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Abstract

The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late
Eocene – Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some
modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic
greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates
that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness
of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both
poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal
gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the
Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene)
neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is
especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of
asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly
differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern
high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary
ecosystem structure and stability.
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Introduction

It would seem only logical to place the origin of modern polar

marine faunas largely within the major global cooling event that

occurred between the late Middle Eocene and the Eocene –

Oligocene boundary (i.e. approximately 34–41 m.y. ago) [1], [2].

A variety of both paleontological and phylogenetic evidence has

been presented over the years to suggest that this is the case in

both the Antarctic and North Pacific, with the latter subsequently

providing the bulk of the modern Arctic fauna [3–5]. Important

confirmation that such a process did indeed take place in

Antarctica has been obtained recently from the highest strati-

graphic levels of the Eocene La Meseta Formation, Seymour

Island, Antarctic Peninsula. Here, the sudden appearance of cold-

water assemblages of both marine invertebrates and vertebrates

has been dated to almost exactly this time interval [6–8]. It has

been estimated that the invertebrates suffered a 50% drop in

taxonomic diversity at this time [9] and this may well have been

a period of significant steepening of latitudinal gradients in

taxonomic diversity worldwide [10], [11].

Nevertheless, there has also been a small but persistent volume

of evidence to suggest that Antarctic marine invertebrate faunas in

particular may be of considerably greater antiquity. This again

comes from both paleontological and phylogenetic sources and is

such as to suggest that some modern taxa are of Early Cenozoic,

Cretaceous, or even greater age [12–18]. In a recent comprehen-

sive taxonomic reassessment of Paleogene molluscan faunas from

Antarctica, Beu [19] showed that more than 15% of the Paleocene

taxa and 30% of the Early – Middle Eocene could be referred to

modern genera. Furthermore, when both the gastropod and

bivalve components are considered at the family level, remarkably

persistent compositional trends can be traced through much of the

Cenozoic. This is particularly so within the gastropods where

families/family groups such as Trochidae, Naticidae, Conoidea

( = Turridae, s.l.) and above all the Buccinidae, s.l. maintain their

dominance from the Early Paleocene through to the present day.

The modern Antarctic molluscan fauna, at least, may have had its

roots very firmly within the Early Cenozoic greenhouse world

[19], [20].

It is therefore a matter of considerable interest and importance

to establish the nature and scale of polar marine faunal

differentiation through the Early Cenozoic greenhouse interval.

If certain elements of modern faunas were indeed flourishing at

that time then it would indicate that factors other than low

temperature per se played a key role in their formation. It is the

intention of this study to further this line of enquiry using

a combination of datasets from both the modern and fossil records

to isolate the key ecological parameters affecting the formation of

polar marine faunas.

Methods

Even after taking into account the inherent biases within the

fossil record, it is apparent that shelled gastropods underwent

a dramatic evolutionary radiation globally through the Cenozoic

era [21–24]. From comparatively low numbers immediately
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following the K – Pg mass extinction event they rose to some

60,000+ species at the present day [25–27] and, with the possible

exception of the polychaetes and nematodes (whose total numbers

of species are still very poorly known), are the most taxonomically

diverse group in modern shallow seas. By far the largest gastropod

clade at the present day is the Neogastropoda which probably

contains in the region of 26,000 species (Appendix S1). As the

name implies, it is also the youngest clade, with a time of origin in

the Early Cretaceous and major phase (or phases) of radiation

throughout the Cenozoic [28–30]. Geographically widespread, it

is ideal for regional scale biogeographical analyses and in this study

a direct comparison will be made between the living neogastropod

faunas of both polar regions and a composite tropical fauna to see

the end-product of clade differentiation through the Cenozoic.

This will then be compared directly with approximately similar

datasets taken from the Paleocene fossil record. Can regional

patterns of faunal differentiation seen at the present day be

detected as far back as the Paleocene (i.e. the initial epoch of the

Cenozoic era)?

The modern tropical neogastropod fauna used in this study is an

average of that found at six principal localities: two from the

Americas, Tropical Western Atlantic and Panamic province, and

four from the western Pacific: Philippines, Guam, New Caledonia

and French Polynesia (with further details of all these localities

being given in the Appendix S1). The Arctic fauna comprises

a compilation of all taxa occurring north of 60uN, but with the

Bering Sea and Sea of Okhotsk excluded. The Antarctic fauna

includes all taxa currently recorded from south of the Polar Front,

and is a mixture of both shelf and bathyal taxa (which intergrade

in the Antarctic) (Appendix S1). A comparison of continental shelf

areas shows either of the two polar regions to be very much larger

than the six tropical localities combined (Appendix S1, table 1).

Paleocene gastropod data were selected for 19 regional localities

ranging from 63uN to 64uS paleolatitude; these were obtained

from a variety of published sources, supplemented by the

Paleobiology Database (http://paleodb.org), and, in a small

number of cases, reference collections (Appendix S1). Key

selection criteria included a clear demonstration that the fauna

was reasonably taxonomically complete, and restricted, in essence,

to a single lithostratigraphic formation. It will become apparent

from the Appendix S1 that these 19 faunas vary somewhat in age

and thus were not strictly contemporaneous. Nevertheless, given

the relatively imprecise nature of Paleocene dating on a global

scale, and the apparent success of using time-averaged faunas in

similar Mesozoic biogeographical investigations [31–33], this was

not thought to be a major impediment to the study.

In the following analysis the highest-latitude Paleocene gastro-

pod fauna from the Northern Hemisphere, the prolific assemblage

from West Greenland (64uN) is counterbalanced by a composite

southern high latitude fauna comprising assemblages from

southernmost Patagonia, Antarctic Peninsula, S.E. Australia and

New Zealand (55u–64uS) (Appendix S1). Each of the latter faunas

contains elements of Zinsmeister’s [34] distinctive Weddellian

Province and there is a considerable degree of faunal overlap

between them [35], [36]. Although a low-latitude gastropod fauna

can be traced from S.W. Nigeria (2uS) through the Western Desert

of Egypt (14uN) to S.E. Pakistan (5uS) [37], [38] (Appendix S1), it

would appear to be significantly less diverse than that present in

N.W. Europe. Coral – algal patch and larger reef structures were

relatively common in western Tethys during the Early Paleocene

and these clearly extended westwards into the Paris and Belgian

basins (43u–44uN) [39–41]. As the Danian gastropod faunas from

both these regions show strong similarities with both N.W.

Germany (45uN) [42], [43] and Fakse, Denmark (49uN) (Appendix

S1), all four localities have been combined into a Paleocene

‘‘Tropics – N.W. Europe’’ category. Faunas from six separate

Paleocene formations on the U.S. Gulf Coast (35u–39uN) have not

been combined as the precise lateral equivalence of stratigraphic

levels in the western gulf (i.e. Texas) and eastern gulf (i.e. Alabama)

has yet to be fully established [44].

Quantitative comparisons between tropical and polar/subpolar

faunas were made for both the present day and Paleocene using

a series of standard statistical tests and an analysis of rank/

abundance distributions. The family/family group level is used in

these analyses and particular attention paid in the ensuing

discussion to their trophic characteristics.

Results

a) Distribution of Modern Neogastropods
It should be emphasised that the total number of gastropod

species occurring at the present day in the Indonesian –

Philippines core region of the Indo-West Pacific province is

currently unknown but could be at least 10,000 species [45]. The

steepest regional latitudinal gradients in gastropod diversity occur

from both this region and the core of the Atlantic – Caribbean –

East Pacific province (sensu [46], with the estimated number of

species being in excess of 5,000 species – JAC unpublished data) to

both poles (Arctic –388 species, Antarctic –450 species). To get

a conservative estimate of tropical neogastropod diversity at the

present day, a mean value was taken from the six selected localities

within the 19 commonest families; these were then compared

directly with absolute values for both polar regions (Fig. 1). When

such a comparison is made it is apparent that there are more than

twice as many families per clade in the tropics (n = 19.00) as at the

poles (Arctic = 9.00, Antarctic = 9.00; Appendix S1, table 2) (with

these differences being statistically significant using a Wilcoxon

Signed Rank Test, P,0.05), and considerably more species per

family (Tropics = 48.32, Arctic = 20.11, Antarctic = 16.22) (signif-

icant in both cases at P,0.05). However, it is clearly not a case of

there simply being fewer species in each of these 19 families at the

poles, as in both cases the Buccinidae, s.l. is clearly the dominant

family. Together with the Mangeliidae it comprises 89% (by

species number) of all Arctic neogastropods, and in the Antarctic

the only other significant occurrences include a comparatively

small number of Muricidae and former members of the Turridae,

s.l., now reclassified within the Conoidea families Pseudomelato-

midae, Raphitomidae and Mangeliidae (Buccinoidea+Conoi-

dea = 74% of all Antarctic neogastropods). Although the distribu-

tion patterns for both the Arctic and Antarctic are highly

significantly different from that of the Tropics (Kolmogorov-

Smirnov Two-Sample Test, P,0.001), they are not significantly

different from each other (P.0.05).

To investigate these patterns further, rank/abundance distribu-

tions were calculated following a procedure advocated by

Magurran [47]. This involves plotting rank order of the families

in each fauna (i.e. from most to least speciose) against log% of the

total number of species per fauna (Fig. 2). Classical linear

regressions were fitted to the three distributions obtained and

both the slopes and Y intercepts of these compared using an

ANCOVA procedure in Minitab 15. These three lines were

compared with each other and also with three generated for

corresponding Paleocene faunas (see below) using Bonferroni

Simultaneous Tests. This analysis confirms that both the modern

Arctic and Antarctic faunas have much steeper slopes and are thus

much less evenly distributed than that of the Tropics (P = 0.000

and P = 0.0165, respectively) (Fig. 2). Again, they are both highly
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significantly different from the Tropics, but not significantly

different from each other (P = 0.4392).
b) Distribution of Paleocene Neogastropods

At first sight the distribution pattern obtained when the total

number of gastropod species from each of the 19 regional localities

is plotted against paleolatitude seems to be anomalous (Fig. 3).

Maximum numbers of species, and in particular those from the

Figure 1. Comparison of present day regional neogastropod faunas between the Arctic, Tropics and Antarctic. The histograms depict
the number of species occurring within 18 common neogastropod families and one family group (Buccinidae, s.l.) at each locality. Further details of
how these three faunas were compiled are given in both the text and Appendix S1.
doi:10.1371/journal.pone.0054139.g001
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West Greenland, southern Poland and Belgium localities (Appen-

dix S1), occur in the interval 40u–63uN rather than a more

equatorial position and this could perhaps be taken as an

indication of a very imperfect fossil record. Nevertheless, it has

to be borne in mind that the tropics extended to considerably

higher paleolatitudes in the Paleocene and a coral reef belt can be

traced through at least part of N.W. Europe (see above). Both at

the present day and in the past there is a strong correlation

between the taxonomic diversity of reef-building and reef-dwelling

organisms such as gastropods [48–50]. Although corals occur

extensively in the more equatorial belt of limestones traced from

S.W. Nigeria, through Egypt, to S.E. Pakistan, reefs have not been

recorded in this region. In addition, Paleocene reefs are unknown

in the mid- to high-latitudes of the Southern Hemisphere [39]. It is

possible that the high diversity value for West Greenland

represents, at least in part, a northward extension of the N.W.

European tropical fauna by some form of warm-water current.

This could be analogous to the northward extension of tropical/

subtropical faunas at the present day in the western Pacific by the

Kuroshio current [51]. In any event it is apparent that there must

have been a very steep drop in taxonomic diversity at approxi-

mately 50u–60uN, similar in many ways to that seen at the edge of

the modern coral reef belt at 20u–30uN [51], [52]. Contrary to

recent reports from the Early Cenozoic terrestrial realm [53–55],

there could in fact have been a very steep latitudinal diversity

gradient in the Early Cenozoic marine realm at a high

paleolatitude (Fig. 3).

It is important to emphasise that a distinct Early Paleocene

(Danian) Arctic Ocean marine fauna can be detected to the north

of the West Greenland locality (i.e. at 70u+N). Even though the

Arctic Ocean was very much smaller at this time and probably

only had tenuous connections with the rest of the world ocean,

elements of this fauna can be traced from Ocean Point, Alaska

(upper Prince Creek Formation), through Ellesmere Island (Mt.

Moore Formation) to Svalbard (Barentsburg and Grumentdalen

formations) [56–62]. So far only approximately 11 gastropod

species (including just one neogastropod) have been indentified

within this fauna but both they and the more common bivalves

have clear temperate affinities. This Arctic Ocean marine fauna

also has strong taxonomic links with the similarly-aged Cannonball

Formation of North and South Dakota, a unit that has been widely

interpreted as being the product of a major southerly incursion of

north polar waters [62], [63]. Although the gastropod fauna of the

Cannonball Formation is in need of taxonomic revision, it is well

preserved and known to comprise at least 29 species with strong

temperate affinities [64]. If this was taken to be representative of

a true Arctic Ocean locality, then it would add further weight to

the concept of a very steep Paleocene latitudinal diversity gradient

in the highest northern latitudes (Fig. 3). Taxonomic links between

the Cannonball Formation and Agatdal Formation of West

Greenland [65], [66] (Appendix S1) suggest that the latter fauna

is indeed a genuine admixture of cold- and warm-water types (see

below).

As might be expected, the Neogastropoda forms a smaller

proportion of the global Paleocene gastropod fauna (34%) than at

the present day (42%), but these differences are not statistically

significant (x2 test, P.0.05). It is still the largest clade but when

viewed on its own has a much flatter latitudinal profile than the

total gastropod fauna (Fig. 3). It is possible that the only steep

latitudinal gradient in Paleocene neogastropods would have been

Figure 2. Rank/abundance plots for three Recent and three Paleocene regional neogastropod faunas. Lines shown are fitted linear
regressions for each of the six faunas. Further details of how the plots were constructed, and the regression lines compared, are given in the text.
doi:10.1371/journal.pone.0054139.g002
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from West Greenland northwards into the Arctic Ocean. In the

Paleocene a significant proportion of tropical gastropod faunas was

still composed of clades such as the Vetigastropoda and, in

particular, the Cerithioidea.

It is apparent that the contrast in distribution of neogastropods

between the three regional faunas is not so strong in the Paleocene

as at the present day (Fig. 4). The Southern high latitudes is the

most distinctive fauna, where there is again a strong domination

by the Buccinidae, s.l. taxon. In the Antarctic this category

includes a probable representative of the Southern Ocean genus

Probuccinum, as well as a distinctive buccinid that is close to the

modern Arctic genus, Colus [67]. Similarly, the Paleocene of SE

Australia and New Zealand has yielded Cominella, Austrofusus,

Buccinulum and Penion, all of which are known from Australasian

regions at the present day [35]. The Turridae, s.l. (see Appendix

S1 for notes on the use of this taxon in the Paleocene) is the second

most prominent family/family group in the Southern high

latitudes and includes at least ten distinct genera from four

modern conoidean families. However, no modern Southern

Ocean genera have yet been recognised in this fauna. The only

other prominent family in this region is the Turbinellidae (Fig. 4),

but nearly all of these occurrences are from just one locality, New

Zealand.

When the Paleocene rank/abundance plots are considered

(Fig. 2) it is interesting to note that the fitted regression line for the

Southern high latitudes plots close to that for the modern

Antarctic, from which it does not differ statistically (P = 1).

However, it also has to be pointed out that, although this line

plots away from those of the other two Paleocene localities, it

cannot be statistically separated from them either. In addition

there is no significant difference between all three distributions

(Fig. 4) using a K-S two sample test. Nevertheless, there are some

reasonably strong resemblances between the two polar localities in

that Buccinidae, s.l. and Turridae, s.l. are again the two

numerically dominant family groups in the West Greenland fauna

(Fig. 4). Unfortunately, virtually all of the buccinid determinations

in the study by Kollmann and Peel [66] can only be regarded as

provisional and it is not possible to say with any degree of certainty

whether there are representatives of modern genera in this fauna.

This is particularly so of identifications of southern genera such as

Penion and Cominella, which seem most unlikely (A.G. Beu, pers.

comm. 2012). In addition, although the Turridae, s.l. fauna from

West Greenland contains representatives of approximately five

modern conoidean families, there appear to be no Mangeliidae

(the dominant Arctic family at the present day) [66]. Two other

prominent families in the West Greenland fauna are the

Fasciolariidae and Cancellariidae (Fig. 4).

Although a detailed comparison between West Greenland and

Tropics – N.W. Europe must await further taxonomic investiga-

tions, it is almost certain that at least a small number of species are

common to the two regions. The tropical nature of the West

Greenland fauna is reinforced by various representatives from

families such as Neritidae, Cypraeidae and Harpidae, but

counterbalanced against this are a number of significant differ-

ences between the two regions. The relative proportions of both

the Vetigastropoda and Cerithioidea clades are much smaller in

this fauna, as are the numbers of neogastropods in families such as

the Mitridae and Volutidae (Fig. 4). The Buccinidae, s.l. is clearly

much more diverse and there are at least four taxa from the

hypsogastropod family Aporrhaidae, which is extremely rare in the

tropical localities used in this study. The logical conclusion would

seem to be that this is a genuinely mixed fauna comprising both

tropical and temperate elements.

Figure 3. Paleocene (,60 Ma) latitudinal diversity gradient. Full details of how the 19 Paleocene faunas on which this gradient is based were
compiled are given in Appendix S1. Latitudinal gradient for neogastropods only shown in green. Paleolatitudes taken from the Paleobiology
Database.
doi:10.1371/journal.pone.0054139.g003
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The rank/abundance plots reveal the West Greenland and

Tropics – N.W. Europe faunas to be almost identical in both slope

and intercept (Fig. 2). The former of these is highly significantly

different from the modern Arctic fauna (P = 0.0158) but the latter,

although plotting away from the modern tropics is not significantly

different from it (P = 0.4457). The difference between West

Greenland and its modern counterpart is clearly very much

greater than that between the Southern high latitudes and present

day Antarctica.

Discussion

Although there is still a considerable degree of detail to be filled

in, especially from the mid-latitudes, it is likely that regional

latitudinal gradients in taxonomic diversity exhibited by modern

gastropods from the tropics to the poles are the steepest in the

entire marine realm. The fact that this pattern is substantially

repeated in the largest component clade, the Neogastropoda

(Fig. 1), is particularly interesting as it must be attributable largely

to evolutionary processes occurring through the Cenozoic era (i.e.

the last 65 m.y.). The balance of evidence would perhaps suggest

that over this period of time the tropics have acted as the primary

source of new taxa which have then gradually disseminated into

higher latitudes; in such a scenario the tropics can be regarded as

an evolutionary source, and the poles as evolutionary sinks [68],

[69]. In essence, regional latitudinal diversity gradients are the

product of a large-scale diffusion process from the tropics to the

poles.

But examination of the distribution patterns displayed in

Figure 1 suggests that the end product of 65 m.y. of evolution is

something more than a random accumulation of neogastropod

taxa in the polar regions. In both cases there has been

a concentration of species within three main taxonomic categories:

Buccinidae, s.l., Muricidae, and closely related conoidean families

such as Mangeliidae, Raphitomidae and Pseudomelatomidae. Of

course, it should be emphasised that at lower taxonomic levels the

Buccinidae, s.l. in the Arctic can be divided into five subfamilies,

Colinae (55%), Buccininae (27%), Volutopsinae (9%), Beringiinae

(7%) and Ancistrolepisinae (2%), none of which has been identified

with certainty in the Antarctic [3], [70], [71]. It is possible that all

of the distinctive Southern Ocean buccinids, including genera such

as Chlanidota, Pareuthria, Probuccinum and Prosipho, could be included

in the subfamily (or tribe?) Buccinulinae [27], [72] but such an

assignment still needs to be fully substantiated [73], [74].

Lirabuccinum, a northern cool-water buccinid, does show a number

of strong similarities with southern temperate forms such as

Buccinulum [72], [75] but there are no true bipolar genera between

the Arctic and Antarctic.

Members of the Buccinidae, s.l. are generalist carnivores

employing both predatory and scavenging modes of feeding.

Their prey is known to include bivalves, polychaetes, small

crustaceans, cirripedes, eggs and carrion, and there is evidence to

show that polar taxa have a much wider range of diets than their

tropical counterparts [76], [77]. In comparison, members of the

Mangeliidae, Raphitomidae and Pseudomelatomidae are thought

to feed very largely on polychaetes, but these are in turn deposit-

feeders and form a very stable food resource in an otherwise

strongly seasonal environment [77]. All three of these families are

indeed more common in the tropics (Fig. 1) but it is the overall

ratio of generalist to specialist feeding types that is very much

higher in polar than tropical neogastropods. If we take Buccinidae,

s.l. plus Conoidea (except Conidae and Turridae) as a measure of

generalist feeders within a regional fauna then the 89% they

comprise in the Arctic and 74% in the Antarctic can be compared

with a figure of just 32% for the Tropics (with these polar –

tropical comparisons being highly significantly different; x2 test,

P = 0.000). The diets of polar muricids are still poorly known but

there is evidence to show that at least one common Antarctic

species, Trophon longstaffi, feeds only very infrequently and on

a variety of bivalve and brachiopod prey. It is characterized by

extremely low metabolic rates and overall would seem to be very

well adapted to long periods of limited food availability [78].

Thus the comparatively small number of successful neogas-

tropod families and family groups in the high-latitude and polar

regions show the characteristics of ecological generalists, and it is

likely that this phenomenon is exhibited in other taxonomic groups

too. For example, within the benthic foraminiferans there is

a distinctive polar Epistominella exigua – Alabaminella weddellensis

assemblage that comprises a group of opportunistic phytodetrito-

vores [79], [80], and similar patterns of differentiation may be

shown by the protobranch bivalves, as well as certain groups of

isopods and cumaceans [81], [82]. But even if a regime of strongly

seasonal primary productivity does favour the development of

more generalist clades in the polar regions, it does not necessarily

explain why taxonomic diversity as a whole should be so low. It

has been argued that variable food supply must have had an effect

Figure 4. Comparison of Paleocene (,60 Ma) regional neogas-
tropod faunas between West Greenland, Tropics – N.W.
Europe, and Southern high latitudes localities. The histograms
depict the number of species occurring within 12 common neogas-
tropod families and two family groups (Buccinidae, s.l. and Turridae, s.l.).
Further details of how these three faunas were compiled are given in
both the text and Appendix S1.
doi:10.1371/journal.pone.0054139.g004
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on both population density and population growth as resource

exploitation is limited to only part of the annual cycle of

production [83]. Such an effect may have been particularly severe

in predominantly predatory groups such as the neogastropods

where the ability to specialize in diet would have been much more

limited than in the tropics. However, logical as these ideas may

seem, they have not yet been fully tested in a rigorous manner.

We may take as a valuable working hypothesis that the

latitudinal gradient in the seasonality of primary productivity may

be of prime importance in determining the structure and

composition of polar marine faunas [79], [84]. Such a gradient

is, of course, temperature – independent and could equally well

apply in a greenhouse as an icehouse world. There is some

evidence to suggest that both the origination and extinction rates

of polar generalists are comparatively low, and that they comprise

relatively stable assemblages over long periods of time [85], [86].

Only a relatively small number of such taxa become established in

the polar regions, but they then tend to be temporally persistent.

With only 19 regional localities available for analysis it is not

possible to be certain about the overall form of latitudinal diversity

gradients in Paleocene gastropods (Fig. 3). There is some evidence

from the Northern Hemisphere to suggest that there was a very

steep drop in taxonomic diversity values at 40u–60uN and this

could reflect the edge of a tropical reef belt. Unfortunately, there

are insufficient data points to indicate whether there is a matching

drop-off in values in the southern mid- to high-latitudes, but there

is at least some evidence from the terrestrial realm to indicate that

the tropics reached to 40u–50uS in southern South America [87],

[88]. It might well be that the Early Cenozoic tropics were

characterised by a broad plateau of relatively high diversity values

stretching from approximately 50uN to 50uS and then flanked by

steep gradients to both poles; however, such a concept has yet to

be fully substantiated. It is more certain that, even though

neogastropod latitudinal gradients were much shallower than their

counterparts at the present day, they show clear indications of

differentiation into polar faunas that exhibit the early stages of

dominance by a small number of families/family groups, and

a tropical fauna with a more even distribution of taxa. Buccinidae,

s.l. are particularly prominent in both polar faunas and would

seem to have been the product of a distinct earliest Cenozoic

radiation event [66], [67], [89].

There is some evidence to suggest that there may have been

a considerable degree of asymmetry in the development of the two

polar neogastropod faunas. Whereas the Paleocene Southern high

latitudes fauna sits close to its modern counterpart in the rank/

abundance plots, West Greenland does not (Fig. 2). The Southern

high latitudes fauna contains representatives of several living

genera and looks altogether more modern in aspect than the

corresponding fauna for West Greenland. Such a disparity may

perhaps reflect nothing more than degree of physical separation of

the respective ocean basins, for although not yet totally isolated

there was already a sizeable Southern Ocean south of 60u
paleolatitude in the earliest Cenozoic. The Arctic Ocean basin, in

comparison, was very much smaller and certainly not connected to

the extensive North Pacific at the time. It would appear that there

are some Paleocene marine strata in the north-west Pacific region

but the earliest records of gastropod genera that dominate cold-

water molluscan assemblages of the North Pacific at the present

day are from the Middle Eocene [90], [91].

Clearly there were many intermediate stages in the evolution of

the global neogastropod fauna between the Paleocene and Recent

and these can only be elaborated by a combination of further

paleontological studies and molecular phylogenetic analysis. It

should be stressed that the role of seasonality in developing polar

faunas could well have been enhanced later in the Cenozoic when

temperature declined significantly. This is particularly so if the

production of sea ice significantly enhanced the development of

diatoms and other primary producers [92]. It is also apparent that

both polar regions have been subject to selective extinction events

since the Early Cenozoic [93] and these, too, will have to be

considered in future studies.

Conclusions

N There is growing evidence to suggest that the origin of modern

polar marine faunas can be traced back to at least the Early

Cenozoic era.

N One of the largest marine clades at the present day, the

Neogastropoda, exhibits not only a latitudinal gradient in

species richness but also a parallel gradient in species evenness.

It is likely that low evenness/high dominance is a characteristic

feature of other polar marine clades too.

N The lack of evenness and preponderance of generalists in polar

neogastropod families points to the key role of seasonality in

primary production in structuring polar marine assemblages.

N The latitudinal gradient in seasonality may be of greater

importance than the latitudinal gradient in temperature in the

early evolution of polar marine faunas. Such a gradient is

temperature-invariant and would have operated through the

Early Cenozoic greenhouse world.

N A global analysis suggests that distinctive polar marine faunas

can indeed be differentiated in the Paleocene, albeit somewhat

stronger in the south than the north. The dominance of the

Buccinidae, s.l. in particular at the present day may be traced

back in both polar regions more than 60 m.y.

N The key role of seasonality in the evolution of polar marine

assemblages may have important implications for contempo-

rary ecosystem structure and function.
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