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Abstract

Network models extend evolutionary game theory to settings with spatial or social structure and have provided key insights
on the mechanisms underlying the evolution of cooperation. However, network models have also proven sensitive to
seemingly small details of the model architecture. Here we investigate two popular biologically motivated models of
evolution in finite populations: Death-Birth (DB) and Birth-Death (BD) processes. In both cases reproduction is proportional
to fitness and death is random; the only difference is the order of the two events at each time step. Although superficially
similar, under DB cooperation may be favoured in structured populations, while under BD it never is. This is especially
troubling as natural populations do not follow a strict one birth then one death regimen (or vice versa); such constraints are
introduced to make models more tractable. Whether structure can promote the evolution of cooperation should not hinge
on a simplifying assumption. Here, we propose a mixed rule where in each time step DB is used with probability d and BD is
used with probability 1{d. We derive the conditions for selection favouring cooperation under the mixed rule for all social
dilemmas. We find that the only qualitatively different outcome occurs when using just BD (d~0). This case admits a natural
interpretation in terms of kin competition counterbalancing the effect of kin selection. Finally we show that, for any mixed
BD-DB update and under weak selection, cooperation is never inhibited by population structure for any social dilemma,
including the Snowdrift Game.
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Introduction

Evolutionary game theory was developed to model frequency-

dependent selection [1]. Arguably the most captivating system that

exhibits frequency dependent selection is the evolution of

cooperation under social dilemmas, a problem that has puzzled

researchers across disciplines for decades (for a review, see [2]). In

a social dilemma, cooperators provide a benefit to a group at some

cost to self, while defectors pay no cost and contribute nothing.

Groups of cooperators ‘‘do better’’ than groups of defectors, yet in

any mixed group defectors ‘‘do best’’ [3]. The tension in social

dilemmas is that defection maximizes a given individual’s payoff

while cooperation maximizes the total payoff to the group.

Network reciprocity is one of many approaches taken to explain

the evolution of cooperation [4]. The network describes a spatially

or socially structured population (see [5] for the first such example

and [6] for a comprehensive review), in contrast to traditional

evolutionary game theory, which assumes that populations are

‘well-mixed’ (where each individual interacts with every other

individual with equal likelihood.) [7].

Evolution on networks is often modeled as a discrete-time birth-

death process. Two popular updating rules (see e.g. [8–17]) are

based on the frequency dependent Moran process [18]:

N Birth-Death Update (BD): At each update, an individual is chosen

for reproduction with a probability proportional to its fitness;

its offspring then replaces a randomly selected neighbour.

N Death-Birth Update (DB): At each update, an individual is chosen

randomly for death; the vacant site is then filled by the

offspring of one of its neighbours, selected with a probability

proportional to fitness.

After many updates, eventually the finite population will be

composed of only one type (in the absence of mutation), and we

say that this type has reached fixation (further explanation in

Section 1.1). Note that a well-mixed population (i.e. where

individuals interact at random) can be described as a structured

population where every individual is a neighbour of every other

individual (the graph is ‘‘fully connected’’) and so we may use these

same update rules. For a structured population, the offspring of a

parent is located close to the parent (called ‘limited dispersal’),

which plays a crucial role in evolution in structured populations.

Ohtsuki et al. [8] found that spatial structure can promote the

evolution of cooperation under DB, but not under the superficially

similar rule, BD. In a complementary inclusive fitness approach,

Taylor et al. [17] expressed the same disparity in results between

BD and DB. In both rules reproduction is proportional to fitness

and death is random, and yet they yield qualitatively different

dynamics. This disparity is the focus of the present treatment.
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In order to investigate the differences between BD and DB with

limited dispersal, we introduce a parameter d[½0,1� that allows a

smooth transition between the two updating rules. Specifically, in

each updating step we use DB with probability d and BD with

probability 1{d. For d~1 this results in pure DB dynamics,

whereas for d~0 this results in pure BD dynamics. By varying d
we can then identify qualitative changes in the evolutionary

dynamics. As we are interested in the effect of the update rule, all

simulations are carried out on the same network architecture: a

simple square lattice.

1.1 The Moran Process
To model evolution in finite populations we use the Moran

process [18,19]. In each discrete time step one birth and one death

occur, so the population size, N, is constant. This assumes that

ecological dynamics have come to a steady state in order to focus

on evolutionary dynamics.

We consider the evolution of a population with two strategies, C

and D. The state of the population is the number of C players, i

(and N{i D-players). The Moran process is defined by the

transition probabilities to go from i?iz1 C-players (Tz
i ) and

from i?i{1 C-players (T{
i ). These probabilities depend on how

likely it is to interact with either type (using the variable i and

information about the population structure) and the fitness effects

that result from these interactions (using the parameters from the

payoff matrix and the selection strength parameter, w).

We define fitnesses as a baseline fitness of 1{w plus the payoff

an individual receives weighted by w. If w~0, interactions have no

effect on fitness and evolution is ‘neutral.’ Under neutral selection

T{
i =Tz

i ~1 (the transition probabilities no longer depend on the

payoffs). If interactions only have a small effect on fitness, selection

is said to be ‘weak’ (w%1), and T{
i =Tz

i &1zwhi, where we have

introduced the coefficient hi that captures the effects of population

structure and update rules.

The quantity of interest in finite populations is the probability

that a single C eventually replaces a resident D population (or the

converse). This is termed the fixation probability of C, rC (or

conversely, rD). The fixation probabilities can be calculated as

[18]:

rC~
1

1z
XN{1

j~1

aj

i~1

T{
i

Tz
i

, ð1Þ

rD~
1

1z
XN{1

j~1

aj

i~1

Tz
N{i

T{
N{i

ð2Þ

Under weak selection (w%1 and T{
i =Tz

i &1zwhi), by Taylor

expanding Eq. (1) –(2) in w and ignoring higher order terms we

find:

rC&
1

N
{

w

N2

XN{1

i~1

(N{i)hi, ð3Þ

rD&
1

N
z

w

N2

XN{1

i~1

(N{i)hN{i: ð4Þ

In the neutral case, in which Tz
i ~T{

i , we have hi~0, and

hence both fixation probabilities are 1=N. We say that C is a

beneficial mutation (or simply beneficial) if rCw1=N, and C is

detrimental if rCv1=N . Using Eq. (3) and Eq. (4) , the conditions

that C and D are beneficial are:

1=NvrC :
XN{1

i~1

(N{i)hiv0, ð5Þ

1=NvrD :
XN{1

i~1

(N{i)hN{iw0: ð6Þ

However, for some payoff matrices both rC and rD can

simultaneously be less than 1=N or greater than 1=N . In these

cases we say that C is favoured over D (or simply favoured) if

rCwrD. For example, if rCwrDw1=N, C and D are both

beneficial but C is favoured; or if rCvrDv1=N, C and D are

both detrimental but D is favoured. To simplify the condition

rDvrC we first note that (2) can be rewritten as:

rD~rC

‘N{1

i~1

T{
i =Tz

i . Then, using T{
i =Tz

i &1zwhi and ignor-

ing higher order terms we find:

rDvrC :
XN{1

i~1

hiv0: ð7Þ

Analysis

2.1 Structured Populations
In a structured population an individual’s fitness depends on

who its neighbours are. The transition probabilities depend not

only on the number of C’s in the population but also on the

detailed configuration of the population – an unwieldy amount of

data. To simplify, we first use Pair Approximation (see Appendix

S1). The local density of C’s around a C is qCjC and indicates the

conditional probability that the neighbour of a C is another C.

Similarly, qDjC is the conditional probability of finding a D next to

a C, and so forth. Finally, pC:i=N denotes the global frequency

of C’s.

The exact type of network is not of central importance in this

treatment. For our analysis we assume all individuals have the

same number of neighbours (k is a constant, and the network is

‘‘k-regular’’). The Pair Approximation method used in our

analysis is exact for infinite trees with no loops or leaves. All

simulations are carried out on a square lattice (with k~4);

nevertheless, they agree well with our analytical approximations,

despite the simulated networks being small and containing many

loops.

In structured populations the weak selection limit (w%1) leads

to a separation of timescales (see Appendix S1). In the initial phase

of the population dynamics the local densities (e.g. qCjC ) change

Mixed Update Processes for Structured Populations
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quickly while the global densities (e.g. pC ) remain approximately

constant. In a relatively short period, local densities reach a quasi-

steady state where individuals are more likely to be surrounded by

others of the same type. We can solve for this quasi-steady state by

assuming that pC is constant and finding solutions to _qqCjC~0; i.e.

where the local densities are no longer changing (see Appendix S1,

Eq. S1.5). This leads to the quasi-steady state solution:

qCjC{qCjD~1=(k{1), ð8Þ

which means that, on average, a C has k=(k{1) more C’s in its

neighborhood than a D has in its neighborhood. Once the quasi-

steady state is reached, the next phase of the population dynamics

proceeds much slower. Gradually, the global densities change

while local densities approximately satisfy the quasi-steady state

solution, until eventually one type is lost completely (see Appendix

S1).

2.1.1 Birth-Death (BD).
For BD updating, an individual is first selected from the

population to reproduce with a probability proportional to fitness,

and its offspring then replaces a random neighbour. To find the

average fitness of a focal individual we condition on the number of

cooperator neighbours it has. Let the focal individual have ‘ C-

neighbours and k{‘ D-neighbours. If the focal individual is a

cooperator, for instance, then it would have a fitness of:

f‘~1{wzw½‘:pCCz(k{‘)pCD�: ð9Þ

The pij are the payoffs a type-i gets from each interaction with a

type-j. The average fitness of a cooperator is an average over all

possible neighbourhoods, which is:

Xk

‘~0

k

‘

� �
q‘CjCqk{‘

DjC
:f‘ ð10Þ

To probability that i increases by one in a time step (Tz
i ) is the

probability that a C reproduces and a D then dies, which is:

Tz
i ~

Xk

‘~0

pC
k

‘

� �
q‘CjCqk{‘

DjC
: f‘
q
: k{‘

k
, ð11Þ

where q denotes the total fitness of all individuals in the

population, which normalizes the fitnesses in order to use them

probabilistically. The first factor in each term of Eq. (11) is the

probability of finding a focal C with a given neighbourhood; the

second factor is its resulting relative fitness; and the third factor is

the probability that the offspring replaces a D since death occurs

uniformly randomly. Similarly (using g‘ for the fitness of a defector

with ‘ C-neighbours), we find (see Appendix S2):

T{
i ~

Xk

‘~0

pD

k

‘

� �
q‘CjDqk{‘

DjD
: g‘

q
: ‘

k
: ð12Þ

Recall that the ratio of the above transition probabilities

(T{
i =Tz

i ) is the crucial quantity to determine the fixation

probability of C’s and D’s (see Eq. (1) and Eq. (2) ). In the limit

of weak selection, T{
i =Tz

i &1zwhi and it is this hi which tells us

when cooperation is favoured, according to conditions (5)–(7).

Here, we solve for hBD
i (see Appendix S2), as:

hBD
i ~{azk(pDD{pCD){(k{2)a

i

N
: ð13Þ

To get Eq. (13) we have used the quasi-steady state condition [

Eq. (8) ] and introduced a~pCC{pCD{pDCzpDD for conve-

nience.

2.1.2 Death-Birth (DB).
For DB updating, one focal individual is randomly selected to

die and its neighbours compete to fill the vacant site. The

transition probabilities are again averages over the neighbour-

hoods of the focal individual:

Tz
i ~

X
‘

pD
k

‘

� �
q‘CjDqk{‘

DjD
: ‘~ffD

‘~ffDz(k{‘)~ggD

, ð14Þ

T{
i ~

X
‘

pC
k

‘

� �
q‘CjCqk{‘

DjC
: (k{‘)~ggC

‘~ffCz(k{‘)~ggC

: ð15Þ

The first factor in each term of Eq. (14) [or Eq. (15) ] is the

probability of finding the focal player (which is selected for death)

in each arrangement and the second is the probability that it gets

replaced by the opposite type. The ~ffj and ~ggj are the fitness of C

and D neighbours of a focal j individual (see Appendix S2).

In the weak selection limit, simple expressions for hDB
i are

analytically accessible. These determine whether cooperation is

favoured (see Eq. (5) –(7)). We take the ratio of T{
i and Tz

i and

expand as T{
i =Tz

i &1zwhDB
i , where

hDB
i ~

1

k
k2(pDD{pCD)zk(pCD{pCC){a{a(k{2)(kz1)

i

N

� �
: ð16Þ

Again, we have used the quasi-steady state condition [ Eq. (8) ].

2.1.3 Mixed DB-BD Update.
Under the mixed DB-BD rule (DB is used with probability d

and BD with 1{d) we find that the structural coefficient, hd
i , is a

weighted average of hBD
i and hDB

i (see Appendix S2):

hd
i ~hDB

i dzhBD
i (1{d): ð17Þ

This result holds in the limit of weak selection (w%1). In this

limit, any mixed update rule behaves the same to zero-th order in

w; it is only the first order term where differences arise. Using hd
i in

conditions (5)–(7) determines whether C or D are beneficial

mutations.

Mixed Update Processes for Structured Populations
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2.2 Well-Mixed Populations
For contrast and comparison we include the analyses of well-

mixed populations under BD and DB. In a population with i C-

players, the fitness of a C-player (fi) and a D-player (gi) are:

fi~1{wz
w

N{1
½pCC(i{1)zpCD(N{i)� ð18Þ

gi~1{wz
w

N{1
½pDCizpDD(N{i{1)�: ð19Þ

2.2.1 Birth-Death (BD).
For BD updating the ratio of the transition probabilities

simplifies to: T{
i =Tz

i ~gi=fi [18], which is approximately

1zwhBD
i for w%1, where:

hBD
i ~

1

N{1
b{aið Þ, ð20Þ

with a~pCC{pCD{pDCzpDD as before and

b~N(pDD{pCD)zpCC{pDD (see Appendix S2).

To find when C and D are favoured and beneficial, we insert

Eq. (20) into conditions (5)–(7) and get (to leading order in 1=N

and w):

1=NvrC : 2(pDD{pCD)vpCC{pDC , ð21Þ

rDvrC : pDD{pCDvpCC{pDC , ð22Þ

1=NvrD : 2(pCC{pDC)vpDD{pCD: ð23Þ

2.2.2 Death-Birth (DB).
Under DB the individual chosen for death cannot reproduce,

and hence the ratio of the transition probabilities is slightly

different than under BD updating. We find (see Appendix S2):

hDB
i ~

1

N
(b{ai): ð24Þ

Note that hBD
i ~ N

N{1
hDB

i , and so the difference between BD

and DB in well-mixed populations is negligible in large popula-

tions. Substituting into conditions (5)–(7) we find the same result as

for BD. The only difference is the deviation from neutral selection,

jrC{1=Nj, which is larger when using BD rather than DB.

In both cases birth is affected by fitness whereas death is

uniformly random. In each BD time step an individual with high

fitness may be selected for reproduction before it risks being killed.

Under DB, an individual with high fitness could be selected to die

before it ever has a chance of being selected for reproduction.

Because the random step occurs before the step affected by

selection, the noise in DB exceeds that in BD - and hence the

fixation probabilities under DB are closer to those of an entirely

random process, i.e. to 1=N.

2.3 Applications: Cooperation Games
Up to this point the types C and D have been arbitrary labels,

but the vast majority of game theory has been developed for social

dilemmas between cooperators (C) and defectors (D). Social

dilemmas are characterized by: (i) two C’s do better than two D’s

(pCCwpDD); (ii) interacting with a C is always preferable to

interacting with a D (pCCwpCD and pDCwpDD); and finally (iii) a

D does better than a C when they interact (pDCwpCD). These

restrictions leave four possible orderings of the payoffs [20]:

pCCwpDCwpCDwpDD (Byproduct Mutualism, BM) ð25Þ

pCCwpDCwpDDwpCD (Stag Hunt Game, SH) ð26Þ

pDCwpCCwpCDwpDD (Snowdrift Game, SD) ð27Þ

pDCwpCCwpDDwpCD (Prisoner0s Dilemma, PD) ð28Þ

with popular names of the games in parentheses. Note that

there is no ‘dilemma’ in BM games since cooperation is trivially

favoured.

Here, we use a two-player version of the game in Hauert et al.

[20]: Cooperators pay a cost cw0 to provide a benefit bwc to a

common pool, which will be equally split between the two players

regardless of their strategies. Defectors pay no cost and contribute

no benefit. In addition, we let the benefits be non-additive: the first

contribution has weight one and the second has weight v. For vw1
accumulated benefits are synergistically enhanced, whereas for

vv1 the benefit from the additional cooperator is discounted. The

payoff matrix for the row player is:

C D

C
b

2
1zvð Þ{c

b

2
{c

D
b

2
0

ð29Þ

We normalize the payoff matrix by adding c, then dividing by

b=2. Note that in the Moran process adding a (positive) constant to

the payoff matrix essentially reduces the selection strength.

Similarly, dividing the payoffs by a factor larger than one further

reduces selection strength. Since we are focussing on the weak

selection limit, both rescaling operations are unproblematic as long

as bw2 holds. After rescaling, the payoff matrix is:

C D

C 1zv 1

D 1zu u

ð30Þ

where u~2c=b is the adjusted cost-benefit ratio. This payoff

matrix encompasses all four social dilemmas: (i) 1zvwuw1,uwv
Prisoner’s Dilemma; (ii) vwuw1 Stag-Hunt Game; (iii) 1wuwv
Snowdrift Game; and (iv) uv1,uvv Byproduct Mutualism. Note,

however, that if 1zvvu then we no longer have that two

Mixed Update Processes for Structured Populations
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cooperators do better than two defectors (and so the game is not a

‘‘social dilemma’’). The resulting game is Deadlock Defection, so

called because there is no reason to ever cooperate. Byproduct

Mutualism could similarly be termed Deadlock Cooperation.

Results

The conditions for selection favouring C or D and for C or D
mutations being beneficial are summarized in Table 1 and

Figures 1–2 for well-mixed and structured populations under BD,

DB and mixed update rules. Table 1 illustrates that taking d?0 or

d?1 for the mixed rule recovers the results for the BD and DB

updates. The limit k&1 recovers the results for well-mixed

populations - a highly connected population behaves like a well-

mixed one.

sssssIn the prisoner’s dilemma (PD) cooperators are favoured

(rCwrD) on a triangle in the vu-plane with vertices: (1=y�,1),
(1,1), and (y�,y�), where y�~(kzd)=(k{d) (bold black bordered

in Fig. 2 Panel B). This triangle has area 2d=(k2{d2) which grows

with increasing d (see Fig. 2 Panel B for d~1) or decreasing k.

Hence, cooperation is enhanced for smaller neighbourhood sizes

and when increasing the proportion of DB updates. In highly

connected populations (k&1) the triangle gets asymptotically small

and disappears for well-mixed populations (see Fig. 1). The same

happens when increasing the proportion of BD updates, and the

triangle disappears for d~0 (see Fig. 2 Panel A).

A comparison of rCwrD in the vu-plane is displayed in Fig. 3

for different scenarios. Note that the parameter u~2c=b must be

positive, since the costs and benefits must be positive to carry

biological relevance. Similarly, additional benefits must remain

beneficial, and so the synergy discount parameter v (which

provides a weight for additional benefits) must also be positive.

Whenever cooperators are favoured in well-mixed populations

(rCwrD), they are also favoured in structured populations (so long

as vw{1). Thus, in the limit of weak selection, structure never

inhibits cooperation in social dilemmas.

The critical lines (rC~rD) for structured and well-mixed

populations intersect at (v,u)~({1,0) for any value of d. Within

the range of biologically meaningful u, v, structure always

promotes the evolution of cooperation. More generally, the

conditions for rCwrD are:

Well{Mixed : pCCzpCD{pDC{pDDw0, ð31Þ

Structured :

d(pCC{pCDzpDC{pDD)zk(pCCzpCD{pDC{pDD)w0:
ð32Þ

Social dilemmas require pCCwpCD and pDCwpDD, and hence

if condition (31) is satisfied then so is condition (32), but the

converse is not true in general.

The condition rCwrD for structured populations under BD is

the same as for well-mixed populations, reaffirming that d~0 is a

critical value for the evolutionary dynamics. Increasing the

proportion of DB updates (increasing d) always makes cooperation

more likely to evolve, at least in the limit of weak selection.

Discussion and Conclusion

We set out to resolve the disparity between Birth-Death and

Death-Birth updates for structured populations demonstrated by

Ohtsuki et al. [8]. They considered a simple Prisoner’s Dilemma

where cooperators pay a cost c0w0 to donate a benefit b0wc0

(subscripts used to distinguish from the b,c used in this paper) to

their interaction partner and defectors neither provide benefits nor

suffer costs. Under weak selection, they showed that cooperation is

favoured and beneficial under the DB update if b0=c0wk, where k

Figure 1. Favoured and beneficial strategies in social dilemmas
for well-mixed populations. Parameter space of social dilemmas in
well-mixed populations with the cost-to-benefit ratio u as the y-axis and
the synergy/discounting parameter v as the x-axis (see Eq. (30) ). The
dashed lines divide the plane into five regions, which correspond to the
Prisoner’s Dilemma (PD), Snowdrift Game (SD), Stag-Hunt Game (SH),
Deadlock Defection (DD) and Byproduct Mutualism (BM). The three
solid lines are predictions for (i) rD~1=N - above this line defection is
beneficial; (ii) rC~rD - below this line cooperation is favoured; and (iii)
rC~1=N - below this line cooperation is beneficial. The three lines
intersect at v~1; for vv1, cooperation and defection may be
simultaneously beneficial, while for vw1 cooperation and defection
may both be detrimental. Each data point represents simulation results
for 107 invasion attempts by a single cooperator and 107 invasion
attempts by a single defector. Parameters are: selection strength
w~0:05, population size N~100.
doi:10.1371/journal.pone.0054639.g001

Table 1. Favoured/beneficial strategies in social dilemmas
under different structures/updates.

Condition: rCw1=N rCwrD rDw1=N

Well-Mixed 3uv½vz2� 2uv½vz1� 3uw½2vz1�
Spatial BD 3uv k̂kvz3{k̂k

h i
2uv½vz1� 3uw (3{k̂k)vzk̂k

h i

Spatial DB 3uvk̂k k̂kvz3{k̂k
h i

2uvk̂k½vz1� 3uwk̂k (3{k̂k)vzk̂k
h i

Spatial BD-DB 3uvd̂d k̂kvz3{k̂k
h i

2uvd̂d vz1½ � 3uwd̂d (3{k̂k)vzk̂k
h i

Conditions for C or D being beneficial (columns 2 and 4, respectively) and the
condition for C being favoured over D (column 3). Note that BD and DB yield

the same conditions in well-mixed populations. k̂k:1z1=k and d̂d:1zd=k are

used for convenience. Note: 1ƒd̂dƒk̂k:
doi:10.1371/journal.pone.0054639.t001

Mixed Update Processes for Structured Populations
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indicates the average number of neighbours. However, coopera-

tion is never favoured or beneficial under BD.

Here, we introduced a mixed rule where at each time step DB is

used with probability d and BD with probability 1{d. This

allowed us to investigate the cause for the qualitative change in the

evolutionary dynamics. To compare with Ohtsuki’s work we can

substitute their payoff matrix into equations (13), (16), (17) and (5)–

(7). For our mixed BD-DB updating and weak selection the

conditions for cooperators being beneficial and favoured all

simplify to:

b0

c0
w

k

d
: ð33Þ

The condition for DB is recovered for d~1 whereas d?0
recovers the result for BD. The only qualitatively different

outcome on the continuum between BD and DB occurs when

using exclusively BD (d~0). This suggests that in general, results

based on BD updating may not be robust to small changes in the

updating procedure. For any dw0, there is a critical cost-to-

benefit ratio above which cooperation is favoured. This shows that

the success of cooperators does not hinge on the sequence of events

particular to DB, but is a more general phenomenon.

Spatial models capture the effect of limited dispersal, one

consequence of which is that individuals are more likely to interact

more with others of the same type (called positive assortment) than

they would be in well-mixed populations. Positive assortment has a

two-fold effect on populations facing social dilemmas: (i) cooper-

ators may achieve a higher fitness through their interactions with

other cooperators, but (ii) this increased fitness may be for naught

if cooperators just replace other cooperators. (i) has often been

called ‘kin selection’, while (ii) has been termed ‘kin competition,’ a

distinction introduced by Hamilton [21]. Later work by Taylor et

al. [22] showed that (i) and (ii) always balance in patch structured

populations and hence altruism cannot evolve. However, this

balancing does not necessarily occur in network-structured

populations (e.g. [5,8]).

Kin selection and competition provide an intuitive framework to

understand the differences between BD and DB. Under both rules

the fitness of all individuals is calculated before births and deaths

and so the effect of kin selection does not depend on whether BD

or DB is used. The difference then must lie in kin competition.

Under DB, each individual has a 1=N chance to die in each time

step and so there is no effect of kin competition. Under BD, the

likelihood of an individual dying depends on the fitnesses of its

neighbours - the more fit its neighbours are, the more likely the

focal individual will be replaced. This means that cooperators,

who provide benefits to their neighbours, are actively increasing

their own mortality.

Under BD the two effects of kin selection and competition

exactly counterbalance. This balance represents a critical point in

the evolutionary dynamics. Results derived at such a critical point

are not robust. The mixed BD-DB update allows variable strength

of kin competition: increasing d decreases kin competition.

However, having kin competition outweigh kin selection would

Figure 2. Favoured and beneficial strategies in social dilemmas for structured populations. Parameter space of social dilemmas in
structured populations for BD updates (Panel A), DB updates (Panel B), and mixed BD-DB updates (Panel C). The three solid lines indicate asymptotic
predictions based on Pair Approximation for (i) rD~1=N , (ii) rC~rD, and (iii) rC~1=N . In Panel C, DB and BD updates are chosen with equal
chances (d~0:5). The black bolded triangle (Panels B and C) indicates the parameter region where cooperators are favoured in Prisoner’s Dilemmas.
Parameter space organized as in Figure 1. Population structure is a lattice with connectivity k~4. The simulation results (for w~0:05 and N~100),
show good agreement with the analytical predictions (for w%1 and N&1).
doi:10.1371/journal.pone.0054639.g002

Figure 3. Comparison of update mechanisms in social dilem-
mas for structured populations. Parameter regions for cooperation
in social dilemmas: predictions for well-mixed versus structured
populations. The solid blue lines indicate predictions for rC~rD under
different updates: (a) DB, (b) mixed BD-DB for d~0:5, and (c) BD in
structured populations. In well-mixed populations the condition is the
same as (c). Population structure can extend the parameter region
where cooperation is favored. The shaded area marks the extended
parameter region, which has no biological interpretation in this
framework.
doi:10.1371/journal.pone.0054639.g003
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require further extension of the model - for instance by letting the

interaction and replacement networks be different [10].

Our results fit cleanly within the framework introduced by

Tarnita et al. [15]. They studied evolution in structured

populations by defining a parameter s that captures the effect of

structure and determines which type is favoured in the limit of

weak selection. Under our assumptions, we find for the mixed BD-

DB update that s~(kzd)=(k{d). To get the s values for BD

and DB in Tarnita et al. [15] we simply set d~0 or d~1,

respectively. Again, it is apparent that d~0 is a critical value as

this implies s~1: where structure has no effect on strategy

selection [15].

The differences between BD and DB stem from a different

balance of two biological effects of spatial structure. For BD,

regions of the population occupied by high fitness individuals are

updated more frequently than the vicinity of low fitness

individuals. In contrast, for DB all regions are updated at equal

rates. The mixed BD-DB update provides a transition between the

two extremes and highlights that conclusions based on the BD

update may not be robust.

Finally, we have shown that for the mixed BD-DB update,

structure never inhibits the evolution of cooperation. For other

update rules, or with strong selection, spatial structure may be

detrimental to cooperation, e.g. in the Snowdrift Game [23–25].

This highlights the fact that results for structured populations

should be explored for robustness to changes in model architec-

ture.
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