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Abstract

Genome-wide association studies (GWASs) have discovered association of several loci with Type 2 diabetes (T2D), a
common complex disease characterized by impaired insulin secretion by pancreatic b cells and insulin signaling in target
tissues. However, effect of genetic risk variants on continuous glycemic measures in nondiabetic subjects mainly elucidates
perturbation of insulin secretion. Also, the disease associated genes do not clearly converge on functional categories
consistent with the known aspects of T2D pathophysiology. We used a systems biology approach to unravel genome to
phenome correlation in T2D. We first examined enrichment of pathways in genes identified in T2D GWASs at genome-wide
or lower levels of significance. Genes at lower significance threshold showed enrichment of insulin secretion related
pathway. Notably, physical and genetic interaction network of these genes showed robust enrichment of insulin signaling
and other T2D pathophysiology related pathways including insulin secretion. The network also overrepresented genes
reported to interact with insulin secretion and insulin action targeting antidiabetic drugs. The drug interacting genes
themselves showed overrepresentation of insulin signaling and other T2D relevant pathways. Next, we generated genome-
wide expression profiles of multiple insulin responsive tissues from nondiabetic and diabetic patients. Remarkably, the
differentially expressed genes showed significant overlap with the network genes, with the intersection showing
enrichment of insulin signaling and other pathways consistent with T2D pathophysiology. Literature search led our
genomic, interactomic, transcriptomic and toxicogenomic evidence to converge on TGF-beta signaling, a pathway known
to play a crucial role in pancreatic islets development and function, and insulin signaling. Cumulatively, we find that GWAS
genes relate directly to insulin secretion and indirectly, through collaborating with other genes, to insulin resistance. This
seems to support the epidemiological evidence that environmentally triggered insulin resistance interacts with genetically
programmed b cell dysfunction to precipitate diabetes.
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Introduction

Our understanding of genetic basis of disease risk has greatly

improved in recent years owing to the advent of genome-wide

association studies (GWASs) [1,2]. The genes influencing common

complex or multifactorial diseases and quantitative traits were

largely unknown before GWASs came into being in the year 2006

[2,3]. Results obtained from these studies suggest that multiple

genetic architectures, including common genetic variants with

small effects and rare variants with large effect sizes, underlie

susceptibility to common diseases [1]. Nearly 1,300 GWASs

covering more than 650 diseases and traits have been reported

over the past several years [4]. A typical GWAS involves typing

hundreds of thousands of single nucleotide polymorphisms (SNPs)

in thousands of control and affected individuals, and identifying

SNPs that differ significantly between the two groups in terms of

allele frequency as disease or trait associated [5–7].

Type 2 diabetes mellitus (T2D) is a common complex disease

whose pathogenic mechanisms are known to a considerable extent

[8,9]. Several organs including pancreatic islets, liver, skeletal

muscle, adipose tissues, gut, hypothalamus and the immune system

play a role in its pathogenesis [10]. Numerous multifactorial

mechanisms that include genetic and environmental factors

related to obesity are involved in the development of insulin

resistance and impaired insulin secretion [8,9]. Insulin resistance is

associated with inactivity, obesity and ageing [8]. The insulin

secreting pancreatic islet b cells respond to insulin resistance by

enhancing their mass and metabolic function. T2D however

develops when increase in insulin secretion by b cells is not able to

keep pace with the increase in insulin resistance [8,11]. The latter

thus characterizes both prediabetic condition and T2D. Predia-

betic insulin resistance state however does not always lead to

diabetes; enhanced secretion of insulin by b cells compensates for

deficient insulin action in a considerable proportion of prediabetic

individuals who do not develop T2D. Though the inability of b
cells to secrete enough insulin primarily typifies T2D, the

dysfunction can also be demonstrated in normoglycemic subjects

[12]. Therefore, derangements in both insulin secretion and
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Figure 1. Schematic representation of the workflow. T2D GWAS genes do not directly relate (indicated by ‘X’ on the left side) to pathways
associated with disease pathophysiology. Conspicuously, effect of identified risk variants on continuous glycemic measures in nondiabetic subjects
chiefly explains only perturbation of insulin secretion, not insulin resistance. Further, the genes found as associated with the disease do not clearly relate
to processes and pathways consistent with the known aspects of T2D pathophysiology. The main aim of the present study was to ask the question
(indicated by ‘?’ on the right side) if GWAS data when considered in conjunction with interactome, toxicogenome and disease transcriptome data reveal
genome to phenome correlation in T2D. Data available in public domain for GWAS, interactome and toxicogenome was used in the analysis. For disease
transcriptome, new experimental data was generated. We specifically examined if interaction network of genes reported in T2D GWAS, genes showing
altered expression after treatment with various antidiabetic drugs, and genes that are differentially expressed in insulin responsive tissues in male and
female T2D patients do converge on insulin secretion, insulin resistance and other T2D associated pathophysiological pathways.
doi:10.1371/journal.pone.0053522.g001

Figure 2. Enrichment of pathways in genes reported in T2D GWASs at various association p value thresholds. Genes at different p value
cutoffs were examined for pathway enrichment. The pathway along with corresponding genes and enrichment p values are indicated. Note highly
significant enrichment of Maturity onset diabetes of the young in genes reported at 1025 p value threshold, dubbed ‘‘T2D genome’’ henceforth.
doi:10.1371/journal.pone.0053522.g002
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insulin signaling, involved in the regulation of several processes

including glucose uptake into cells, seem necessary but not

sufficient in causing T2D. Based on epidemiological findings, it

has been proposed that interaction between environmentally

triggered insulin resistance and genetically programmed pancre-

atic b cell dysfunction leads to the development of T2D [12–14].

Over 20 major GWASs for T2D have been performed and

several are underway at present [2]. A majority of identified loci

have been found consistently across studies [15]. However, effect

of the risk variants on continuous glycemic measures in

nondiabetic subjects shows that T2D susceptibility is primarily

mediated through perturbation of insulin secretion rather than

insulin signaling [2,12,16–21]. Also, genes associated with T2D

poorly represent established pathways of insulin signaling [12].

Global approaches to find statistically significant overrepresenta-

tion of functional categories in T2D associated genes have,

although not provided clear evidence of the potential disease

mechanisms, nonetheless identified enrichment of cell cycle

regulation [2,17,19]. Considering that T2D associated genes

representing cell cycle regulation are expressed in pancreatic islets,

and that their disease association is mediated mainly through b cell

dysfunction, the genetic evidence in the disease may seem to

converge, to some extent, on insulin secretion [19]. Other than this

limited convergence, the associated genes do not clearly confirm

other known aspects of T2D pathophysiology including insulin

signaling. This has led to the suggestion that either the disease is

markedly heterogeneous or the critical aspects of disease

pathophysiology are insufficiently captured by the presently

available databases [2,17,19].

Genes identified in GWASs when evaluated in the context of

complementary systems level data such as that related to protein-

protein interactions and to and gene expression can provide

insights into the mechanisms underlying pathogenesis of complex

traits [22–24]. Here, we have combined these approaches toward

deciphering genome to phenome correlation in T2D (Figure 1).

Given that T2D GWAS genes do not directly relate to disease

pathophysiology, our main aim was to examine if this genome to

phenome correlation gap can be abridged by considering GWAS

genes in conjunction with physical and genetic interaction, and

gene expression data.

Results

GWAS Genes
A catalog of SNP associations up to a p value cutoff of 161025,

a threshold commonly used for preliminary selection of SNPs in

GWASs, exists in public domain [25]. As genes at this cutoff are

considered meaningful for enrichment analysis [26], we retrieved

genes reported in T2D GWASs at p value thresholds up to 1025

(Dataset S1) and examined enrichment of Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways therein. Maturity onset

diabetes of the young (MODY), a Mendelian form of diabetes in

Table 1. Enriched pathways in T2D interactome.

Term Corrected p value*

Pathways in cancer 4.52E-27

Prostate cancer 2.02E-17

Chronic myeloid leukemia 4.90E-17

B cell receptor signaling pathway 3.44E-15

Pancreatic cancer 1.38E-13

Glioma 3.24E-13

Focal adhesion 1.19E-12

Proteasome 3.38E-12

Acute myeloid leukemia 3.15E-12

Neurotrophin signaling pathway 1.39E-11

Insulin signaling pathway 2.57E-11

Small cell lung cancer 2.98E-11

T cell receptor signaling pathway 3.35E-10

ErbB signaling pathway 4.29E-10

Non-small cell lung cancer 4.09E-10

Colorectal cancer 7.45E-09

Cell cycle 9.14E-09

Fc epsilon RI signaling pathway 9.32E-09

Type II diabetes mellitus 2.00E-08

Adherens junction 4.16E-08

Melanoma 3.49E-07

Fc gamma R-mediated phagocytosis 3.46E-07

Adipocytokine signaling pathway 7.42E-07

Renal cell carcinoma 1.42E-06

Bladder cancer 1.72E-06

Jak-STAT signaling pathway 2.82E-06

Chemokine signaling pathway 3.28E-06

Endometrial cancer 3.65E-06

Notch signaling pathway 6.27E-06

TGF-beta signaling pathway 6.48E-06

Natural killer cell mediated cytotoxicity 6.30E-06

Aldosterone-regulated sodium reabsorption 7.51E-06

Thyroid cancer 1.01E-05

VEGF signaling pathway 1.44E-05

Progesterone-mediated oocyte maturation 8.87E-05

mTOR signaling pathway 9.80E-05

Leukocyte transendothelial migration 1.25E-04

Oocyte meiosis 1.57E-04

Pathogenic Escherichia coli infection 2.39E-04

Ubiquitin mediated proteolysis 3.04E-04

p53 signaling pathway 3.29E-04

Wnt signaling pathway 3.97E-04

NOD-like receptor signaling pathway 5.10E-04

MAPK signaling pathway 8.07E-04

Regulation of actin cytoskeleton 0.001

Toll-like receptor signaling pathway 0.002

Apoptosis 0.003

Epithelial cell signaling in Helicobacter pylori infection 0.004

Gap junction 0.01

RIG-I-like receptor signaling pathway 0.02

Table 1. Cont.

Term Corrected p value*

Tight junction 0.02

GnRH signaling pathway 0.02

Long-term depression 0.04

*Bejamini-Hochberg correction.
doi:10.1371/journal.pone.0053522.t001
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T2D, was the only pathway that showed enrichment in this

analysis (Figure 2). Whereas 1028 cutoff genes showed enrich-

ment of MODY only at a borderline significance, those at 1025

threshold showed a robust overrepresentation. Of the five 1025

cutoff genes in MODY, HNF1A and HNF1B were absent in 1028

set while the latter alone was missing from 1027 and 1026 gene

lists. These genes, like most of the other MODY genes, encode

transcription factors that directly or indirectly affect expression of

insulin and other proteins related to pancreatic b cell development

and/or glucose metabolism [27]. Association of HNF1A and/or

HNF1B with T2D has earlier been reported in candidate gene

studies [28–30]. We thus focused on the gene list comprising 93

genes established from a GWAS cutoff of 1025. Dubbed ‘‘T2D

genome’’ henceforth, we used this gene set in subsequent analysis.

Physical and Genetic Interaction Network
Next, we retrieved all the direct interactions, both physical and

genetic, of T2D genome, called ‘‘T2D interactome’’ hereafter,

from Biological General Repository for Interaction Datasets

(BioGRID) (Dataset S2). Genes in T2D interactome was

examined for pathway enrichment. Several of the enriched

pathways relate to known aspects of T2D pathophysiology

(Table 1). Other than insulin signaling and type II diabetes

mellitus pathway that relates to both insulin secretion and insulin

signaling, the other pathways such as ErbB, adipocytokine, Jak-

STAT, chemokine, TGF-beta, Wnt, VEGF, Notch, MAPK, T cell

receptor, B cell receptor, Toll-like receptor, p53 and mTOR

signaling, and regulation of actin cytoskeleton have all been

implicated in T2D [31–49]. Also, enrichment of cell cycle was

consistent with previous global analysis of T2D associated genes

[2,17,19]. Altogether, T2D interactome was found consistent with

disease pathophysiology.

Drug-gene Interactions
We used a toxicogenomic approach to further investigate if

T2D interactome represents pathophysiology related pathways

including insulin signaling. The Comparative Toxicogenomics

Database (CTD) documenting gene-environment relationships has

been used previously towards understanding T2D etiology [24].

We searched for genes that interact with antidiabetic drugs using

CTD (Dataset S3). We then examined if T2D interactome is

enriched in genes interacting with these drugs. For enrichment

analysis to be statistically meaningful, gene lists associated with

only those drugs were considered which had a minimum of five

genes in common with T2D interactome. Notably, significant

enrichment or a trend for the same was observed for all the drugs

tested (Figure 3). Further, genes interacting with all the

antidiabetic drugs combined showed enrichment of various

pathways relevant in T2D pathophysiology (Table 2), as observed

previously for T2D interactome (Table 1). Cumulatively, the

toxicogenomic analysis supported the importance of T2D

interactome in unraveling genome to phenome correlation.

Genome-wide Expression Profiling
Next, we generated microarray expression profiles of skeletal

muscle, visceral adipose and subcutaneous adipose from male

and/or female T2D patients (Figure 4). For each tissue tested,

expression profiles were generated from three diabetic and three

non-diabetic individuals. Also, each individual was profiled four

times. The differentially expressed genes between diabetic and

nondiabetic control groups were identified (Figure 5 and

Dataset S4). Significant genes at adjusted p value were subjected

to pathway enrichment analysis. For all comparisons except female

subcutaneous adipose, these genes showed enrichment of one or

more pathways (Table 3). Female visceral adipose showed a large

number of enriched pathways including ErbB, Wnt, MAPK, T

cell receptor, B cell receptor and Toll-like receptor signaling, and

regulation of actin cytoskeleton, which, as mentioned above, have

all been implicated in T2D. Enrichment of valine, leucine and

isoleucine degradation in male visceral adipose is also consistent

with metabolomic studies in T2D [50,51]. Similarly, enrichment

of ECM-receptor interaction in male skeletal muscle is in

consonance with known changes in the composition of the

extracellular matrix in insulin-resistant muscle [52–57]. Quanti-

tative real time PCR (qRT-PCR) confirmed differential expression

in the same direction, or a trend for that, of all the genes tested to

validate microarray results (Figure 6). The genes used in qRT-

Figure 3. Overlap between antidiabetic drug interacting genes and T2D interactome. Compared to total interactome of 14,306 genes, the
T2D interactome of 561 genes represent significantly greater number of antidiabetic drug interacting genes. A statistically significant
overrepresentation was observed for all the drugs except pioglitazone in hypergeometric test with Bonferroni adjustment of p values for multiple
hypotheses testing. Overrepresentation with a borderline significance was nonetheless observed even for pioglitazone. The adjusted enrichment p
values are indicated.
doi:10.1371/journal.pone.0053522.g003
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PCR validation represented all the enriched pathways (Table 3)

besides others. These results demonstrated the robustness of our

genome-wide expression profiling.

Convergent Pathway
Although we found enrichment of several pathways consistent

with T2D pathophysiology in our microarray analysis, insulin

signaling was conspicuous by its absence in the list of overrepre-

sented pathways (Table 3). Statistical corrections may be overly

conservative to the point of being counterproductive in interpret-

ing microarrays with genetic knowledgebases [58]. We thus

explained this counterintuitive result by arguing that application of

such corrections for identifying differentially expressed genes in

microarrays and for pathway enrichment analysis of these genes

may be together responsible for causing false negatives in our

results. Since our main goal was to decipher genome to phenome

correlation, we examined if T2D interactome (Dataset S2) is

enriched for differentially expressed genes in various samples at

unadjusted p value threshold (Figure 5 and Dataset S4), called

‘‘T2D transcriptome’’ from now on. Enrichment will be expected

if there is a genome to phenome correlation. Also, if enrichment is

indeed observed at this level then genes overlapping between T2D

interactome and T2D transcriptome will be expected to over-

represent pathways consistent with the disease pathophysiology.

Indeed, the overlaps between interactome and transcriptome

gene sets were found to be statistically significant even after

adjusting the p values for multiple testing (Figure 7). Also, the

overlapping genes were enriched in T2D pathophysiology related

pathways including insulin signaling in female visceral adipose and

male skeletal muscle (Table 4). In male visceral adipose and

female subcutaneous adipose, insulin signaling was however not

enriched. Twelve pathways were common to all tissues and both

genders (Table 4). The common pathways were related to cancer,

cell cycle, adherens junction, focal adhesion, pathogenic Escherichia

coli infection and TGF-beta signaling. To examine known role of

these pathway(s) in T2D pathophysiology, the PubMed was

searched using the key words ‘‘diabetes AND type AND 2 AND

insulin AND (signaling OR action OR resistance OR sensitivity)

AND (secretion OR pancreatic OR islets OR beta)’’ in

combination with term(s) representing each of these common

pathway. The retrieved abstracts and/or papers and the references

therein were manually curated to identify a pathway that is known

to play a role in both insulin secretion and insulin signaling related

Table 2. Enriched pathways in antidiabetic drug interacting
genes.

Term Corrected p value*

Adipocytokine signaling pathway 4.16E-17

Pathways in cancer 3.30E-13

Prostate cancer 1.67E-10

Focal adhesion 4.23E-09

Bladder cancer 2.84E-08

Insulin signaling pathway 2.41E-08

p53 signaling pathway 2.51E-08

PPAR signaling pathway 3.05E-08

Pancreatic cancer 6.98E-08

Small cell lung cancer 6.79E-08

NOD-like receptor signaling pathway 2.84E-06

Drug metabolism 2.84E-06

Type II diabetes mellitus 4.93E-06

Colorectal cancer 5.63E-06

Retinol metabolism 6.51E-06

Metabolism of xenobiotics by cytochrome P450 6.30E-06

Glioma 1.32E-05

Cytokine-cytokine receptor interaction 1.44E-05

Chronic myeloid leukemia 4.34E-05

Melanoma 7.26E-05

mTOR signaling pathway 7.24E-05

Apoptosis 1.03E-04

Non-small cell lung cancer 1.09E-04

Linoleic acid metabolism 2.68E-04

Neurotrophin signaling pathway 2.75E-04

Toll-like receptor signaling pathway 2.67E-04

ErbB signaling pathway 2.94E-04

Thyroid cancer 3.24E-04

Cell cycle 7.72E-04

Acute myeloid leukemia 8.63E-04

Endometrial cancer 9.83E-04

MAPK signaling pathway 0.002

Allograft rejection 0.002

ABC transporters 0.003

Chemokine signaling pathway 0.004

ECM-receptor interaction 0.004

Arachidonic acid metabolism 0.006

Amyotrophic lateral sclerosis (ALS) 0.01

Jak-STAT signaling pathway 0.01

Steroid hormone biosynthesis 0.01

Fc epsilon RI signaling pathway 0.01

Renal cell carcinoma 0.01

Fatty acid metabolism 0.01

Pyruvate metabolism 0.01

Aldosterone-regulated sodium reabsorption 0.02

Intestinal immune network for IgA production 0.02

Type I diabetes mellitus 0.02

T cell receptor signaling pathway 0.02

Table 2. Cont.

Term Corrected p value*

Prion diseases 0.02

VEGF signaling pathway 0.02

Progesterone-mediated oocyte maturation 0.03

Fc gamma R-mediated phagocytosis 0.03

Glycerolipid metabolism 0.03

Citrate cycle (TCA cycle) 0.03

Gap junction 0.03

Glutathione metabolism 0.05

Starch and sucrose metabolism 0.05

TGF-beta signaling pathway 0.06

*Bejamini-Hochberg correction.
doi:10.1371/journal.pone.0053522.t002
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function. Literature search revealed that of these pathways TGF-

beta signaling is particularly notable in that it is clearly known to

play a crucial role in both insulin signaling as well as in insulin

gene expression and pancreatic b cell function [36,59–61]. Given

this, we examined if removal of TGF-beta signaling genes from the

list of T2D interactome-T2D transcriptome commonality genes

negatively affect enrichment of insulin signaling in female visceral

adipose and male skeletal muscle. There were 10 and 7 TGF-beta

signaling genes in female visceral adipose and male skeletal muscle

(Table 5), in that order. We removed these genes from 200 and

137 commonality genes (Figure 7) in T2D interactome-female

visceral adipose and T2D interactome-male skeletal muscle

comparisons and examined pathway enrichment in the resulting

gene sets. Remarkably, compared to complete gene sets, 190 and

130 genes that remained after removing TGF-beta genes, in that

order, showed less pronounced enrichment of pathways in general,

and insulin signaling in particular (Table 6). Importantly, T2D

genome includes one of the TGF-beta signaling genes, CDKN2B.

This gene is associated with T2D in diverse populations at

genome-wide significance level (Dataset S1). Cumulatively, our

analysis identified TGF-beta signaling as a connecting link

between genome and phenome in T2D (Table 7 and Figure 8).

Discussion

Candidate T2D genes identified in GWASs combined does not

clearly confirm known aspects of disease pathophysiology. Our

systems level analyses bridge this genome to phenome correlation

gap. Bioinformatic analyses of disease associated genes using

interactome and toxicogenome data first led us to connect T2D

candidate genes identified in GWASs with disease pathophysiol-

Figure 4. Dendrogram of samples based on gene expression profiling. Correlations between all the eight groups of samples analyzed in
microarrays are plotted as a dendrogram. As expected, muscle and adipose form separate clusters. Also, in adipose cluster, subgroups of adipose type
and gender are observed. Globally normalized data was used for constructing the dendrogram. Con, control subjects; T2D, diabetic patients; SA,
subcutaneous adipose; VA, visceral adipose; SM, skeletal muscle.
doi:10.1371/journal.pone.0053522.g004

Figure 5. Numbers of up- and down- regulated genes in multiple insulin responsive tissues in T2D patients. Expression profiles of
skeletal muscle, visceral adipose and subcutaneous adipose from male and/or female subjects were generated using Illumina HumanHT-12 v3
Expression BeadChip arrays that contain more than 25,000 annotated genes. IIlumina custom error model was used to identify up- and down-
regulated genes in T2D as compared to controls, with or without Benjamini and Hochberg correction for multiple hypotheses testing. The
differentially expressed genes were identified at 613 Diff score threshold of Illumina custom algorithm, corresponding to a p value of 0.05.
doi:10.1371/journal.pone.0053522.g005
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ogy including aberrant pancreatic b cell development and

function, and insulin sensitivity. We then experimentally validated

this connectivity using transcriptomic analysis of multiple insulin

responsive tissues from male and female diabetic patients. Our

simple, intuitive and straightforward approach has been remark-

ably successful in uncovering genome to phenome correlation in

diabetes. In general, we find that candidate T2D genes identified

in GWASs can explain disease pathophysiology when the

associated genes are considered together with their protein and

functional level interactors. In other words, the physical and

genetic interaction network of T2D associated genes overall relates

well with the disease pathophysiology. Our toxicogenomic analysis

supports this. This evidence was finally validated in our

transcriptomic analysis. It is a long standing debate whether

impaired insulin action or insulin secretion deficiency is the

primary defect in T2D [12,16]. Epidemiological evidence has

previously suggested that genetically programmed pancreatic b
cell dysfunction interacts with environmentally triggered insulin

resistance to cause T2D [12–14]. Our results may seem consistent

with this notion.

We find tissue and gender differences in genome-wide

expression profile in T2D. In males, differentially expressed genes

in visceral adipose showed enrichment of valine, leucine and

isoleucine degradation, and propanoate metabolism, whereas

those in skeletal muscle showed enrichment of extracellular

matrix-receptor interaction. In females, diverse pathways includ-

ing that related to neurotrophin signaling, cancer, immune

response, intercellular communication, and pathogenic Escherichia

coli infection are enriched in differentially expressed genes in

visceral adipose, whereas no pathway show enrichment in

subcutaneous adipose. As such, convergence of pathways is largely

absent if gene expression profiling is analyzed in isolation.

Figure 6. Validation of microarrays using qRT-PCR. Mean6S.E.M of fold change in gene expression in T2D patients, as compared to controls, is
shown for (A) female visceral adipose, (B) male visceral adipose, (C) male skeletal muscle, and (D) female subcutaneous adipose. Fold change was
calculated for two to six technical replicates, each representing three biological replicates. The source of RNA used in qRT-PCR analysis was same as in
microarray profiling. A total of 47 genes were used for validation. The rationale behind the subsets of genes selected was two fold. One, the genes
should represent, wherever applicable, one or more enriched pathways (Table 3) in a given condition. Second, the genes should maximally
represent those which are differentially expressed at adjusted p value cutoff (Dataset S4) in more than one condition, so that validation of
microarrays can be examined more widely. The selected genes, besides others, covered all the pathways that were enriched in the above microarray
gene lists. Notably, up- or down- regulation observed in qRT-PCR, shown in red and green, respectively, was consistent with microarrays, for all
comparisons.
doi:10.1371/journal.pone.0053522.g006
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However, when genes that are both differentially expressed in

T2D as well as are known to interact with GWAS signals are

analyzed, we find enrichment of numerous pathways in all the

tissues and both genders, with several enriched pathways in

common to all the conditions. Also, statistical significance of

enrichment in general is greatly increased in the latter set of genes

than the former. This clearly demonstrates the advantage of

convergent analysis in examining genome to phenome correlation

in complex disease like diabetes. Whereas interactome guided

analysis of differentially expressed genes uncovered several

pathophysiologically relevant pathways in female visceral adipose

and male skeletal muscle, only one of them, TGF-beta signaling,

was revealed, based on a literature search, in female subcutaneous

adipose and male visceral adipose. This literature based analysis

was supported when representatives of TGF-beta pathway were

removed from the transcriptome-interactome intersection genes

related to female visceral adipose and male skeletal muscle, and

the resulting set was subjected to pathway enrichment analysis.

Compared to complete set of intersection genes, the TGF-beta

deleted list showed less pronounced enrichment of pathways

including insulin signaling. Although this literature based analysis

may not be very robust due to inherent limitations, and hence

other pathways may also possibly be important, it at least identifies

TGF-beta signaling as one that can connect genome to phenome

in T2D. Of all the candidate genes identified in T2D GWASs at

acceptable significance level, CDKN2B is the only one that

represents this signaling pathway. It remains a possibility that

several other genes in TGF-beta signaling are associated with the

disease but we are not clear about them because they are either

below the significance level used in GWAS reporting, are not yet

discovered in disease association studies due to technical limita-

tions or are not characterized and codified well enough in terms of

function. A notable example here is that of SMAD3, a TGF-beta

signaling gene. A SNP in SMAD3 though did not show evidence of

association in the original GWAS in T2D (nominal p = 0.0006) the

disease candidacy of the gene was nonetheless uncovered in a

subsequent pathway enrichment analysis [62]. This supports our

genome to phenome correlation analysis. The interactome

network and transcriptomic analysis provided here offer novel

means to mine GWAS data that is not available in public domain

and identify novel candidate genes in T2D. We anticipate that

new evidence for association of genes in TGF-beta pathway will

emerge from data mining.

Already, some of the most recent findings do seem consistent

with our systems level analysis. For example, a newly developed

joint meta-analysis approach has recently identified additional loci

associated with fasting insulin and other insulin resistance related

traits [20]. Interestingly, genes localized nearby some of the

associated SNPs are known to play a functional role in insulin

signaling. Remarkably, one of the strongest positional candidates,

PPP1R3B, is known to interact at protein level with a single gene,

PPP1CA, which in turn is involved physically in SMAD signaling

protein-protein interactions and functionally in TGF-beta signal-

ing pathway [63]. Furthermore, we find that T2D interactome

does not only include PPP1CA but also several of its interactors.

Twenty of the total 111 PPP1CA interactors in the BioGRID are

present in our T2D interactome of 561 genes. Given the total

BioGRID space of 14,306 genes, the T2D interactome is highly

enriched for PPP1CA interactors (p = 0.000000008). This demon-

strates the power of our systems model. Another support for our

model comes from a recently reported functional study in which

the alpha-2-HS-glycoprotein (ASHG) has been identified as an

adaptor protein that links saturated fatty acids to toll-like receptor

4 thus stimulating inflammatory pathways leading to insulin

resistance [64]. Interestingly, ASHG is a known antagonist of

TGF-beta cytokines including TGF-beta1 [65,66]. Of the nine

protein interactors of ASHG in the BioGRID, one, SMAD3, is

present in our T2D interactome. Although small numbers

preclude any statistical analysis, it is tempting to find this gene

overlap notable.

The above discussion remarkably converges on the TGF-beta

signaling effector SMAD3. TGF-beta signaling is involved in the

regulation of insulin gene transcription, pancreatic islets b cell

function, and glucose tolerance and energy homeostasis [36,59–

61]. SMAD3 is known to localize at insulin gene promoter and

repress insulin gene transcription [61]. SMAD3 knock-out mice are

associated with improved glucose tolerance and insulin sensitivity

[36]. Exhibiting altered expression of genes related to adipogen-

esis, lipid accumulation, and fatty acid b oxidation, these mice

show resistance to obesity and insulin resistance induced by high

fat diet [36,59]. Further, levels of TGF-beta1 have been found to

positively correlate with adiposity in human subjects [59]. Also,

Table 3. Enriched pathways in differentially expressed genes
between people with and without T2D.

Term Corrected p value*

Female visceral adipose

Neurotrophin signaling pathway 1.8E-04

Renal cell carcinoma 0.002

Thyroid cancer 0.002

Pathogenic Escherichia coli infection 0.002

Prostate cancer 0.002

Fc gamma R-mediated phagocytosis 0.002

Non-small cell lung cancer 0.002

Pathways in cancer 0.002

Chemokine signaling pathway 0.003

Acute myeloid leukemia 0.004

Endometrial cancer 0.01

Glioma 0.01

Focal adhesion 0.01

Adherens junction 0.01

Wnt signaling pathway 0.01

MAPK signaling pathway 0.01

B cell receptor signaling pathway 0.02

Chronic myeloid leukemia 0.02

ErbB signaling pathway 0.02

Bladder cancer 0.02

Regulation of actin cytoskeleton 0.03

Colorectal cancer 0.03

Toll-like receptor signaling pathway 0.04

T cell receptor signaling pathway 0.04

Gap junction 0.04

Male visceral adipose

Valine, leucine and isoleucine degradation 3.0E-05

Propanoate metabolism 0.01

Male skeletal muscle

ECM-receptor interaction 0.007

*Bejamini-Hochberg correction.
doi:10.1371/journal.pone.0053522.t003
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systemic blockade of TGF-beta signaling has been found to protect

mice from obesity, diabetes and hepatic steatosis [59]. Indeed,

pharmacological manipulation of TGF-beta signaling is consid-

ered to offer a potential therapeutic strategy in obesity and

diabetes [59,60].

Most recently, one of the eight new susceptibility loci reported

in a large scale association analysis in T2D at genome-wide

significance, the top signal maps to ZMIZ1 [67]. Notably, ZMIZ1

is known to interact with SMAD3 at protein level [68]. In the

association study [67], the authors used an expanded set of

susceptibility loci to define pathways and networks underlying

T2D pathogenesis. Remarkably, the most connected gene that the

authors found in their protein-level interaction analysis is that

encoding CREBBP, a co-activator known to regulate SMAD3-

dependent transcription [69]. Furthermore, the top four previously

unreported T2D genes identified in a recently conducted T2D

GWAS in an Indian population include the TGF-beta signaling

gene TGFBR3 [70]. Known to affect phosphorylation and nuclear

localization of SMAD3, TGFBR3 is involved in TGF-beta/

SMAD3 dependent signaling [71]. The above results demonstrate

the robustness of our systems model identifying TGF-beta/

SMAD3 signaling as central to genome to phenome correlation

in T2D. Above all, SNPs associated with gene expression in liver,

visceral adipose and subcutaneous adipose and with T2D in

GWASs have previously been found to be enriched in various

R2D candidate pathways including TGF-beta signaling [72].

Overall, our global analyses seem consistent with the accumulating

evidence implicating TGF-beta signaling in T2D related patho-

physiology.

The newly arrived technology of whole genome/exome

sequencing is expected to accelerate identification of rare variants

with large effect sizes, thus helping us achieve in near future an

even greater understanding of the genetic basis of complex

phenotypes [2,6]. The recently accomplished deep sequencing of

human exomes has indeed suggested that rare variations

contribute substantially to human phenotypic variation and

disease susceptibility [73]. Availability of post-GWASs era data

for T2D will be crucial in examining genome to phenome

correlation in greater details. Emerging methods in pathway-wide

analysis and integrative network based analysis of genetic

association data in complex disorders will further help accelerate

identification of variations that are causally linked to phenotypes

[20,22]. It will be interesting to see if newer results support our

genome to phenome correlation analysis in general and candidacy

of TGF-beta signaling in particular.

In conclusion, genetic association evidence in T2D correlates

well with disease pathophysiology including insulin secretion

deficiency and insulin resistance. The systems biology framework

that has emerged from the present analysis may prove valuable in

further refining our understanding of genetic determinants and

molecular pathways in the pathogenesis of T2D.

Materials and Methods

Ethics Statement
All study participants provided written, informed consent under

protocols specifically approved by the ethics committee of Sawai

Man Singh Medical College, Jaipur.

Associated Genes
The catalog of published GWASs made freely available by

National Human Genome Research Institute was used to retrieve

disease associated genes {Hindorff LA, MacArthur J (European

Bioinformatics Institute), Wise A, Junkins HA, Hall PN, Klemm

AK, and Manolio TA. A Catalog of Published Genome-Wide

Association Studies. Available at: www.genome.gov/gwastudies.

July 5, 2012}. This catalog records SNP associations from

genome-wide significance level up to a p value threshold of

161025 [4,25]. It presently includes 1,300 publications and 6,581

SNPs, and contains gene names reported by the authors in the

original paper. GWASs that attempted to assay at least 100,000

SNPs in the initial stage are only included in the catalog. In our

analysis, we retrieved the ‘‘reported genes’’ in T2D GWASs using

p value thresholds of ,1028, 1027, 1026 and 1025. As our main

objective was to examine correlation between genes already

implicated in T2D with disease pathophysiology, we based our

Figure 7. Overlap between T2D interactome and T2D transcriptome. Compared to total interactome of 14,306 genes, the T2D interactome
of 561 genes represent significantly greater number of genes differentially expressed at unadjusted p value threshold in microarray profiles, dubbed
‘‘T2D transcriptome’’ from now on. Bonferroni adjusted hypergeometric distribution p values for the overlaps are indicated.
doi:10.1371/journal.pone.0053522.g007
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analysis on reported candidate genes instead of genes in linkage

disequilibrium around each associated SNP.

Pathway Enrichment
The freely available Database for Annotation, Visualization,

and Integrated Discovery (DAVID) was used for examining

enrichment of KEGG pathways in gene sets. DAVID, that

integrates data from multiple functional databases, is frequently

used for revealing biological themes underlying large gene sets

(http://david.abcc.ncifcrf.gov/) [74–77]. Standard method of

analysis was followed, with Homo sapiens as background and EASE

score enrichment p values globally corrected using Benjamini-

Hochberg technique [78]. A modified Fisher Exact p value, EASE

score relate to gene-enrichment in annotation terms. KEGG, a

public domain database commonly used for gene enrichment

analysis and pathway visualization [22,23,72,79], houses a total of

199 unique human pathways representing 5197 unique genes/

proteins (http://www.genome.jp/kegg/pathway.html) [72].

Interactome Network
The public database BioGRID extracts and annotates in-depth

physical and genetic interactions reported in the primary peer-

reviewed literature and houses the data that is explicitly

corroborated by experimental evidence in an organized form to

enable various tasks such as computational analysis of biological

networks and prediction of gene/protein function (http://

thebiogrid.org/) [80–83]. We used physical and genetic interac-

tion data sets for Homo sapiens in BioGRID v.3.1.89. The total

number of unique nodes and edges in these data sets were 14,306

and 67,659, respectively. To visualize BioGRID networks off-line

and retrieve genes therein, we used the public domain tool Osprey

(v.1.2.0) (http://biodata.mshri.on.ca/osprey/servlet/Index) [84].

Only direct interactions were used in the present analysis.

Drug-gene Interactions
Genes that interact with antidiabetic drugs pioglitazone,

troglitazone, rosiglitazone, metformin, tolbutamide, glyburide,

glipizide, gliclazide, nateglinide, repaglinide, sitagliptin, saxaglip-

tin, bromocriptine, acarbose, vildagliptin, liraglutide and exenatide

were identified using the publicly available CTD, Mount Desert

Island Biological Laboratory, Salisbury Cove, Maine (http://

ctdbase.org/) in June, 2012. CTD is a repository of manually

curated chemical-gene, chemical-disease and gene-disease rela-

tionships from the literature [85–86]. The database, documenting

over 200,000 gene-environment relationships from over 26,000

publications, has been used previously towards understanding

Figure 8. Genome to phenome pathway of TGF-beta signaling. T2D genome, T2D interactome, T2D transcriptome and antidiabetic drug
interacting genes are mapped on to KEGG pathway for TGF-beta signaling. Red: genome, interactome and transcriptome; brown: interactome,
transcriptome and antidiabetic drug interacting genes; green: interactome and transcriptome; yellow: interactome; grey: antidiabetic drug interacting
genes.
doi:10.1371/journal.pone.0053522.g008
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Table 4. Enriched pathways in T2D interactome-T2D
transcriptome intersection genes.

Term
Unadjusted
p value

Corrected
p value*

Female visceral adipose

Pathways in cancer 3.91E-20 4.07E-18

Prostate cancer 8.27E-17 5.77E-15

Chronic myeloid leukemia 8.08E-15 2.81E-13

Acute myeloid leukemia 4.79E-12 1.24E-10

Glioma 1.77E-11 3.68E-10

Pancreatic cancer 1.38E-10 2.40E-09

Non-small cell lung cancer 3.69E-10 5.48E-09

Proteasome 8.70E-10 1.13E-08

Small cell lung cancer 1.38E-09 1.59E-08

Adherens junction 3.96E-09 4.12E-08

Melanoma 1.35E-08 1.28E-07

Thyroid cancer 1.87E-08 1.62E-07

Endometrial cancer 3.87E-08 3.10E-07

Jak-STAT signaling pathway 2.09E-07 1.55E-06

B cell receptor signaling pathway 2.40E-07 1.67E-06

Neurotrophin signaling pathway 3.19E-07 2.08E-06

Bladder cancer 6.33E-07 3.87E-06

Colorectal cancer 8.58E-07 4.96E-06

Cell cycle 2.09E-06 1.15E-05

T cell receptor signaling pathway 2.18E-06 1.14E-05

Insulin signaling pathway 5.27E-06 2.61E-05

Focal adhesion 8.16E-06 3.86E-05

ErbB signaling pathway 8.54E-06 3.86E-05

Renal cell carcinoma 5.11E-05 2.22E-04

Chemokine signaling pathway 5.42E-05 2.25E-04

Pathogenic Escherichia coli infection 7.18E-05 2.87E-04

Fc gamma R-mediated phagocytosis 1.11E-04 4.27E-04

Fc epsilon RI signaling pathway 1.21E-04 4.50E-04

Notch signaling pathway 1.41E-04 5.04E-04

TGF-beta signaling pathway 2.82E-04 9.77E-04

Wnt signaling pathway 3.43E-04 0.001

Oocyte meiosis 3.74E-04 0.001

Tight junction 4.63E-04 0.001

Progesterone-mediated oocyte maturation 0.001 0.004

Adipocytokine signaling pathway 0.001 0.004

p53 signaling pathway 0.001 0.004

Long-term depression 0.001 0.004

mTOR signaling pathway 0.002 0.005

GnRH signaling pathway 0.003 0.008

Melanogenesis 0.003 0.008

Dorso-ventral axis formation 0.003 0.008

Toll-like receptor signaling pathway 0.003 0.009

NOD-like receptor signaling pathway 0.004 0.01

Natural killer cell mediated cytotoxicity 0.006 0.01

Gap junction 0.006 0.01

Ubiquitin mediated proteolysis 0.007 0.01

MAPK signaling pathway 0.01 0.03

Table 4. Cont.

Term
Unadjusted
p value

Corrected
p value*

Regulation of actin cytoskeleton 0.02 0.04

Aldosterone-regulated sodium reabsorption 0.02 0.04

Apoptosis 0.02 0.04

Long-term potentiation 0.03 0.05

Type II diabetes mellitus 0.03 0.06

Huntington’s disease 0.03 0.07

VEGF signaling pathway 0.04 0.07

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

0.04 0.07

Male visceral adipose

Pathways in cancer 8.95E-07 7.07E-05

Jak-STAT signaling pathway 2.53E-05 9.98E-04

Pancreatic cancer 2.49E-04 0.006

Chronic myeloid leukemia 0.003 0.06

Small cell lung cancer 0.004 0.06

Bladder cancer 0.004 0.06

Pathogenic Escherichia coli infection 0.01 0.1

Acute myeloid leukemia 0.01 0.1

Huntington’s disease 0.01 0.1

Cell cycle 0.02 0.1

Focal adhesion 0.02 0.1

Tight junction 0.02 0.1

Adherens junction 0.02 0.1

TGF-beta signaling pathway 0.03 0.2

Prostate cancer 0.03 0.2

Female subcutaneous adipose

Proteasome 1.76E-08 1.58E-06

Pathways in cancer 1.48E-07 6.67E-06

Adherens junction 1.43E-05 4.28E-04

Pathogenic Escherichia coli infection 1.68E-05 3.77E-04

TGF-beta signaling pathway 3.52E-05 6.33E-04

Focal adhesion 1.49E-04 0.002

Acute myeloid leukemia 1.85E-04 0.002

Prostate cancer 3.00E-04 0.003

Cell cycle 0.002 0.02

Pancreatic cancer 0.004 0.03

Chronic myeloid leukemia 0.005 0.04

Small cell lung cancer 0.008 0.05

Colorectal cancer 0.008 0.05

Thyroid cancer 0.008 0.06

Gap junction 0.01 0.06

Fc gamma R-mediated phagocytosis 0.01 0.07

Aldosterone-regulated sodium reabsorption 0.02 0.1

Wnt signaling pathway 0.02 0.1

Bladder cancer 0.02 0.1

Fc epsilon RI signaling pathway 0.03 0.1

ErbB signaling pathway 0.04 0.2

mTOR signaling pathway 0.04 0.2

Non-small cell lung cancer 0.04 0.2
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T2D etiology [24]. We used chemical-gene interaction query for

each drug in CTD, and retrieved genes using the default settings

‘‘increases, decreases, affects’’ and ‘‘any’’ interaction. These

interactions are of various types such as expression, abundance

and activity.

Surgical Tissue Samples
Biopsies were obtained from abdominal subcutaneous and

visceral fat tissue and skeletal muscles of patients undergoing

abdominal surgery under general anesthesia. The muscle samples

were obtained from the vastus lateralis by Bergstrom needle

biopsy. Primary indications of surgery were non infective and non

malignant conditions, namely, cholelethiasis, hernia and trauma.

The average age of the patients undergoing surgery was 58 years

(range 37 to 85 years). Antidiabetic therapy mostly included

sulphonylurea or insulin treatment. None of the patients were on

pioglitazone ever. Once surgery was planned, all the diabetic

patients were put on insulin therapy. No patient took metformin

after surgery was planned. The levels of glycated hemoglobin

(%HbA1c) determined in nondiabetic and diabetic patients were

5.7560.33 and 9.4460.82, respectively. The difference between

the two groups was significant (p = 0.003). The BMI of nondiabetic

and diabetic patients were 24.4861.2 and 25.0061.81, respec-

tively. The difference between the two groups was insignificant

(p = 0.81). The biopsy samples were obtained from tissue exposed

and wasted during surgery. The sample was immediately rinsed in

saline and stored in RNA later (Ambion, Austin, TX) solution,

initially at 4uC and later stored at 280uC till further use. All study

participants provided written, informed consent under protocols

originally approved by the ethics committee of Sawai Man Singh

Medical College, Jaipur.

RNA Isolation
The total RNA from biopsy samples was isolated using the

mirVanaTM miRNA Isolation Kit (Ambion). The quantity and

quality of the isolated RNA were determined Nanodrop-1000

(Thermo Fischer Scientific) and Agilent 2100 Bioanalyzer (Agilent

Technologies), respectively. RNA with RIN (RNA integrity

number) value in the range of 5 to 8 was used for further analysis.

These RNA samples had both 260/280 nm absorbance and 28S/

18S rRNAs peak ratio of two. Although RIN of 7 or more would

have been ideal, RNA isolated from surgical samples may not

always be of very high integrity. As biopsy specimens were limited,

Table 5. TGF-beta signaling genes in T2D interactome-T2D
transcriptome intersection.

Female visceral adipose Male skeletal muscle

CREBBP CDKN2B

EP300 EP300

MAPK1 MAPK1

MAPK3 MAPK3

MYC PPP2R1B

PPP2CA SMAD5

PPP2R1A SP1

PPP2R1B

ROCK1

RPS6KB2

doi:10.1371/journal.pone.0053522.t005

Table 4. Cont.

Term
Unadjusted
p value

Corrected
p value*

Male skeletal muscle

Pathways in cancer 1.49E-14 1.41E-12

Focal adhesion 1.88E-10 8.92E-09

Adherens junction 5.82E-10 1.84E-08

B cell receptor signaling pathway 5.36E-09 1.27E-07

Glioma 9.37E-09 1.78E-07

Fc epsilon RI signaling pathway 9.51E-08 1.51E-06

Pathogenic Escherichia coli infection 5.61E-07 7.61E-06

Chronic myeloid leukemia 6.52E-07 7.74E-06

Fc gamma R-mediated phagocytosis 7.44E-07 7.85E-06

ErbB signaling pathway 2.64E-06 2.51E-05

Prostate cancer 3.26E-06 2.81E-05

Natural killer cell mediated cytotoxicity 3.38E-06 2.67E-05

Melanoma 3.78E-06 2.76E-05

Non-small cell lung cancer 4.09E-06 2.78E-05

Pancreatic cancer 4.26E-06 2.70E-05

Colorectal cancer 1.55E-05 9.18E-05

T cell receptor signaling pathway 1.88E-05 1.05E-04

VEGF signaling pathway 4.88E-05 2.58E-04

Neurotrophin signaling pathway 6.25E-05 3.12E-04

Insulin signaling pathway 1.28E-04 6.09E-04

Thyroid cancer 1.39E-04 6.29E-04

Renal cell carcinoma 2.23E-04 9.64E-04

Endometrial cancer 2.92E-04 0.001

Cell cycle 3.52E-04 0.001

Acute myeloid leukemia 5.33E-04 0.002

Tight junction 5.89E-04 0.002

Bladder cancer 8.29E-04 0.003

Gap junction 9.75E-04 0.003

Type II diabetes mellitus 0.001 0.004

Regulation of actin cytoskeleton 0.001 0.004

Viral myocarditis 0.001 0.005

Jak-STAT signaling pathway 0.002 0.005

TGF-beta signaling pathway 0.004 0.01

p53 signaling pathway 0.007 0.02

MAPK signaling pathway 0.008 0.02

Notch signaling pathway 0.009 0.02

Dorso-ventral axis formation 0.009 0.02

mTOR signaling pathway 0.01 0.03

Small cell lung cancer 0.02 0.04

Leukocyte transendothelial migration 0.02 0.04

Epithelial cell signaling in Helicobacter pylori
infection

0.03 0.07

Long-term depression 0.03 0.07

Aldosterone-regulated sodium reabsorption 0.04 0.08

Pathways enriched in all four conditions are shown in italics.
*Bejamini-Hochberg correction.
doi:10.1371/journal.pone.0053522.t004
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the RIN cutoff was lowered to 5. Notably, experiments have

shown that RNA with lower RIN, i.e., with some degradation, can

actually be used to perform gene expression analysis of surgical

samples [87,88].

Microarrays
Three biological replicates with four technical replicates each

were used to generate expression profiles. The biological replicates

were matched with respect to gender, average age, average height,

average weight, average edible oil consumption, and vegetarian/

non-vegetarian diet. Also, all the patients were free from alcohol

use and smoking. Starting with 500 ng of total RNA, Illumina

TotalPrepTM RNA Amplification Kit (Ambion) was used for

preparing first and second strand cDNA, purification of cDNA,

in vitro transcription to synthesize biotin labeled cRNA, and

Table 6. Enriched pathways in T2D inteactome-T2D
transcriptome intersection without TGF-beta signaling genes.

Term
Unadjusted
p value

Corrected
p value*

Female visceral adipose

Pathways in cancer 2.19E-17 2.26E-15

Prostate cancer 4.98E-13 2.57E-11

Chronic myeloid leukemia 4.58E-12 1.57E-10

Glioma 8.28E-10 2.13E-08

Small cell lung cancer 3.47E-09 7.16E-08

Proteasome 4.30E-09 7.37E-08

Pancreatic cancer 4.73E-09 6.96E-08

Non-small cell lung cancer 2.07E-08 2.66E-07

Acute myeloid leukemia 4.56E-08 5.22E-07

Melanoma 4.00E-07 4.12E-06

Neurotrophin signaling pathway 3.41E-06 3.19E-05

B cell receptor signaling pathway 5.69E-06 4.89E-05

Adherens junction 7.25E-06 5.75E-05

Jak-STAT signaling pathway 8.26E-06 6.07E-05

Endometrial cancer 1.76E-05 1.21E-04

T cell receptor signaling pathway 2.67E-05 1.72E-04

Thyroid cancer 3.65E-05 2.21E-04

Colorectal cancer 1.00E-04 5.75E-04

Cell cycle 1.04E-04 5.63E-04

Focal adhesion 1.51E-04 7.77E-04

Insulin signaling pathway 2.07E-04 0.001

Pathogenic Escherichia coli infection 2.62E-04 0.001

Bladder cancer 3.17E-04 0.001

Adipocytokine signaling pathway 7.14E-04 0.003

p53 signaling pathway 7.82E-04 0.003

Chemokine signaling pathway 9.59E-04 0.004

Fc epsilon RI signaling pathway 0.002 0.007

ErbB signaling pathway 0.003 0.01

Ubiquitin mediated proteolysis 0.003 0.01

Notch signaling pathway 0.004 0.01

Tight junction 0.01 0.03

Progesterone-mediated oocyte maturation 0.01 0.04

Apoptosis 0.01 0.04

Fc gamma R-mediated phagocytosis 0.02 0.06

Renal cell carcinoma 0.02 0.06

GnRH signaling pathway 0.02 0.06

Toll-like receptor signaling pathway 0.03 0.07

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

0.03 0.07

Natural killer cell mediated cytotoxicity 0.03 0.08

Antigen processing and presentation 0.04 0.1

Male skeletal muscle

Pathways in cancer 4.82E-12 4.43E-10

Focal adhesion 2.48E-09 1.14E-07

Pathogenic Escherichia coli infection 2.80E-07 8.58E-06

B cell receptor signaling pathway 3.04E-07 6.99E-06

Adherens junction 3.92E-07 7.21E-06

Glioma 6.79E-07 1.04E-05

Table 6. Cont.

Term
Unadjusted
p value

Corrected
p value*

Fc epsilon RI signaling pathway 4.28E-06 5.63E-05

Fc gamma R-mediated phagocytosis 2.20E-05 2.52E-04

Chronic myeloid leukemia 2.72E-05 2.78E-04

Natural killer cell mediated cytotoxicity 5.68E-05 5.23E-04

ErbB signaling pathway 8.02E-05 6.71E-04

Melanoma 1.48E-04 0.001

Pancreatic cancer 1.61E-04 0.001

Non-small cell lung cancer 2.33E-04 0.001

T cell receptor signaling pathway 3.65E-04 0.002

Colorectal cancer 4.23E-04 0.002

Prostate cancer 6.02E-04 0.003

Neurotrophin signaling pathway 9.21E-04 0.005

Viral myocarditis 0.001 0.005

VEGF signaling pathway 0.001 0.006

Tight junction 0.001 0.007

Insulin signaling pathway 0.002 0.007

Jak-STAT signaling pathway 0.004 0.01

Cell cycle 0.004 0.02

p53 signaling pathway 0.005 0.02

Regulation of actin cytoskeleton 0.008 0.03

Endometrial cancer 0.01 0.03

Thyroid cancer 0.01 0.04

Leukocyte transendothelial migration 0.01 0.04

Acute myeloid leukemia 0.01 0.04

Gap junction 0.01 0.04

Epithelial cell signaling in
Helicobacter pylori infection

0.02 0.07

Renal cell carcinoma 0.03 0.07

MAPK signaling pathway 0.03 0.08

Bladder cancer 0.03 0.08

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

0.04 0.09

Notch signaling pathway 0.04 0.1

Type II diabetes mellitus 0.04 0.1

*Bejamini-Hochberg correction.
doi:10.1371/journal.pone.0053522.t006
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purification of the labeled cRNA, in that sequence. The

quantitation of cRNA was performed using Nanodrop-1000.

Illumina HumanHT-12 v3 Expression BeadChip arrays, contain-

ing more than 48,000 probes representing more than 25,000

annotated genes, were hybridized with 750 ng of labeled cRNA

samples. Hybridization and washing were performed according to

the manufacturer’s protocol. The arrays were scanned and read

using Illumina iScan System, and the data extraction, average

normalization and downstream analysis performed using Illumina

GenomeStudio V2010.1. IIlumina custom error model was

applied to identify differentially expressed genes, with or without

Benjamini and Hochberg correction for multiple hypotheses

testing, as mentioned in the results section. The upregulated or

downregulated genes were retrieved using 613 Diff score

threshold of Illumina custom algorithm. This Diff score corre-

sponds to a p value of 0.05. Dendrogram of sample groups was

constructed in GenomeStudio using globally normalized gene

expression data. Correlation algorithm was used to construct the

dendrogram.

Quantitative Real Time PCR
Three biological and two to six technical replicates were used

for quantitative real time PCR (qRT-PCR) analysis. The same

source of RNA that was used previously for microarray analysis

was used for qRT-PCR. Notably, validation of same samples used

for microarray analyses is typically reported [89,90]. The

amplification reactions were carried out in 7500 Real Time

PCR System (Applied Biosystems). RNA was reverse transcribed

into cDNA using High capacity cDNA Archive kit (Applied

Biosystems) following manufacturer’s recommendations. With

50 ng of RNA, PCR was carried out using Custom TaqManH
Array Standard 96 well Plates. Each assay consisted of two

sequence-specific PCR primers and a TaqMan assay-FAMTM

dye-labeled MGB probe. 18S rRNA was used as an endogenous

control. Data was generated using software SDS 2.1 and CT values

were calculated. All genes were detectable under the detection

thresholds (CT#36) recommended by Applied Biosystems. To

compare 18S rRNA and target gene, relative quantification was

performed using comparative CT method. Briefly, this method

involved averaging duplicate samples of each target and endog-

enous control in both calibrator (i.e. control) and treatment

samples [i.e. DCT (absolute CT value – endogenous control CT

value) and DD CT (DCT for each gene – DCT for a common

reference gene)]. The fold change was calculated according to the

formula 22(DDCT), where DDCT was the difference between DCT

target and the DCT calibrator value. ABI gene expression assay

IDs and the corresponding genes used in qRT-PCR validation

experiments are listed in Dataset S5.

Gene Overlap Significance Test
Common genes between two sets were identified using freely

available Bioinformatics & Research Computing tool (http://jura.

wi.mit.edu/bioc/tools/compare.php). Hypergeometric distribu-

tion probability was used for testing significance of gene matching.

The p values for gene overlaps were obtained using Microsoft

Office Excel 2007. Bonferroni correction was applied for adjusting

p values for multiple hypotheses testing.

Accession Numbers
The microarray data is available in Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/), with the accession numbers

GSE29221, GSE29226 and GSE29231.

Supporting Information

Dataset S1 Genes reported in T2D GWASs at different
levels of significance. This table lists all the genes that are

reported in various GWASs for T2D at p value thresholds of 1028,

1027, 1026 and 1025. There are 46, 62, 71 and 93 genes in these

lists, in that order. The gene lists were retrieved from the catalog of

published GWASs made freely available by NHGRI.

(XLS)

Dataset S2 Genes in the total interactome and T2D
interactome. This table lists all the genes that constitute the total

interactome and the direct interaction network of genes reported

in T2D GWASs at p value cutoff of 1025. These genes are 14,306

and 561 in number, in that order. The interactome data for Homo

sapiens in BioGRID was used in combination with the visualization

tool Osprey to retrieve gene lists.

(XLS)

Dataset S3 Antidiabetic drug interacting genes. This

table provides list of genes which interact with antidiabetic drugs

pioglitazone, troglitazone, rosiglitazone, metformin, tolbutamide

and glyburide. There are 121, 172, 518, 76, 17 and 23 genes in

these lists, in that order. The gene lists were retrieved from

Comparative Toxicogenomics Database (CTD).

(XLS)

Dataset S4 Up- and down- regulated genes in T2D
patients compared to nondiabetic controls. This table lists

genes that showed up- or down- regulation in genome-wide

expression analysis in various tissues in male and/or female T2D

patients. Lists of differentially expressed genes in male skeletal

muscle, female subcutaneous adipose, female visceral adipose and

male visceral adipose are given for both adjusted and unadjusted

Diff score cutoff of 6 13 which corresponds to a p value of 0.05. At

Table 7. TGF-beta signaling genes in T2D genome,
interactome and transcriptome, and antidiabetic drug
toxicogenome.

Genome Interactome Transcriptome Toxicogenome

CDKN2B PPP2R1B CDKN2B BMP4

PPP2R1A CREBBP DCN

SMAD9 EP300 ID2

ROCK1 MAPK1 IFNG

SMAD5 MAPK3 MAPK1

CREBBP MYC MAPK3

SMAD4 PPP2CA MYC

SMAD3 PPP2R1A RPS6KB1

RPS6KB2 PPP2R1B SP1

RPS6KB1 ROCK1 TGFB1

SMAD1 RPS6KB1 THBS1

MAPK1 RPS6KB2 THBS2

EP300 SMAD3 THBS3

CDKN2B SMAD5 TNF

SP1 SP1

PPP2CA

MAPK3

SMURF1

MYC

doi:10.1371/journal.pone.0053522.t007
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adjusted significance level, there are 46 up- and 62 down-

regulated genes in male skeletal muscle, 200 up- and 994 down-

regulated genes in female subcutaneous adipose, 1659 up- and 403

down- regulated genes in female visceral adipose, and 113 up- and

89 down- regulated genes in male visceral adipose. At unadjusted

significance level, there are 773 up- and 3625 down- regulated

genes in male skeletal muscle, 1175 up- and 2929 down- regulated

genes in female subcutaneous adipose, 3713 up- and 1500 down-

regulated genes in female visceral adipose, and 2043 up- and 1191

down- regulated genes in male visceral adipose.

(XLS)

Dataset S5 ABI gene expression assay IDs used in qRT-
PCR. This table lists ABI gene expression IDs and the

corresponding gene symbols used in qRT-PCR analysis. There

are 48 IDs including that corresponding to the endogenous control

18S rRNA.

(XLS)
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