants solve this credit

assignment problem quickly and converge to the correct solution

despite the many-to-one mapping of the learning task. Their

search for the target is systematically affected by the properties of

the reward function used as demonstrated by faster learning of the

more rewarded movement property. Participants learn quickly

what movement properties matter most. Their trial-by-trial

learning is consistent with the predictions of a Bayesian model,

Figure 5. Quiver plot of average changes in movement properties with a a- (A) and a b- (B) reward function. The x- and y-axis denote
the absolute errors in two movement properties, respectively. The background temperature plots display the reward functions with the maximum
achievable reward centered at zero alpha-beta error. The higher the temperature the higher the reward. White vectors are average parameter
changes from one trial to the next across all target trajectories and all participants. Black vectors represent the Bayesian model’s predictions.
doi:10.1371/journal.pone.0055352.g005

Figure 6. Average learning curves over each of 10 target trajectories are shown for the a-reward condition (A) and the b-reward
condition (B) separately. Displayed in different panels, learning curves are based on a error, b error and actual monetary rewards.
doi:10.1371/journal.pone.0055352.g006
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suggesting that they efficiently use reinforcement information

during learning.

Even though participants quickly and successfully discovered

the heavily-weighted error dimension, the two movement prop-

erties were not learned equally. Specifically, in the b-reward

condition participants failed to optimize the direction error to the

same degree as that of the curvature error, even though they were

apparently capable of doing so as shown in the a-reward condition

(Fig. 4). At the same time, despite of this relatively large direction

error asymptote, similarly good rewards were achieved by

optimizing the curvature. Thus, this large asymptote might reflect

that importance of reward feedback [11]: participants are slow in

optimizing less-penalized dimension when reward feedback is

already improved to a plateau. It is interesting that in the a-reward

condition the curvature error, the less-penalized dimension, did

not exhibit similarly slack learning. This difference thus highlights

that less-penalized movement properties are not optimized equally

fast when only overall reward feedback is provided. This is

interesting since when the same two movement properties are

heavily-weighted their learning was equally fast. The system is thus

efficient in terms of preferentially dealing with more important

control variables as the minimum-intervention principle suggests

[6].

Our findings show that search behavior in reinforcement motor

learning is shaped by the properties of the reward function as the

more rewarding dimension is preferentially learned. Analogous

findings has been demonstrated when analyzing the control of

movements where a reduction in variability of the more

performance-affected dimension is observed [9,12,13,14,15]. In

these studies, the relationship between control variables (e.g., joint

angles) and a performance measure (e.g., the endpoint precision of

a reach movement) have been characterized by certain analytic

functions termed solution manifolds. Often times, the interactions

between various control variables are of particular importance for

good performance, as prescribed by the structure of a solution

manifold. A universal finding in these studies is that people control

their movements so as to minimize the variability of the critical

dimensions as such inherent motor variability will minimally

impact performance {Martin, 2002 #1303;Kudo, 2000 #1304}.

These observed covariations between control variables reflect the

established synergy [18] or strategies based on optimal feedback

control [6]. Conceptually, the solution manifold is equivalent to

the reward function in the present study and both of them map

movement properties to a performance measure. Our findings

thus suggest that before a stable performance strategy is formed the

nervous system learns to first modify the movement properties that

matter the most for movement performance. This preferential

error reduction is flexible and dynamically adjusted according to

task demands that are experimentally varied with the use of

different reward functions.

Some effort has been devoted towards studying the temporal

credit assignment problem in reinforcement learning of motor

skill. In these tasks, an agent needs to judge when was an action that

resulted in error committed during the execution of a sequence of

actions [19]. Accordingly, these studies use action sequence

learning tasks such as maze-searching {Tolman, 1930

#1403;Fu, 2006 #1404}, sequential choice task {Fu, 2008

#1402} and mine-field navigation {Gordon, 1994 #1401}. The

tasks are designed to test how credits are assigned to actions in

multistep choice situations. Our study instead addresses the

structural credit assignment problem [24,25], focusing on how the

agent assigns credits to different properties of a single action. The

agent needs to learn what property of a decision lead to error in

order to correct it, an important problem that has received little

attention. This work represents an initial endeavor to study the

structural credit assignment problem within the domain of motor

learning.

The close match between participants’ movement data and the

predictions of a Bayesian model suggests that people efficiently

integrate past and present information to inform subsequent

movement decisions. Our Bayesian model is conceptually similar

to other reinforcement learning models where the decision for the

next attempt is made on the basis of the history of reward-

movement pairs. An interesting finding is that the memory decay

between successive attempts was fairly high (0.32 and 0.54, where

1 represents perfect recall). Trial-by-trial search behavior has a

heavy temporal discounting component and past action-reward

pairs have limited influence on the current decision. This suggest

that either people have poor recall of past action-reward parings,

or that they are over-confident of their current exploratory

strategies, neglecting information gained from previous explora-

tion.

We acknowledge that our model is simplified by assuming

constant memory decay and learning rate over the whole learning

process. The assumption made is that learning is essentially the

same over the course of the experiment. Our results indicate that

there is some evidence of meta-learning in the b-reward condition

where the learning is improved after exposure to 10 target

trajectories. Future modeling efforts could incorporate small meta-

learning effects to capture the data better. On the other hand, to

our best knowledge there is no good alternative model for

capturing the trial-to-trial learning for this type of structural credit

assignment task even though similar tasks have been investigated

in motor learning {Müller, 2004 #892;Scholz, 1999 #1300}.

Credit assignment problems also arise in motor adaptation

where the nervous system adapts movement to control perturba-

tions from external environment or from noise in the movement

system itself. It has been proposed that adaptation depends on

probabilistic inference of causality of these changes: movement

perturbations that are less likely to be caused by changes in motor

apparatus are less likely to be learned and generalized [3]. The

movement errors that are less likely caused by the actor and

therefore more likely caused by external perturbations are also less

likely to be corrected [26]. These studies suggest that the nervous

system assigns different weights to movement error or perturbation

according to the inferred causal structure of error source during

motor adaptation. In the present study, all errors are attributed to

the actor who is able to efficiently learn what properties matter

most with regards to the desired goal. In the reinforcement task

used in our experiment, no single action-reward pair could reveal

the structure of the payoff function. Remarkably, participants are

able to quickly glean the pay-off function by exploring different

movement properties and noticing how they affect the magnitude

of rewards. The movement property that has the greatest effect on

performance is learned faster and the credit assignment problem is

solved efficiently.
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