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Abstract

The minimal set of proteins necessary to maintain a vertebrate cell forms an interesting core of cellular machinery. The
known proteome of human red blood cell consists of about 1400 proteins. We treated this protein complement of one of
the simplest human cells as a model and asked the questions on its function and origins. The proteome was mapped onto
phylogenetic profiles, i.e. vectors of species possessing homologues of human proteins. A novel clustering approach was
devised, utilising similarity in the phylogenetic spread of homologues as distance measure. The clustering based on
phylogenetic profiles yielded several distinct protein classes differing in phylogenetic taxonomic spread, presumed
evolutionary history and functional properties. Notably, small clusters of proteins common to vertebrates or Metazoa and
other multicellular eukaryotes involve biological functions specific to multicellular organisms, such as apoptosis or cell-cell
signaling, respectively. Also, a eukaryote-specific cluster is identified, featuring GTP-ase signalling and ubiquitination.
Another cluster, made up of proteins found in most organisms, including bacteria and archaea, involves basic molecular
functions such as oxidation-reduction and glycolysis. Approximately one third of erythrocyte proteins do not fall in any of
the clusters, reflecting the complexity of protein evolution in comparison to our simple model. Basically, the clustering
obtained divides the proteome into old and new parts, the former originating from bacterial ancestors, the latter from
inventions within multicellular eukaryotes. Thus, the model human cell proteome appears to be made up of protein sets
distinct in their history and biological roles. The current work shows that phylogenetic profiles concept allows protein
clustering in a way relevant both to biological function and evolutionary history.
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Introduction

Human blood is composed of cells and plasma. The most

abundant cell is the erythrocyte, which lacks the nucleus in

mammals, as opposed to all other vertebrates. Red blood cells are

oval, red due to hemoglobin which occupies most of the cell (98%

of the overall cytoplasmic protein content) and flexible to move

freely through capillary vessels [1]. Specialization of the erythro-

cyte is visible in its extraordinary structure. It is shaped like a

biconcave disc and originates in the bone marrow where

reticulocytes, first developmental stages of red blood cells, are

produced. Until the end of its life span of 120 days, with 120 miles

of travel and 1.7 105 circulatory cycles, the human RBC has

successfully coped with a number of dangers, such as passages

across narrow capillaries and splenic slits, periodic high turbu-

lences and high shear stresses, along with extremely hypertonic

conditions [2]. The main function of erythrocytes is to transport

oxygen and carbon dioxide. Additionally, these cells have been

shown to play several key roles, like calcium and redox

homeostasis [3,4], cell proliferation [5], immunity [6], ROS

production [7] and sugar transport [8]. Other vital roles of

erythrocytes may be expected.

All these functions are related to proteins functional in a mature

cell. In recent works, authors have identified around 1900

erythrocyte proteins [9]. Except for hemoglobin, the proteins

making up remaining 2% of the erythrocyte proteome mass are

involved in a plethora of functions in which protection of

accumulated protein machinery from oxidative stresses seems to

be central to preserve its life [9,10]. Recent work by D’Alessandro

and colleagues identifies about 50 molecular networks in red blood

cells that in majority belong to the following categories: molecular

transport, protein synthesis, cellular assembly and organization,

post-translational modification and protein folding, cellular

function and maintenance, protein degradation and cell death

[9]. Here, we present an analysis in a somehow similar spirit, albeit

dissecting the proteome along evolutionary lines.

The phylogenetic profile concept has been introduced by

Eisenberg and colleagues more than twenty years ago [11].

Basically, similar patterns of presence and absence of protein

families in various organisms were shown to correspond to similar

functions. Phylogenetic profiles have been employed in a number

of studies, however, they were always used as an aid in further

characterization of proteins, e.g. predicting protein-protein inter-

actions and functional relationships such as in the PROLINKS

and STRING servers [12–14]. Additionally, very recently a
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software package, ProPhylo, has been released designed to

perform phylogenetic profiling studies [15]. ProPhylo addresses

the major issue in such studies, that is reliably achieving

granularities in similarity matrix required to obtain representative

protein clusters. Here, we approached the problem from a

different angle. We used the Fruchterman-Reingold graph-layout

algorithm combined with a simple scoring system to identify

evolutionary similarities in human red blood cell proteome.

In our work, we combine the proteomic and functional data

with the evolutionary history of the erythrocyte proteome. Such a

combination of diverse data sources allowed us to identify ‘‘young’’

and ‘‘old’’ sets of proteins in the red blood cell, which

automatically separates ‘‘old’’ from ‘‘new’’ pathways in erythro-

cytes.

Materials and Methods

Data sources
We have used a previously published comprehensive set of

erythrocyte proteins as a starting point [9]. This set was

complemented with high-abundance erythrocyte proteins as listed

in [16]. While D’Alessandro and colleagues [9] originally report

over 1900 entities, we have found that less than 1500 gene

identifiers could be reliably mapped to identifiers of Universal

Protein Resource (UNIPROT) at the time of conducting this

study. This discrepancy is partially a result of dynamics in

biological data repositories – databases used by us in the course of

this study were more recent than D’Alessandro and co-workers

had used. Additionally, a large number of entities in the above

study referred to ‘‘groups’’ or ‘‘complexes’’ and as such were

simply redundant.

Construction of phylogenetic profiles
For each of 1410 human erythrocyte proteins, three iterations of

PSI-BLAST sequence search [17] were performed on the Refseq

Protein database (version from March 2012), using E-value

threshold of 0.001. Hits to protein sequences longer than 120%

of the query sequence, and those shorter than 80% of the query

sequence were discarded. Then, for each query protein, the

phylogenetic profile was constructed: a vector L indexed by

identifiers of selected species from the NCBI Taxonomy database.

Alternative approach that used orthologous groups relied on

information provided by eggNOG 2.0 database [18]. Its authors

provided a mapper between Uniprot identifiers and orthology

groups.

Calculation of phylogenetic profile similarity
For two phylogenetic profiles, Li and Lj, a scalar product Dji was

calculated Li * Lj equal to the number of species common to the

two profiles. For two proteins, i and j, we define the similarity S(i, j)

of their two profiles as follows.

S(i,j)~Dij
2=Ni �Nj

where N denotes length of vector L of the given phylogenetic

profile.

Python implementation of the algorithm
The algorithm together with necessary scripts to automate PSI-

BLAST searches was implemented using the Python package. The

source code and documentation are available at http://github.

com/agnmyk/simphypro. It is worth noting that bitwise opera-

tions are preformed using Python bitarray package. In comparison

to the solution where Python dictionaries are used to represent

information on taxon ids, utilizing bitwise operations resulted in a

substantial gain in efficiency. For a test set of 13000 proteins the

processing time was reduced about ten times.

Clustering of proteins using phylogenetic profile
similarity

Similarity S was taken into account only for pairs of proteins for

which shorter of phylogenetic vectors had a length of at least 60%

of the longer one. This condition was introduced to avoid a

situation in which natural connections between the majority of

proteins (coming from the fact they almost all are present in

Metazoa) would result in lowering the resolution of the clustering.

The final analysis was performed using the CLANS software

[19]. The proteins were clustered using Fruchterman-Reingold

graph-layout algorithm. The picture of clusters was obtained using

similarity threshold of 0.6 for clarity, however the clusters were

defined using all pairwise similarities meeting the 60% length

requirement (see above). We used convex clustering method of

CLANS software (which groups all sequences with average

sequence-to-cluster attractive forces better than 0.5 of standard

deviation of the average attraction for the dataset) to identify final

clusters.

Cluster analysis
The functional analysis of clusters was performed using the

David systems biology tools [20]. For the statistical analysis of

functional term enrichment, the full erythrocyte protein set was

used as background. Several annotation sources were used, e, g,

Gene Ontology, SwissProt, KEGG, InterPro, Pfam. Thus,

functional annotations related to biological processes and molec-

ular functions were considered together in the same manner. The

figure showing counts of erythrocyte proteins mapped onto

taxonomic tree was obtained with iTOL service [21]. Venn

diagram was obtained with VENNY tool [22].

Results

Clustering of the HRBC proteome by similarity of
phylogenetic profiles

Out of 1410 human erythrocyte proteins, 1409 had at least one

significant hit to a non-human protein in a BLAST sequence

similarity search. Using phylogenetic profile similarity threshold

equal to 0.6 (see Methods), a picture with seven distinct clusters

and an unclustered ‘‘cloud’’ emerges (see Fig. 1). The seven

clusters group in two ‘‘super-clusters’’. Additionally, there are a

few proteins that tend to connect clusters (the effect is more

pronounced when lower threshold of similarity score is used),

however as the connections appear in the same order as the

increase in average length of taxonomic hit vector per cluster, we

consider them artifacts of the method. Summary of the clusters

content (number of proteins and overview of taxonomic distribu-

tion) is presented in Table 1.

Overall, there is no apparent relationship between the number

of taxonomy hits (number of species possessing a homologue) and

query protein length (see Fig. 2), both for proteins known to

harbour disease mutations (see Methods) and for all other proteins,

yet a fraction of the longest proteins tend to have fewer taxonomy

hits. This is not surprising since long, multidomain proteins tend to

occur more often in fewer organisms – mostly in the multicellular

eukaryotes [23,24]. When individual clusters are examined, they

do differ in average protein length (ANOVA P-value below

0.0001). The cluster C, with average protein length above 600

residues, differs significantly in average protein length from the

Phylogeny of the Erythrocyte Proteome
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other clusters. Also, the unclustered cloud (avg length above 500

residues) differs significantly from clusters A, B, C, E and F).

Then, not surprisingly, there are sharp differences between the

phylogenetic clusters in terms of number of taxonomy hits

(ANOVA P-value below 0.0001, see Fig. 3). Cluster A proteins

have usually a low number of hits, up to a few hundreds. Cluster C

includes proteins with between 50 and 100 hits. Cluster D has a

very low number of hits, below 50. Cluster B includes only proteins

with more than 1000 taxonomy hits. The unclustered ‘‘cloud’’

contains proteins differing in hit number, from just a few up to

more than one thousand.

The clusters differ not only in the number of taxonomy hits but

also, quite expectedly, in their phylogenetic spread (see Fig. 4 and

Fig. S1). Most widespread are the cluster B proteins, including

more than 14% of the erythrocyte proteome, that are present in all

eukaryotes, but also in all major bacterial groups, in Archaea and

in dsDNA viruses. Second in line are cluster G proteins, just 1% of

the RBC proteome, present in most taxa, but almost absent from

three out of five archaeal taxa (Nanoarcheota, Thaumarcheota

and Koracheota), also almost absent from 8 out of 23 bacterial

taxa (e.g. Dictyoglomi, Tenericutes, Elusimicrobia, Gemmatimo-

nadetes). Cluster F proteins, 2% of the RBC proteome, are present

in all Archaea and most Eukaryota (excluding Rhodophyta and

Jakobida), but absent from most bacterial taxa (modest presence in

Proteobacteria, Chlamydiae, Actinobacteria and Nitrospirae).

Cluster E (1%) is present throughout Eukaryotes, in Crenarcheota,

and Eurarcheota, and has a patchy distribution in Bacteria (similar

to cluster F, with addition of Cyanobacteria and Chrysiogenetes).

Cluster A (as much as 38% of the RBC proteome) seems to be

Eukaryote-specific, but with minor presence in bacterial and

archaeal taxons (e.g. Proteobacteria, Cyanobacteria, Chloroflexi,

Firmicutes, Actinobacteria, Eurarcheota). Cluster C (13% of the

RBC proteome) appears to be Metazoa-specific, but with minor

presence in plants, Amoebae, fungi, a few unicellular eukaryotic

taxa, and in bacterial and archaeal taxons (e.g. Proteobacteria,

Cyanobacteria, Eurarcheota). Cluster D (6%) is by large verte-

brate-specific, yet with some presence in echinoderms, hemichor-

dates, arthropods and plants.

The limitations of our clustering approach are reflected in the

presence of the unclustered ‘‘cloud’’ including 26% of the

Figure 1. Phylogenetic clustering of erythrocyte proteins. Red: cluster A, dark blue: cluster B, light blue: cluster C, yellow: cluster D, magenta:
cluster E, green: cluster F, brown: cluster G, grey: unclustered cloud. Plot in log scale.
doi:10.1371/journal.pone.0054471.g001

Table 1. Summary data for obtained clusters.

Cluster ID No of proteins
Percentage of HRBC
proteome Overview of taxonomic distribution

A 521 37% Mostly Eukaryotes

B 210 15% Bacteria, Archaea and Eukaryotes

C 176 12% Mostly Metazoa

D 78 6% Mostly Chordata

E 11 ,1% Like B, but with some branches missing from all three classes

F 29 2% Eukaryota and Archaea

G 15 1% Like B, but with some branches missing from Bacteria

CLOUD 370 26% All three classes but with the strongest representation of Metazoa

For detailed breakdown of taxonomic distribution at the phylum level, see Fig. 4.
doi:10.1371/journal.pone.0054471.t001

Phylogeny of the Erythrocyte Proteome
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proteome. An interesting separation is visible in the classification

of viruses. HRBC proteins from all clusters have a significant

number of homologs in genomes of dsDNA viruses (especially

clusters B and G, for which approx. half of cluster members have

homologues in this virus group) but almost none in dsRNA,

ssRNA and retro-transcribing viruses.

To assess the depth of our approach, we attempted to reproduce

the above analysis using orthologous groups instead of PSI-BLAST

searches as a basis for protein clustering. However, not only a very

small number of proteins could be mapped to orthologous groups

(in total we have obtained 368 groups from the initial set of 1410

proteins), but also phylogenetic depth of absolute majority of them,

as reported by eggNOG 2.0 [18] database, was very shallow. Only

four groups had more than 10 species reported. Identification of

an orthologous gene relies on the availability of complete genomes

(630 are available in the eggNOG 2.0 database), which limits the

depth of the search compared to using all proteins from a database

such as RefSeq.

Functional analysis of the clusters
The species hit by proteins from each cluster overlap to different

extents (see Fig. 5). Comparing four largest clusters in terms of

number of proteins there are 2248 species specific to cluster B –

these are mostly bacteria. There is also a huge number (1667) of

species common to two major clusters, A and B. Also these are

mostly bacterial species. There are 128 species common to four

major clusters, and these include mostly animals, but also a few

plants and fungi.

The proteins in the seven clusters are enriched in different

functional annotations. In the gene set enrichment approach (see

Methods), the method itself treats the conceptually different

biological process annotations and molecular function annotations

in the same manner. As expected, judging from the broad

taxonomic spread, cluster B that is composed of proteins with very

broad phylogenetic spread is involved in basic cellular functions

while the other clusters, more focused in taxonomic spread, possess

functions typical of multicellular organisms (see Table S1).

The cluster B proteins, 14% of the erythrocyte proteome, are

present in all taxons, reflecting the most basic cellular machinery

necessary for most living cells, e.g. processes such as glycolysis and

pyruvate metabolism, molecular functions such as oxidoreductase

activity, nucleotide binding (see Table S1). These proteins have

sequence hits to more than 1000 species each. The cluster C may

be linked to multicellularity, and accordingly is enriched in

molecular functions involving membrane proteins, and processes

such as cell adhesion. The vertebrate-specific cluster D is most

likely made of proteins responsible for specific functions that

evolved within this group. It includes secreted proteins, EF-hand

calcium binding proteins (including the S100 family) and apoptotic

proteins (albeit the significance of the latter is seen only before the

multiple test correction). The eukaryote-specific cluster A is

enriched in proteins involved in biological processes such as

protein transport, ubiquitination pathway, and GTPase signalling.

The relatively small and relatively ubiquitous clusters E, F and G

are enriched in glutathione S-transferase domains, proteasome

subunits, and WD40 repeats, respectively. No significant enrich-

ment of functional terms is seen for the unclustered cloud.

Figure 2. Protein length versus no of taxonomy hits. Left pane – disease mutation proteins. Right pane – other proteins. Red: cluster A, dark
blue: cluster B, light blue: cluster C, yellow: cluster D, magenta: cluster E, green: cluster F, brown: cluster G, grey: unclustered cloud. Plot in log scale.
doi:10.1371/journal.pone.0054471.g002

Phylogeny of the Erythrocyte Proteome
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Some more specific signalling pathways can be detected to be

enriched within the clusters. The cluster C (multicellular

eukaryotes: Metazoa, plants) is involved in cell movement, cell

growth, cell development, and its specific pathways include the

JAK/STAT signalling (e.g. STAT5B, STAT6 molecules) and the

erbB pathway. Cluster A (eukaryote-specific) includes small

GTPase signalling mediators, e.g. KRAS, RHOB, MAP2K1,

MAP2K2 and MAPK1. Finally, the cluster D, with the narrowest

species spectrum (present only in vertebrates), includes apoptosis

signalling mediators such as TNF, TRADD, MAP3K1 and BMF.

Functions of the proteins in the unclustered ‘‘cloud’’ do not reach

high statistical significance.

Another difference between the clusters can be gleaned by

analysing disease-causing mutations, as included in the HUMSA-

VAR list in the Uniprot database, www.uniprot.org. Mutations are

not evenly distributed in the erythrocyte clusters (See Fig. 6). The

erythrocyte proteome studied herein includes 54 proteins with

‘‘disease mutations.’’ Cluster A (eukaryote-specific), which makes

up 38% of the erythrocyte proteome, and includes 23% of

erythrocyte disease mutation proteins, has significantly fewer

mutations than expected by chance (binomial test p-value 0.007).

Cluster B (ubiquitous), constituting 14% of the proteome, has 25%

of disease mutation proteins, significantly more than expected by

chance (p-value 0.006). Thus, the modest mutation sample

available suggests that disease mutations are under-represented

in the cluster specific to eukaryotic organisms while they tend to be

overrepresented in the most common cluster that includes

archaeal, bacterial and eukaryotic proteins.

Discussion

In this study, we separated the red blood cell proteins into

biologically relevant clusters using a visual approach to clustering

by phylogenetic similarity. We obtained seven clear-cut clusters

and a ‘‘cloud’’ of proteins whose phylogenetic profiles are specific.

The clusters do differ in their phylogenetic profiles. Some clusters

are taxonomically very widespread (cluster B) while others are

specific to a taxonomic branch (e.g. the vertebrate-specific cluster

D, Metazoa-specific cluster C). So, erythrocyte protein clusters are

somehow ‘‘old’’ or ‘‘young’’ depending on their taxonomic

distribution.

The clusters are over-represented with specific functions. Again,

some functions are ‘‘older’’ and some seem to be acquired later in

evolution. The only clusters that may be in part related to red

blood cell formation are the vertebrate cluster D and the metazoan

cluster C.

The most significant functional annotations elucidated in this

work differ from those of d’Alessandro and colleagues [9] since

they performed an analysis involving the totality of the erythrocyte

proteome against the full human proteome while we analysed

separate clusters, defined phylogenetically, against the erythrocyte

proteome background. Nevertheless, some of the top functional

categories found in this work overlap with those of d’Alessandro

since the analysed protein sets were overlapping, and the software

tool was conceptually similar (Ingenuity IPA and David). For

individual protein clusters, we did not observe prevalence of

annotations from the conceptually different general annotation

types, i.e. biological processes and of molecular function. Both

Figure 3. Protein length versus number of taxonomy hits, by cluster. Red: cluster A, dark blue: cluster B, light blue: cluster C, yellow: cluster
D, magenta: cluster E, green: cluster F, brown: cluster G, grey: unclustered cloud.
doi:10.1371/journal.pone.0054471.g003

Phylogeny of the Erythrocyte Proteome
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biological processes and molecular function terms occurred for

most clusters (see Table S1). This probably results from the

difficulty of strict separation of the two annotation types, i.e.

specific molecular annotations are often linked to specific

processes.

The different clusters might be expected to reflect three

evolutionary steps important for the evolution of erythrocyte: 1)

formation of the eukaryotic cell, 2) appearance of blood and

erythrocytes, 3) loss of nuclei in mammalian erythrocytes.

However, our phylogenetic profile clustering method too coarse-

grained to capture exactly that level of detail. The chimeric origin

of eukaryotes is not captured precisely by the clustering. Yet, it is

to some degree reflected in the cluster B with the largest taxonomic

spectrum (Bacteria, Archaea, Eukaryotes), where proteins do have

both information-processing and metabolic (operational) functions,

as expected for archaeal and bacterial origins, respectively [25].

Cluster F, which contains eukaryotic and archaeal proteins

represents the known evolutionary history of proteasome. Cluster

Figure 4. Counts of erythrocyte proteins in phylogenetic clusters mapped onto taxonomic classification. The classification has been
shown up to a division/phylum level, except for Metazoa which have been expanded to show differences between different classes of animals
(expanded to the equal level of depth) and Proteobacteria which have been expanded to include its classes. Red: cluster A, dark blue: cluster B, light
blue: cluster C, yellow: cluster D, magenta: cluster E, green: cluster F, brown: cluster G, grey: unclustered cloud. Counts are normalized against cluster
size.
doi:10.1371/journal.pone.0054471.g004

Phylogeny of the Erythrocyte Proteome
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A, which contains mostly eukaryotic proteins, could correspond to

establishing major metabolic constituents of a eukaryotic cell.

Cluster C, having a narrower spectrum of higher eukaryotic

species, mostly Metazoan, could correspond to the step of

establishing tissues. And finally, cluster D, almost exclusive to

Chordata could be linked functionally to erythropoiesis and

occurrence of blood. The clusters identified do not allow to trace

recent evolution of erythrocytes (loss of nuclei in mammals),

probably because the starting point of the analysis was erythrocyte

itself, i.e. an already ‘‘truncated’’ version of the cell (no nucleus).

The 28% of erythrocyte proteins are unclustered in our

approach. This is a substantial part of the proteome. An example

of these unclustered proteins are hemoglobins. The ancestral gene

for hemoglobin is ancient and its products served many different

roles in the history, freed from evolutionary pressure by gene

duplication and whole genome duplication. Thus, hemoglobins,

and many other proteins in the unclustered cloud represent a set of

genes with highly complex history. Their separation (presence

outside of any cluster) indicates that there is very little in common

between these proteins. They might be an interesting set of

proteins to analyze individually.

The cluster A has significantly fewer than expected disease-

linked mutations in its genes, which is logical considering the

functions crucial for eukaryotic life. Conversely, the most

widespread cluster B including proteins common to all forms of

life has over-representation of disease mutations, consistent with its

functions involving basic cell metabolism.

Construction of phylogenetic profiles based on RefSeq database

leads to a significant noise in the profile. For example, we have

found that E. coli proteins were spread across 60 different

taxonomy ids. At first, it seems that our approach is not reliable

enough, compared to careful construction of phylomes. However,

as we show in this study, the graph layout approach employed

using CLANS software provides enough granularity to efficiently

cluster proteins of a single cell, based on presence of homologous

proteins across proteomes. Clustering based on orthology is not

Figure 5. Venn diagram of species counts for the four largest
(in terms of the number of HRBC proteins) clusters.
doi:10.1371/journal.pone.0054471.g005

Figure 6. Fractions of proteins from different clusters among disease mutation proteins (lower pie chart) and other proteins (upper
pie-chart). Red: cluster A, dark blue: cluster B, light blue: cluster C, yellow: cluster D, magenta: cluster E, green: cluster F, brown: cluster G, grey:
unclustered cloud.
doi:10.1371/journal.pone.0054471.g006
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powerful enough because it relies on the availability of fully

sequenced genomes and these data always lag behind draft

genomes or partially sequenced organisms. On the other hand,

our method is only efficient for coarse-grained evolutionary steps

description. As clusters are perfectly separated, relations between

clusters (other than distances) are missing, therefore relatively

recent or very old changes, captured perfectly by other methods,

might be missing from our analysis. As such, our approach might

be a complement to more fine-grained methods, for which

clustering based on phylogenetic profiles could provide a noise-

resistant starting point.

Supporting Information

Figure S1 Counts of erythrocyte proteins in phyloge-
netic clusters mapped onto taxonomic classification. The

classification has been shown up to a ‘‘division/phylum’’ level,

except for Metazoa which have been expanded to show differences

between different classes of animals (expanded to the equal level of

depth) and Proteobacteria which have been expanded to include

its classes. Red: cluster A, dark blue: cluster B, light blue: cluster C,

yellow: cluster D, magenta: cluster E, green: cluster F, brown:

cluster G, grey: unclustered ‘‘cloud’’.

(TIF)

Table S1 Selected functional annotations overrepre-
sented in the clusters, as calculated by the David tool
[24]. Annotations separated into Biological processes, including

pathways (upper part of the table) and Molecular functions,

including subcellular localisation (lower part of the table). Percent:

percentage of proteins within a cluster annotated with a term. Fold

enrichment: enrichment in the functional annotation within the

cluster as compared to the background set (whole RBC proteome).

Benjamini: enrichment P-value with Benjamini correction for

multiple testing. Annotation category: the database from which

given annotation cam.

(DOC)
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