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Abstract

A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted
according to certain confidence scores. A key problem is then determining how many predictions must be selected to
include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-
based protein structure determination, for instance, computational peak picking methods are becoming more and more
common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of
candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-
H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple
testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values
and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on
the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed
number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY
with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark
set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY
achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method
without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method
and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code,
documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
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Introduction

Many computational bioinformatics methods generate a large

number of predictions for the correct solution to a problem among

which are both true and false predictions. Such predictions are

usually sorted according to certain confidence scores. For instance,

ab initio protein structure prediction methods sample tens of

thousands of three-dimensional models. The energy values are

calculated for each model based on a given energy function, where

lower values likely indicate better models. Another example is the

protein function annotation problem in which the amino acid

sequence or the domain architecture of a protein is given and the

Gene Ontology (GO) terms selected from among some 30,000 are

used to annotate the function.

In nuclear magnetic resonance (NMR)-based protein structure

determination, thousands of peaks are routinely predicted from the

input spectra in which there are usually tens to hundreds of true

signals. The peaks are sorted according to either their intensities or

estimated volumes. Both means of sorting, based on computational

methods, have common properties. First, a large number of

predictions are generated. Second, the predictions are scored by

the scoring functions of the methods. However, the scoring

functions are not powerful enough to distinguish true predictions

from the false ones. Third, it is important to discover most of the

true predictions while maintaining a reasonably low false positive

rate. Therefore, it is crucial to know how many predictions should

be selected in such scenarios.

Peak picking is one of the key problems in NMR protein

structure determination process [3–5]. The problem is defined as

follows: given any NMR spectrum or a set of spectra, select the

true signals, i.e., peaks, while filtering the false ones. Typically, true

peaks are assumed to have Gaussian-like shapes and high

intensities so that they can be easily differentiated from false ones.

However, there are two main factors that make the peak picking

problem difficult. On the one hand, depending on the quality of

the protein sample, the property of the target protein and local

dynamics, there can be a number of weak peaks, i.e., peaks with

low intensities or volumes. That is, if we sort the predicted peaks

by volumes or intensities, there is no clear cutoff threshold to

distinguish true peaks from false ones. These peaks are difficult to

identify even by manual processes. This is why computational
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methods are useful. On the other hand, due to the various sources

of noise in NMR spectra, such as water bands and artifacts, false

peaks can have high intensities or volumes. The group of sorted

peaks is therefore comprised of a mixture of true peaks and false

ones, where most of the true peaks tend to be ranked higher with a

few strong, false peaks also included. It is extremely difficult, if not

impossible, to select only the true peaks and eliminate all the false

ones. In NMR structure determination, a missing true peak may

cause all the follow-up procedures to fail, whereas a false peak can

still be eliminated later [6–9]. Therefore, an ideal method should

identify almost all the true peaks while maintaining reasonably

high precision.

The peak picking problem has been studied for more than two

decades. A variety of computational methods have been proposed

[1,2,10–19]. The existing methods can be classified into two

categories according to the de-noising method. Included in the first

category are hard threshold-based approaches. For instance,

PICKY [2] assumes that the noise is white Gaussian and estimates

the noise level in small regions that do not contain signals. The

data points that have lower intensities than the estimated noise

level are eliminated from the spectra. Singular value decomposi-

tion is applied to the connected components of the remainder of

the spectra to yield one-dimensional lineshapes. The peaks are

identified in each lineshape and sorted according to the intensity

values. The higher the intensity is, the greater the confidence that

it is a true peak. However, the hard threshold-based methods

cannot detect weak peaks that are embedded in the noise. In the

second category are soft threshold-based approaches, which do not

eliminate any data point from the spectra. We recently proposed

WaVPeak [1] to overcome the bottleneck in the hard threshold-

based methods. WaVPeak applies the high-dimensional version of

the Daubechies 3 wavelet [20] to smooth the given spectra. The

shapes of true peaks become sharper and smoother. A brute-force

method is used to identify all the local maxima in the smoothed

spectra. In contrast to PICKY, the peaks are sorted according to

their estimated volumes by WaVPeak. We have found that volume

significantly outperforms intensity in distinguishing true peaks

from false ones.

However, the existing peak picking methods are not able to

determine automatically how many peaks among many to identify

in order to include most of the true peaks. This number should be

large enough to include as many true peaks as possible, and in the

meanwhile small enough to achieve relatively high precision. In

PICKY, the default number of peaks to return is 1:2 Np, where Np

is the length of the protein. In [1], WaVPeak is mainly compared

with PICKY on the top 1:2 Kp peaks, where Kp is the number of

manually identified peaks, which is unknown for a new target

protein. However, such fixed number-based approaches do not

take the distribution of peaks into consideration. For instance, if

there is a spectrum that is very noisy or has a large number of

artifacts, there can be many strong but false peaks, which are

identified along with the true ones. Many true peaks will not be

selected if 1:2 Np or 1:2 Kp is used. No matter how powerful the

peak picking method is, it is crucial to cleverly determine the

number of peaks to be selected. Otherwise, true peaks will be

eliminated even if they have been identified by the methods.

In this paper, we propose a Benjamini-Hochberg (B-H)-based

approach for the peak picking problem. We first cast the peak

selection problem into a multiple testing problem [21]. Because

there is no clear cutoff threshold for intensities or volumes, we

calculate the p-value for each peak. The number of peaks to be

selected is then automatically determined by the B-H-based

algorithm. We demonstrate that the proposed method significantly

outperforms the fixed number-based method on selecting the true

peaks from the predictions by the state-of-the-art peak picking

methods, including WaVPeak and PICKY.

Methods

Our goal is to develop a method to help us to determine how

many peaks to select among candidate peaks that number usually

in the order of several hundreds. Each candidate peak can be

considered as a null hypothesis, where each false peak is a true null

hypothesis and each true peak is a false null hypothesis. Therefore,

the goal is to simultaneously test all the hypotheses and to reject as

many false null hypotheses as possible. This is a multiple testing

problem, which has received much attention in the literature (see,

e.g., [22]). One prominent solution to multiple testing problem

was proposed by Benjamini and Hochberg [23]. We first describe

how to cast our problem into that framework.

A Quick Review of Benjamini-Hochberg Method
We wish to test N null hypotheses:

H01,:::::::,H0N ,

on the basis of a data set X . We have some decision rule D that

rejects or accepts each of the above N cases (e.g., decides if the ith

candidate peak is a true peak or a false peak). The data set X

consists of

X11,X12,:::,X1n;

Xi1,Xi2,:::,Xin;

XN1,XN2,:::,XNn,

where fXi1,Xi2,:::,Xing are a random sample from the ith

population (e.g. intensities or volumes in a neighborhood of the

ith candidate peak). We assume that our decision rule, D,

produces a p-value, pi, for each case, i (we will discuss several

different ways of calculating such p-values later). Therefore, pi has

a uniform distribution if H0i is correct,

H0i : pi*U(0,1):

Intuitively, if the p-value, pi, is small enough, H0i will be

rejected. In fact, the usual Bonferroni procedure [24,25] rejects

H0i whenever

piƒa=N,

where a is the significance level. This is typically a very

conservative procedure, particularly when N is large, because it

does not reject as many null hypotheses as it should. In other

words, it tends to have a low discovery rate.

To improve the discovery rate, Benjamini and Hochberg (1995)

proposed an algorithm based on ordered p-values:

BH Peak Picking
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p(1),:::, p(N):

The Benjamini and Hochberg (B-H) algorithm uses the

following rule: for a fixed value of q[(0,1), referred to as the

control rate, let imax be the largest index for which

p(i)ƒ
i

N
q,

and reject H0(i), the null hypothesis corresponding to p(i), if

iƒimax,

accepting H0(i) otherwise. Figure 1 illustrates how the B-H

procedure works.

Benjamini and Hochberg proved the following result [23],

which justified their procedure.
Theorem. For independent test statistics, the B-H algorithm

controls the expected false discovery proportion (FDP) at q:

FDR:EfFDPg~(N0=N)qƒq,

where FDP~V=R, R is the number of cases rejected, V is the

number of those that are actually null, and N0 is the number of

true null hypotheses.

Clearly, the above FDP control attempts to keep the number of

false discoveries under control, and in a sense to keep the precision

above a certain level. A good procedure should have as high recall

rates as possible with prescribed high precision (or low FDP).

Applying the B-H Procedure to the Peak Picking Problem
We will cast the NMR peak picking problem into the multiple

testing framework. In WaVPeak (or PICKY), after data cleaning at

the first stage by wavelet smoothing (or by hard thresholding), N

potential peaks are identified. We wish to test that, for each

i~1,:::,N,

H0i : the ith peak is a false peak :

against

H1i : the ith peak is a true peak :

We can view each candidate peak and its surroundings as one

population. We have a random sample of intensities, Xi1,:::,Xin

from the ith population. The sample size n depends on which

method is adopted. For WaVPeak, we have n~9 if we use a

rectangular neighborhood of length 1 in 2D spectra, such as 15N-

HSQC; for PICKY, we have n~1 since we only use one intensity

at each candidate peak.

We implement the B-H procedure below in two steps.

N Step I: calculating p-values.

For WaVPeak and PICKY, we use volume (Voli) and intensity

(Inti) around the ith candidate peak as the test statistics,

respectively. Our decision rule is to reject H0i if Voli or Inti is

large, respectively. The corresponding p-values are

pV
i ~PH0i

(Voli§voli) for WaVPeak,

pI
i ~PH0i

(Inti§inti) for PICKY,

where voli and inti are observed values of Voli and Inti.

N Step II: applying the B-H procedure at FDR~q.

Rank the p-values p1,:::,pN obtained from Step I in ascending

order, and denote the ordered p-values as p(1),:::,p(N). We can

then plot p(k) vs k, and apply the B-H procedure.

Calculation of P-values
We now explain how to calculate p-values pV

i and pI
i in Step I

above. We assume that the observations from different peaks are

independent, and that true peaks and false peaks are from two

different normal distributions. Then we can rewrite the above

testing problem as

H0i : Xi1,Xi2,:::,Xin*i:i:d:N(m0,s2
0)

against

H1i : Xi1,Xi2,:::,Xin*i:i:d:N(m1,s2
1):

Typically, the mean intensity m0 from false peaks is much

smaller than the mean intensity m1 from true peaks, usually written

as m1&m0. However, m0 may not be zero, and can be estimated

from weak intensities. For variances, we typically have s2
1§s2

0.

The reason why m0 is small (compared with m1) but not zero is

due to how the candidate peaks are selected. In WaVPeak and

PICKY, the volumes and intensities are calculated for a grid of

Figure 1. Illustration of the Benjamini-Hochberg procedure. In
this example, the number of hypotheses (N) is 10 and the false
discovery proportion (q) is 0.2. The largest index of the hypotheses that
is below the line is 6 (imax~6). Therefore, the first six hypotheses are
rejected as the predicted peaks.
doi:10.1371/journal.pone.0053112.g001
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points, respectively, those below certain thresholds are discarded,

and the remaining ones are retained as candidate peaks.

Therefore, the volumes and intensities for those candidate peaks

should all have mean volumes and intensities above the thresholds.

To calculate pV
i and pI

i , we need to standardize by subtracting

the mean, m0, and divide the standard deviation (s.d.), s0, under

H0i’s. Due to the different data structures of WaVPeak (volumes)

and PICKY (intensities), they are considered separately below.

Calculation of pV
i

In WaVPeak, the test statistic Voli is the approximate volume

under the ith candidate peak: Voli~c
Pn

j~1 Xij~cn �XXi, where

�XXi~n{1
Pn

j~1 Xij and cw0 is some constant. Then, the p-value is

pV
i ~PH0i

(Voliwvoli)~PH0i
( �XXiw�xxi)

~PH0i

ffiffiffi
n
p

( �XX i{m0)

s0
w

ffiffiffi
n
p

(�xxi{m0)

s0

� �

~1{W

ffiffiffi
n
p

(�xxi{m0)

s0

� �
, ð1Þ

where W is the standard normal distribution. The mean/median,

m0, and variance, s2
0, of the false peaks are unknown, which can be

estimated by the sample median and sample variance of the false

peaks, respectively. To do this, we need to have a rough idea of

where those false peaks are located. It has been observed that the

number of true peaks of a protein, N0, is always less than tNp,

where Np is the length of that protein and t is the expected

number of peaks per residue for the corresponding spectrum. For

instance, for 15N{HSQC, t~1; for CBCACONH , t~2. Almost

all true peaks are ranked in the top tNp candidate peaks by volume

in WaVPeak, while the remaining N{tNp candidate peaks are

mostly false peaks, from which we can estimate m0 and s0.

To be more specific, for i~1,:::,N, let �XXi and S2
i denote the

sample mean and variance for the ith candidate peak; and �XX(i) and

S2
(i) the ordered sample means and variances, respectively. Then

m0 and s0 can be estimated by the medians of the N{tNp smallest
�XXi and S2

i :

X 0~medianf �XX(tNpz1),:::, �XX(N)g, ð2Þ

S0~medianfS(tNpz1),:::,S(N)g: ð3Þ

Calculation of pI
i

In PICKY, the test statistic is the intensity, Xi, at the ith single

peak. Here, n~1. Its p-value can be calculated similarly to that in

WaVPeak, giving

pI
i ~PH0i

(Xiwxi)~1{W
xi{m0

s0

� �
: ð4Þ

Although we could use the same estimators of m0 and s0 as

above, we will propose some different ones for PICKY due to its

unique features. It has been demonstrated that the intensity of a

single peak point is a much less reliable confidence score than the

volume of the peak [1]. It is thus expected that the intensity curves

are mixed up by fewer true peaks and more false peaks. Therefore,

the median of fS2
(tNpz1),:::,S

2
(N)g may no longer be accurate

because the median may very likely come from a true peak. On

the other hand, replacing the median by the minimum in (2) and

(3) should produce better estimators of m0 and s0, respectively,

which turns out to be true for less reliable confidence scores (data

not shown). Based on these considerations, we propose to estimate

m0 and s0 in PICKY respectively by

~XX0~ minf �XX(tNpz1),:::, �XX(N)g,

~SS0~ minfS(tNpz1),:::,S(N)g:

Results

We evaluated the performance of the proposed methods on the

peaks predicted by WaVPeak and PICKY. The same dataset as

the one used by both [1] and [2] was used as the benchmark

dataset, the most comprehensive dataset available for the peak

picking problem. The dataset covers a wide range of spectrum

types, including 2D 15N-HSQC, and 3D HNCO, HNCA,

HNCACB and CBCA(CO)NH, which were extracted from the

spectrum sets of eight proteins (TM1112, YST0336, RP3384,

ATC1776, CASKIN, HACS1, VRAR, and COILIN).

We first demonstrate how our method performed when a more

reliable confidence score is available, i.e., the estimated volumes of

the peaks predicted by WaVPeak. We then present the perfor-

mance of the method when a less reliable confidence score is

available, i.e., the single intensity values of the peaks provided by

PICKY. We finally demonstrate how to combine the results of our

method with both WaVPeak and PICKY, to further eliminate

false positive peaks.

Selecting WaVPeak Peaks
The B-H algorithm is first compared with a fixed number-based

method, i.e., tNp, on selecting peaks predicted by WaVPeak. N is

set to 1:5tNp. That is, the top 1:5tNp peaks predicted by WaVPeak

are considered. The results are presented in Table 1, about which

we make the following observations.

N The B-H algorithm significantly outperforms the tNp-based

method in terms of the average missing peak rates, i.e., the

percentage of true peaks that are not selected. On six out of the

32 spectra, the B-H algorithm reduces the tNp-based method

on the missing peak rate by more than 50%. One exception is

HNCACB, where the B-H algorithm is slightly worse than the

tNp-based selection in the missing peak rate (but better in

precision); however, this can be easily rectified by increasing

the FDR q~5% to 10%{15%, which is commonly adopted

in practice. Overall, the B-H algorithm is much more sensitive

and stable than the fixed number-based method. It is

noticeable that the improvement in the sensitivity is at the

cost of the reduced precision. This is expected because the B-H

algorithm does not change the order of the sorted candidate

peaks. Instead, it provides a good tradeoff that prefers higher

sensitivity by selecting a cutting point in the list of the sorted

peaks.

BH Peak Picking
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N As expected, the fixed number-based method is not stable. It

performs well on some spectra (e.g. RP3384), but poorly on the

others (e.g., TM1112). This is further verified by its larger

standard deviations. The reason is that such a method does not

Table 1. Comparison of the missing peak rate of the fixed number-based method (tNp) and the Benjamini-Hochberg (B-H)
algorithm with q~0:05 on the 32 spectra of the eight proteins in the benchmark dataset as picked by WaVPeak.

Spectra 15N-HSQC HNCO HNCA HNCACB CBCA(CO)NH

Protein Len tNp B-H (d) tNp B-H (d) tNp B-H (d) tNp B-H (d) tNp B-H (d)

RP3384 64 7 7 (0) 0 0 (0) 12 12 (0) – – 8 8 (0)

CASKIN 67 6 2 (67) 22 15 (32) – – 38 41 (28) 10 10 (0)

VRAR 72 3 3 (0) 7 7 (0) – – 31 32 (23) 18 18 (0)

HACS1 74 7 2 (71) 8 6 (25) – – 14 15 (27) 8 6 (25)

TM1112 89 8 2 (75) – – 6 6 (0) 8 7 (13) 9 2 (78)

COILIN 98 3 0 (100) 16 17 (26) – – 24 25 (24) 28 20 (29)

ATC1776 101 7 5 (29) 8 7 (13) 19 17 (11) – – 25 24 (4)

YST0336 146 2 2 (0) 6 3 (50) 11 10 (9) – – 17 13 (24)

Average 5.4 2.9 (43) 9.6 7.9 (16) 12 11.2 (5) 23 24 (22) 15.4 12.6 (20)

SDave 2.2 2.0 6.7 5.7 4.6 3.9 10.9 12.0 7.4 7.0

Preave 84 77 77 73 83 76 64 71 72 67

Column (d) is the relative improvement of the missing peak rate of B-H over tNp . All values except the last two rows are the missing peak rates. The ‘‘SDave ’’ row lists the
standard deviations of the missing peak rates for the corresponding columns, demonstrating the robustness of different methods. The last row is the average precision
value. All values are given in percentage.
doi:10.1371/journal.pone.0053112.t001

Figure 2. Original volume curves and the corresponding p-value curves. (a) and (d): sorted volume curve (a) and the corresponding p-value
curve (d) of peaks predicted by WaVPeak on the 2D 15N-HSQC spectrum of the protein ATC1776; (b) and (e): sorted volume curve (b) and the
corresponding p-value curve (e) of peaks predicted by WaVPeak on the 3D HNCO spectrum of the protein VRAR; (c) and (f): sorted volume curve (c)
and the corresponding p-value curve (f) of peaks predicted by WaVPeak on the 3D CBCA(CO)NH spectrum of the protein COILIN. In all figures, true
peaks are shown in black and false ones are shown in cyan. In (d), (e) and (f), the decision boundaries of tNp and B-H procedure are shown in black
and magenta, respectively.
doi:10.1371/journal.pone.0053112.g002
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take the properties of the input spectra into consideration. For

instance, for a very noisy spectrum with weak signals, there can

be many false peaks sorted amongst the true ones (e.g.,

Figures 2(a) and 2(c)). Thus, by taking a fixed number of peaks,

there is no way one can ensure that the true peaks are

included.

N Reduction on the missing peak rate of B-H over tNp can reach

as high as 100%, indicated in column d. These improvements

mostly occur in the weak peaks, which are the most difficult to

find. Since there are not many weak peaks to start with,

improvements measured by relative missing peak rates (i.e.,

weak signals found/all weak signals) are very high, even

though those measured by absolute missing peak rates may not

always appear.

It is noticeable that all the missing peak rates in Table 1 are the

results by comparing to the ‘‘expected’’ peak lists of the spectra.

The ‘‘expected’’ peak lists were generated by NMR labs by

combining information from large sets of spectra. It is thus likely

that an expected peak does not exist in some spectra, especially the

noisy ones, such as HNCACB and CBCA(CO)NH. In practice,

higher recall rates (lower missing peak rates) than those reported

here can be expected.

Figure 2 shows several representative examples of how different

selection methods work. We make several remarks.

N It can be difficult to set a cutoff point from the original volume

curves in Figures 2(a)–2(c) to separate true peaks from false

ones. The best thing the fixed number-based methods can do is

to take a random guess. For example, the tNp-based selection

method overestimates the number of peaks to be selected for a

less noisy spectrum as shown in Figure 2(e), but significantly

underestimates the number of peaks to be selected for a noisier

spectrum as shown in Figure 2(f).

N The B-H algorithm works consistently well on the p-value

curves. As shown in Figure 2, after converting the volumes to

p-values, strong true peaks with high volumes are dragged

down to the x-axis, i.e., the p-values are almost equal to zero.

Most of the weak true peaks with low volumes are also dragged

to the x-axis, making it possible to identify them in the p-value

curves. For instance, two of the three weak peaks with low

volumes in Figure 2(a) are dragged down to the x-axis, and

thus selected by the B-H algorithm. Note that the p-value does

not change the volume order of the peaks. Instead, it provides

a much better curve so that the weak peaks can be possibly

selected.

Selecting PICKY Peaks
We then evaluated the performance of the proposed method

with a less reliable confidence score, i.e., the intensity value of

PICKY. PICKY has a default noise level threshold [2], which

sometimes causes insufficient numbers of predicted peaks. For fair

comparison purposes, we lowered the noise level threshold of

PICKY until it generated more than 1.5tNp peaks.

Table 2 presents the performance of the proposed method on

selecting peaks predicted by PICKY. Similar conclusions to those

about WaVPeak can be made here. For instance, the B-H method

consistently and significantly outperforms the fixed number-based

method. There are seven spectra on which the B-H algorithm

reduces the missing peak rate of the tNp-based method by at least

50%. Six of these spectra have original recall rates that were

already higher than 90%. There are two spectra, HNCO of

COILIN and CBCA(CO)NH of RP3384, on which the absolute

improvements are greater than 15% with highest being 26%. As

shown in Figures 3(b) and 3(c), the original intensity curves for

these two spectra are continuous and smooth. It is difficult to

identify a cutoff point between true peaks and false ones on such

curves. Many false peaks are sorted amongst the true ones. After

converting the intensity values into p-values, most of the true peaks

are dragged down to the x-axis, i.e., they have very small p-values.

The 5% slope is then able to select most of the true peaks. In the

two cases, fewer than three true peaks are not selected and true

peaks are almost the last ones selected by the B-H algorithm.

Eliminating False Peaks
The proposed B-H algorithm automatically determines how

many peaks we should select from the candidate peak lists that are

sorted according to the confidence scores of different methods.

Therefore, the more true peaks it includes, the greater the

possibility that it also includes false ones. This possibility is verified

by the relatively low precision values in Table 1. The selected false

peaks usually have larger volumes (or even much larger volumes)

than the true ones. This can be caused by a variety of reasons, such

as water bands, artifacts and side-chains. It is thus very difficult to

eliminate them from a single spectrum. An effective way to

eliminate false peaks is to use spectra that share same atoms to

‘‘cross-reference’’ the peaks [2].

The goal of such cross-referencing is to eliminate as many false

peaks as possible, while maintaining as many true peaks as

possible. Among the commonly used NMR spectra, 15N-HSQC is

the most sensitive and reliable one. It is often used as the root

spectrum by NMR spectroscopists. If 15N-HSQC is not available,

HNCO is usually considered to be the root, especially in non-

linear acquisition mode. If other types of spectra are used to cross-

reference 15N-HSQC, the recall will be significantly decreased.

Therefore, we used a consensus method to refine the peaks

selected for 15N-HSQC. Both WaVPeak and PICKY were used to

pick peaks for the 15N-HSQC spectra of the eight proteins. The

two candidate peak lists were then selected by the proposed B-H

algorithm. Only the peaks that appeared in both selected peak lists

were kept as the consensus peak list for 15N-HSQC. As shown in

Table 3, the consensus method retained all the true peaks while

increasing the precision by 13% on average. The consensus peak

list was then used to refine all the other peak lists of WaVPeak that

were selected by the proposed B-H algorithm. The reason we used

the peak lists of WaVPeak was that WaVPeak was shown to be

more sensitive than PICKY on noisier spectra [1]. Table 3 shows

that for all the spectra, most of the true peaks were maintained,

and the precision values were significantly improved. F-score,

which is the harmonic mean of precision and recall, suggests that

the BH-based consensus method gives the best overall accuracy

comparing to other methods, including PICKY, WaVPeak, B-H

WaVPeak, and the consensus of PICKY and WaVPeak by simply

considering the top 1:5tNp peaks from each method. On average,

the BH-based consensus method was able to identify more than

88% of the expected true peaks, whereas less than 17% of the

selected peaks were false ones.

Note that the performance of PICKY and WaVPeak in Table 3

was taken from that reported in [1], in which the top 1:2Kp peaks

were selected for comparison, where Kp, the number of true peaks

that exist in the spectrum, was assumed to be known. The 1:5tNp

consensus method in Table 3 was done by considering the top

1:5tNp peaks of both PICKY and WaVPeak, which is much larger

than the number of peaks used in [1]. This explains the significant

drop of precision for the consensus method with respect to PICKY

and WaVPeak.

BH Peak Picking

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e53112



Figures 4(a)–(e) show the precision-recall curves of the six

different peak picking methods on the five types of spectra. These

six methods are PICKY, B-H PICKY, WaVPeak, B-H WaVPeak,

1:5tNp consensus and B-H consensus. For the sake of clearance,

Table 2. Comparison of the missing peak rate of the fixed number-based method (tNp) and the Benjamini-Hochberg (B–H)
algorithm with q~0:05 on the 32 spectra of the eight proteins in the benchmark set picked by PICKY.

Spectra 15N-HSQC HNCO HNCA HNCACB CBCA(CO)NH

Protein tNp B-H (d) tNp B-H (d) tNp B-H (d) tNp B-H (d) tNp B-H (d)

RP3384 6 4 (33) 0 0 (0) 13 13 (0) – – 36 10 (72)

CASKIN 2 2 (0) 22 15 (32) – – 33 38 (215) 10 9 (10)

VRAR 7 7 (0) 9 9 (0) – – 31 31 (0) 19 19 (0)

HACS1 5 2 (60) 6 4 (33) – – 18 17 (6) 9 6 (33)

TM1112 8 1 (88) – – 6 6 (0) 8 7 (13) 9 2 (78)

COILIN 4 0 (100) 19 3 (84) – – 24 24 (0) 33 20 (39)

ATC1776 5 4 (20) 8 5 (38) 19 18 (5) – – 28 26 (7)

YST0336 2 2 (0) 6 3 (50) 12 10 (17) – – 17 12 (29)

Average 4.9 2.7 (38) 10.0 5.6 (34) 12.5 11.7 (6) 22.8 23.4 (1) 20.1 13.0 (34)

SDave 2.0 2.0 7.2 4.6 4.6 4.4 9.1 10.8 10.3 7.5

Preave 85 69 77 67 83 70 65 69 68 60

Column (d) is the relative improvement of the missing peak rate of B-H over tNp . All values except the last two rows are the missing peak rates. The ‘‘SDave ’’ row lists the
standard deviations of the missing peak rates for the corresponding columns, which demonstrates the robustness of different methods. The last row gives the average
precision values. All values are given in percentage.
doi:10.1371/journal.pone.0053112.t002

Figure 3. Original intensity curves and the corresponding p-value curves. (a) and (d): sorted intensity curve (a) and the corresponding p-
value curve (d) of peaks predicted by PICKY on the 2D 15N-HSQC spectrum of the protein TM1112; (b) and (e): sorted intensity curve (b) and the
corresponding p-value curve (e) of peaks predicted by PICKY on the 3D HNCO spectrum of the protein COILIN; (c) and (f): sorted intensity curve (c)
and the corresponding p-value curve (f) of peaks predicted by PICKY on the 3D CBCA(CO)NH spectrum of the protein RP3384. In these figures, true
peaks are shown in black and false ones are shown in cyan. In (d), (e) and (f), the decision boundaries of tNp and the B-H procedure are shown in
black and magenta, respectively.
doi:10.1371/journal.pone.0053112.g003
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only the important parts of the curves, i.e., when recall is at least

0.7, are drawn. It is clear that B-H consensus always outperforms

the five other methods. That is, at the same recall value, B-H

consensus always has less proportion of false positive peaks. The

1:5tNp consensus is the second best method. This makes sense

because the consensus methods, comparing to the other methods,

combine information from different, relevant spectra. B-H

WaVPeak and B-H PICKY consistently outperform WaVPeak

and PICKY. Note that WaVPeak has been shown to be better

than PICKY [1]. Thus, the improvement of B-H PICKY over

WaVPeak is due to the use of our B-H algorithm. In practice, we

suggest the users to use the B-H WaVPeak if high sensitivity is

required or only one spectrum is available, and use the B-H

consensus method if high tradeoff between precision and recall is

needed or a set of relevant spectra is given.

We further studied the sensitivity of the B-H algorithm with

respect to the parameter. In this paper, we have been using 1.5 as

the parameter value in 1:5tNp. As shown in Figure 4(f), when the

parameter value is changed to 2, 2.5 or 3, there is no significant

change on both precision and recall.

Table 3. Comparison of the performance of different peak picking methods.

Spectra 15N-HSQC HNCO HNCA HNCACB CBCA(CO)NH

Method Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre F – score

PICKY 93 81 89 74 88 74 60 78 72 66 77

WaVPeak 96 80 91 76 88 74 76 64 85 71 80

B-H (WaVPeak) 97 70 92 73 89 76 76 71 87 67 79

Consensus (1:5tNp) 97 72 92 70 88 82 77 72 88 69 80

B-H (Consensus) 97 83 89 80 86 93 76 84 86 80 85

Rec stands for recall values and Pre stands for precision values. The recall and the precision values of PICKY and WaVPeak are taken from [1]. B-H (WaVPeak) is the
WaVPeak peaks selected by the proposed B-H algorithm. Consensus (1:5tNp) is the consensus of WaVPeak and PICKY by simply considering the top 1:5tNp peaks from
each method. B-H (Consensus) is the consensus of WaVPeak and PICKY by considering the top peaks that are determined by the proposed B-H algorithm. All the values
are given as percentage.
doi:10.1371/journal.pone.0053112.t003

Figure 4. Precision-recall curves for different peak picking methods and sensitivity analysis of B-H WaVPeak. (a)–(e): precision-recall
curves for different methods on 15N-HSQC, HNCO, HNCA, CBCA(CO)NH and NHCACB, respectively. The solid black curves are for B-H consensus
method; the dashed black curves are for the 1.5tNp consensus method; the solid cyan curves are for B-H WaVPeak; the dashed cyan curves are for the
original WaVPeak; the solid magenta curves are for B-H PICKY; and the dashed magenta curves are for the original PICKY. The relative area under
curve (AUC) values are in legends, which are the area under curve over the total area of recall at least 0.7. (f): sensitivity analysis for different number
of peaks. The precision and recall values of B-H WaVPeak are shown when 1:5tNp , 2tNp , 2:5tNp and 3tNp top peaks are used to calculate the p-values.
doi:10.1371/journal.pone.0053112.g004
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Discussion

A common issue in bioinformatics is that a large number of

predictions are made by computational methods. These predic-

tions contain both true predictions and false ones. In most

problems, a fixed number of predictions is selected according to a

certain confidence score. The confidence score, however, is not

accurate enough to differentiate true predictions from false ones.

Therefore, selecting a fixed number of predictions or thresholding

by a fixed score usually sacrifices a lot of true predictions because it

does not take the properties of the problem into consideration. We

propose a general approach to partially resolve this issue. The

original confidence score is first converted into p-values, which

have been demonstrated to have a much stronger distinguishing

capability than the original confidence score. The Benjamini-

Hochberg algorithm is then applied to select a self-adapted

number of predictions according to the false discovery rate that we

want to control. This approach provides a systematic way of

selecting predictions of computational methods. We further

demonstrate that the false predictions can be further eliminated

by using consensus or cross-referencing approaches.

The proposed approach has a wide range of potential

applications. For instance, in protein function annotation prob-

lems, the amino acid sequences or domain architectures of

proteins are given, and the GO terms selected from among some

30,000 are used to annotate the function. Most of the existing

methods estimate the probability for each GO term to annotate

the given protein [26–29]. However, the number of GO terms that

annotate a certain protein is unknown. Our approach can be

directly applied to the protein function annotation problem such

that the correct number of GO terms is selected.

Theoretically speaking, the sum of the false discovery rate and

the precision should be one. However, the precision values of B-H

WaVPeak and B-H PICKY are way below 0.95, as shown in

Tables 1 and 2. This is due to the fact that the volume and the

intensity used in the original WaVPeak and PICKY are not perfect

measures to rank peaks. That is, although such measures contain

information about peak properties, the information is far from

complete or correct. As shown in Figures 2 and 3, many true peaks

can have much lower volume or intensity than some false ones. In

order to achieve the theoretical precision level, better measure-

ments have to be used by the original peak picking methods. For

instance, the symmetry of peak shapes can be considered as

additional information to rank peaks [4].

We are currently incorporating the proposed method as a plug-

in into the available NMR software, such as CCPN and

NMRView [15]. The source code of the proposed method is

available at http://sfb.kaust.edu.sa/pages/software.aspx.

Conclusion
We have proposed a sensitive and robust approach to select

peaks from automatic peak picking methods. The original peak

confidence scores are first converted into p-values. The Benjamini-

Hochberg algorithm is then applied to select the number of peaks.

In this paper, we demonstrated that the proposed approach

worked consistently well using state-of-the-art peak picking

methods. Therefore, this can be a potentially general approach

to select a good number of candidates from a large set of

predictions.
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