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Abstract

For humans and animals, the ability to discriminate speech and conspecific vocalizations is an important physiological
assignment of the auditory system. To reveal the underlying neural mechanism, many electrophysiological studies have
investigated the neural responses of the auditory cortex to conspecific vocalizations in monkeys. The data suggest that
vocalizations may be hierarchically processed along an anterior/ventral stream from the primary auditory cortex (A1) to the
ventral prefrontal cortex. To date, the organization of vocalization processing has not been well investigated in the auditory
cortex of other mammals. In this study, we examined the spike activities of single neurons in two early auditory cortical
regions with different anteroposterior locations: anterior auditory field (AAF) and posterior auditory field (PAF) in awake
cats, as the animals were passively listening to forward and backward conspecific calls (meows) and human vowels. We
found that the neural response patterns in PAF were more complex and had longer latency than those in AAF. The
selectivity for different vocalizations based on the mean firing rate was low in both AAF and PAF, and not significantly
different between them; however, more vocalization information was transmitted when the temporal response profiles
were considered, and the maximum transmitted information by PAF neurons was higher than that by AAF neurons.
Discrimination accuracy based on the activities of an ensemble of PAF neurons was also better than that of AAF neurons.
Our results suggest that AAF and PAF are similar with regard to which vocalizations they represent but differ in the way they
represent these vocalizations, and there may be a complex processing stream between them.
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Introduction

One of the important physiological roles of the auditory system

is to discriminate the communication sounds generated by

conspecies. To reveal the underlying neural mechanism, many

electrophysiological studies have investigated the neural activities

of the auditory cortex in response to conspecific vocalizations.

Currently, the accumulated data support that the acoustic features

of vocalizations are represented by the primary auditory cortex

(A1) of various species in a spatially distributed fashion [1–8]. In

other words, a single A1 neuron encodes simple acoustic features

such as the frequency component or temporal envelope, and a

population of neurons is elicited by a vocalization in a specific

temporal and spatial sequence, which presents a population coding

of vocalizations.

As for how the vocalizations are processed in the auditory

cortices outside A1, no common conclusion has been reached. In

the visual system, information being transferred from the primary

visual cortex to extrastriated visual cortex constitutes two

processing streams: a ventral or ‘what’ processing stream and a

dorsal or ‘where’ processing stream, which is involved in the object

vision and spatial vision, respectively [9–11]. In parallel with the

visual system, Rauschecker and colleagues proposed a concept of

two streams of auditory cortical processing: a posterior/dorsal

stream dealing with the processing of spatial aspects of sound

(‘‘where’’ stream), and an anterior/ventral stream for the

identification of sounds such as species-specific vocalizations

(‘‘what’’ stream) [12–15]. The ‘‘what’’ stream originates in A1

and includes a series of projections through the antero-lateral belt

auditory cortex (AL), the dorsal bank of the superior temporal

sulcus (STS), and ultimately to the ventro-lateral prefrontal cortex

(vPFC). Inspired by this concept, various studies have been

conducted on monkeys to investigate conspecific vocalization-

evoked responses in AL, STS and vPFC [16–21]. Neurons in these

regions generally show a preference for monkey calls over other

complex and simple sounds. Although there is some controversy

about call selectivity in the neurons of different regions [16–20],

these studies suggest the existence of a vocalization-processing

hierarchy in the non-human primate cortex.

In contrast to the extensive studies of monkeys, electrophysio-

logical investigations into the vocalization-processing hierarchy

have rarely been conducted using other mammals. Cats are also a

well-used model in auditory neuroscience research, because cat

audibility is broad, highly overlapping that of humans, and
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because the majority of auditory areas are easily approachable, as

they are exposed on the surfaces of gyri, rather than being buried

in the depths of a sulcus. The auditory cortex of the cat has been

divided into at least 13 distinct fields on the basis of anatomy,

physiology, and behavior [22–26]. Among these, A1, the anterior

auditory field (AAF) and posterior auditory field (PAF) are three

neighboring regions having a tonotopic map. AAF lies just rostral

to A1; the anterior ectosylvian sulcus (AES) is the anatomic

boundary between A1 and AAF. PAF lies caudal and ventral to

A1; the posterior ectosylvian sulcus (PES) is the anatomic

boundary between them. Reversals of frequency representation

appear near the AES and PES, further delineating the three

regions. As mentioned above, the neuronal responses to conspe-

cific vocalizations have been well analyzed in A1 of cats [2,6,7],

whereas few data from AAF and PAF are available. Recently, a

behavioral experiment showed that bilateral deactivation of the

AAF resulted in deficits in a pattern-discrimination task (discrim-

inating different gap sequences embedded in broadband noise

bursts), whereas bilateral deactivation of the PAF resulted in

deficits in a sound-localization task [27]. This result suggests that

AAF may be more involved in sound identification than PAF;

however, this possibility needs to be verified by comparing the

electrophysiological results between the two cortical fields. Two

previous studies recorded the neural responses to conspecific

vocalizations in anesthetized cats in several cortical areas,

including AAF and PAF [2,28], and found little discrimination

of cat vocalizations in AAF and PAF and only reported response

latency differences. To further clarify the roles of AAF and PAF in

vocalization processing, in the present study, we recorded single-

unit activities in the AAF and PAF of awake cats as they passively

listened to five conspecific vocalization exemplars presented in

forward and time-reversed directions and five human vowels.

Time-reversed meows have all the acoustic features of natural

meows, with the exception that the temporal order is reversed.

Human vowels share many similar acoustic features with meows,

such as slow temporal dynamics, low spectral range, and a

harmonic stack structure. We found that the neural responses to

these slowly-changing, harmonic sounds in PAF were more

complex and had longer latency than those in AAF. Our results

suggest that AAF and PAF are similar with regard to which

vocalizations they represent but differ in the way they represent

these vocalizations. The stream of vocalization processing may not

completely separate at AAF and PAF, and a more complex

scheme of vocalization processing may activate in the early

auditory cortical field of cats.

Results

We conducted extracellular single-unit recording in both

hemispheres of 2 awake cats, and collected spike activities of 194

well-isolated single units that showed a significant response to at

least one of the 15 stimuli tested. Single-unit activities were

recorded at a depth of 400–2,000 mm from the first encountered

unit of each track. According to the histological reconstruction of

recording sites, 92 units were identified in AAF and the remaining

102 units were in PAF. The cortical neurons showed different

firing patterns in response to the vocalization stimuli. Two

examples of the neural responses are presented in Figs. 1 and 2.

Representative Examples of Neural Responses to
Vocalizations

A response profile from one AAF neurons is shown in Fig. 1.

The top panel shows the sonogram of the stimulus, with

frequencies from 0 to 5 kHz along the y-axis (bottom to top) with

the darker colors showing increasing amounts of power. Below

each sonogram is the dot raster, showing the response of the

neuron to each presentation of that stimulus. Each dot represents a

single action potential and each row shows a single trial. The

PSTH is shown below the rasters. The neuron in Fig. 1 is typical of

the sample in AAF that showed a transient excitatory response at

the onset of all the stimuli. An excitatory response was also

observed at the offset of some stimuli (i.e./u/and/e/). During the

stimulus period, the neuron’s firing rate was significantly

suppressed by some stimuli, which was designated as a suppressive

response (see Materials and Methods).

The example neuron of PAF in Fig. 2 showed more variability

of response pattern. The excitatory response of this neuron

continued throughout the stimulus period in some stimuli (/o/

and/i/), while it transiently occurred in others (Meow 3 and/u/).

More specifically, the responses to forward and reversed Meow 4

showed three excitatory peaks, which were separated by suppres-

sive valleys. This neuron showed a continuous suppressive

response to reversed Meow 5. The various response patterns

may contain more information to identify different vocalizations.

Population Neural Responses to Vocalizations
To illustrate the difference between the response patterns of

AAF and PAF neurons, we constructed the Z-score PSTH of all

the recorded neurons (see Materials and Methods). Figures 3 and 4

show a stack of Z-score PSTHs of the 15 stimuli for 92 AAF and

102 PAF neurons, respectively. In each panel, the PSTHs from

different neurons are arranged in ascending order of the best

frequency (BF), which was the frequency of pure tone that evoked

the largest excitatory response of the neurons. Because we only

selected neurons that showed a significant response to at least one

of the vocalization stimuli in this study, the distribution of BF was

obviously biased to the low frequency side in both AAF and PAF

populations. Accordingly the ordinate of Figs. 3 and 4 is plotted on

a non-linear scale. The 25%, 50% and 75% percentiles of BF

distribution were 1.5, 2.0 and 4.3 kHz in AAF and 0.7, 2.4 and

4.6 Hz in PAF, respectively. There was no significant difference

between the BF distributions of AAF and PAF neuron samples

(p = 0.7, Mann-Whitney U-test). As represented by the example in

Fig. 1, the majority of AAF neurons showed a transient excitatory

response at the onset and/or offset of vocalizations (Fig. 3). In

contrast, PAF neurons showed less pronounced responses at the

onset and offset of stimulus, and more PAF neurons, especially

those with BF between 0.8 and 4.5 kHz, showed a sustained

excitatory response during the stimulus period (Fig. 4). We then

compared the average PSTHs across all neurons of AAF and PAF

in Fig. 5. It is clear that AAF showed a sharper and higher onset/

offset response, while PAF showed a stronger sustained response

during the stimulus period; also, the latency of response peak was

longer in PAF than in AAF.

Quantitative Comparison of Neural Response Properties
between AAF and PAF

We further used several parameters to quantify the observed

differences between the neural response properties of AAF and

PAF. Firstly, we measured the response duration of each neuron

evoked by each stimulus (see Materials and Methods). The mean

duration of excitatory response averaged across the 102 PAF

neurons was plotted against that of 92 AAF neurons in Fig. 6A

(each symbol represents the result of one stimulus). For all 15

stimuli, the mean response duration of PAF neurons was longer

than that of AAF neurons. The difference in the excitatory

response duration was statistically significant in 12 of the 15 stimuli

(t-test, p,0.05, represented by filled circles in Fig. 6A). The mean
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duration of the suppressive response was significantly shorter for

PAF versus AAF neurons for 10/15 stimuli (Fig. 6B).

Because the suppressive response was defined as a decrease of

the firing rate from the spontaneous level, the observed difference

Figure 1. Responses to the fifteen different stimuli by a representative AAF neuron. In each panel, the top shows the sonogram of the
stimulus with the y-axis denoting the frequency from 0 Hz (bottom) to 5 kHz (top) on a linear scale. Time is on the x-axis, and the gray scale displays
the energy of the stimulus, with darker colors indicating greater power. Below the sonograms are the spike rasters. Each line is a different trial
(bottom line is the first trial of that stimulus type) and each dot mark represents a single spike. Below this is the post-stimulus time histogram (PSTH).
Bin size is 1 ms, smoothed by with a Gaussian kernel (s= 10). A–E show forward meows, F–H are time-reversed meows, K–O are human vowels. This
neuron shows similar temporal patterns of response to all the stimuli.
doi:10.1371/journal.pone.0052942.g001
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may be attributable to a difference in the spontaneous firing rates

of AAF and PAF neurons; however, this was not true in our

dataset, in which the mean and SD of spontaneous firing rates

were 10.466.1 and 8.766.2 spikes/s in AAF and PAF,

respectively. No significant difference was found between them

(p.0.1, t-test).

Secondly, we compared the response magnitudes between AAF

and PAF. The mean response magnitude was defined as the mean

firing rate during the entire stimulus duration and 50 ms post-

stimulus duration. As illustrated in Fig. 6C, the mean response

magnitudes in PAF neurons were significantly higher than those in

AAF neurons for 10 stimuli (p,0.05, t-test). When comparing just

Figure 2. Responses by an example cell of PAF. Conventions as in Fig. 1. This neuron shows various temporal patterns of response to the
stimuli.
doi:10.1371/journal.pone.0052942.g002
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the peak response magnitude around the 50 ms period when the

PSTH reached its maximum, AAF neurons generally showed a

stronger maximum response than PAF neurons (Fig. 6D). The

difference was statistically significant (p,0.05, t-test) in 12 stimuli,

indicating that the transient responses of AAF neurons were more

pronounced than the extended responses of PAF neurons.

Thirdly, we examined the latency of the peak response (peak

latency) to each stimulus. The mean latency of PAF was

significantly longer (p,0.05, t-test) than that of AAF in all 15

stimuli (Fig. 6E). This result is consistent with a recent report on

anesthetized cats in which the response latency was faster in AAF

than in PAF [28].

Previous studies have shown that the neural response was

dependent on the relation of the sound spectrum and the neuron’s

pure-tone tuning property [29–32]. This was also examined by

plotting the magnitude of the vocalization-evoked response against

BF. Figure 7A and 7B show the scatter plot of the mean response

magnitude for all 15 stimuli versus neuron BF in AAF and PAF.

For comparison, the mean spectrum averaged across the 15 stimuli

is plotted in Fig. 7C (individual spectra were normalized by their

maximum SPL as 0 before averaging). It is apparent that higher

response magnitudes were more frequently found in the BF region

below 5 kHz, where the stimulus energy is located. During the

experiments, we also recorded 54 neurons (23 neurons in AAF, 31

Figure 3. Individual PSTHs depicting the response patterns of 92 AAF neurons to different stimuli. The absolute firing rates of each
neuron were normalized to Z-scores and, for visualization purposes, smoothed and displayed in grayscale plots. PSTHs are aligned at the onset of
tone. Black horizontal bars at bottom of plot show the duration of stimulus. Within each plot, neurons were ranked by the neuron’s BF.
doi:10.1371/journal.pone.0052942.g003

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e52942



neurons in PAF) that responded to pure tones but not to

vocalizations. The measurable BF of these neurons ranged from

10.8 kHz to 32 kHz (mean 6 SD: 17.264.2 kHz) in AAF, and

from 9.4 kHz to 30.5 kHz (mean 6 SD: 15.465.6 kHz) in PAF,

which were far from the region of high power in the vocalizations.

Therefore, the energy distribution of vocalizations can be

approximately reflected by the response magnitude distribution

along the BF axis in both AAF and PAF.

Neural Selectivity for Vocalization Sounds
We next evaluated the neuron’s selectivity between different

vocalizations by calculating the number of vocalizations in our

dataset that elicited a significant excitatory response for each

neuron [21], such that neurons that responded to many of the

stimuli in the stimulus set were not selected. Figure 8A and B show

the distribution of the number of sound elicited excitatory

responses in the AAF and PAF neurons, respectively. In AAF

(Fig. 8A), the majority of AAF neurons had poor selectivity for

vocalizations. The selectivity increased in PAF (Fig. 8B), where

fewer neurons responded to all stimuli in our stimulus set.

According to this simple index of selectivity, AAF and PAF were

not different (p = 0.47, Mann-Whitney U-Test).

The same analysis as described above for excitatory responses

was performed for suppressive responses. Overall, 67.9% AAF

neurons and 78.4% PAF neurons had no significant suppressive

response to any stimuli. Of the remaining neurons, the number of

Figure 4. Individual PSTHs of 102 PAF neurons. Conventions as in Fig. 3.
doi:10.1371/journal.pone.0052942.g004
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sound-elicited suppressive response was evenly distributed from 1

to 15 (Fig. 8C and D) in both AAF and PAF. No significant

difference was found between them.

Neuronal Responses to Stimuli in Different Categories
The next consideration was whether stimuli from 3 different

categories (forward, reversed meows and human vowels) activated

AAF and PAF neurons with different efficacy. Prior studies have

reported a strong stimulus preference for forward versus reversed

animal vocalizations. Since our dataset includes both forward and

reversed vocalizations, a bias for forward sounds would be

associated with a high number of neurons responding significantly

to a subset of sounds in the stimulus set (e.g. forward meows 1–5).

The percentage of neurons with significant responses was evenly

distributed across all sounds in the stimulus set (Fig. 9A and B).

Two-way ANOVA showed that the main effects of the stimulus

category and cortical area and their interaction were not

statistically significant (p.0.05). This indicates minimal selectivity

for any sounds in the set, including forward versus reverse oriented

‘‘meows’’. This may be attributed in part to the fact that cat

vocalizations (and vowels) have very similar frequency and

harmonic composition when played in forward and reversed

directions.

On the other hand, the percentage of neurons with a

suppressive response was higher in AAF neurons than in PAF

neurons (Fig. 9C and D). Two-way ANOVA showed that there

was a significant main effect of cortical area (p,0.01), but not of

stimulus category or their interaction (p.0.05). This confirmed the

above result (Fig. 6B) that AAF neurons were more suppressed by

the stimuli. Although no significant difference in suppressive

response was found among different stimulus categories, the

forward and reversed Meow 4 evoked a larger percentage of

suppressive responses, and the forward and reversed Meow 2

evoked a smaller percentage of suppressive responses in both AAF

and PAF neurons. Because Meow 4 and Meow 2 were the longest

and shortest meows in our exemplars, respectively, this result

suggests that the suppressive response was more frequently found

in a long stimulus.

We then compared the mean response magnitudes evoked by

stimuli in different categories (forward, reversed meows and

human vowels). In both AAF and PAF, no significant difference of

mean response magnitude was found among the three stimulus

categories (p.0.05, ANOVA, data not shown). Also, the peak

response magnitudes were similar among different stimulus

categories (p.0.05, ANOVA).

Information Theory Analyses
The above analyses based on the mean response magnitude

indicated that most neurons had low selectivity for different

vocalizations; however, the variety of temporal response patterns

may carry some decoding information for different stimuli. To

confirm this possibility, we applied the metric-space method to

estimate the amount of information about stimulus identity (H),

carried by spike count and the precise timing of the spikes (see

Figure 5. Comparison of the mean PSTHs averaged across all AAF and PAF neurons. Black and white curves represent the mean PSTHs of
AAF and PAF, respectively. Shaded area represents SE. Vertical dashed lines indicate the onset and offset of stimulus, respectively.
doi:10.1371/journal.pone.0052942.g005
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Materials and Methods for details). For each recorded neuron, we

independently calculated the amount of information carried by the

spike trains within 0–1.56 s after stimulus onset as a function of the

temporal precision (1/q) relevant to spike timing. Because the

durations of vocalization stimuli were different, we adopted the

longest analysis time window to include all the stimulus durations,

considering that the difference between spike activities during the

later period of long stimuli and the post-stimulus activities of short

stimuli also contributes to stimulus discrimination. The function of

information against the temporal precision of the two example

neurons in Figs. 1 and 2 is presented in Fig. 10A and B,

respectively. The functions have been corrected by subtracting the

mean Hshuffled, obtained from randomly shuffled trials, from the H

obtained from original data. Black dots represent that H was

significant higher than the level of chance (.Hshuffled +2SD). The

abscissa represents the temporal precision q ranging from 0 to

5 ms21 in logarithmic steps. When q = 0, H only depends on the

spike count (Hcount), and as q increases (1/q decreases), the analysis

becomes increasingly sensitive to finer temporal features (spike

time coding). For the example AAF neuron (Fig. 10A), H was non-

Figure 6. Comparison of response properties of AAF and PAF neurons. A: mean of excitatory response duration averaged over 102 PAF
neurons against those of 92 AAF neurons. Each symbol represents the mean value of one stimulus. Filled symbol indicates that the difference of
mean values between AAF and PAF neurons is statistically significant (p,0.05, t-test). Open symbol indicates that the difference is non-significant. B:
comparison of suppressive response durations. C: comparison of mean response magnitudes. D: comparison of peak response magnitudes. E:
comparison of peak latencies.
doi:10.1371/journal.pone.0052942.g006

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e52942



significant at q = 0, but significant when 1/q was between 20 and

80 ms, indicating that the mean firing rate of this neuron did not

transmit the stimulus information, but the temporal response

patterns in 20–80 ms precision carried some decoding informa-

tion. The example PAF neuron (Fig. 10B) was informative when

just evaluating the mean firing rate (Hcount was significant), and the

amount of information increased when the spike trains were

analyzed with better temporal precision. On such curves of H, the

point at which significant H reaches its highest value (Hmax)

indicates the extent to which correct discrimination between

stimuli can be achieved by looking at the spike trains.

In our dataset, although all neurons were responsive to

vocalizations (showed a significant response to at least one of the

15 vocalizations), they were not all informative for vocalization

coding. The percentage of neurons that showed a significant H at

one or more temporal precisions was 72% and 75% in AAF and

PAF, respectively. For all these neurons, the value of Hmax was

plotted against the value of Hcount in Fig. 10C and D. In both AAF

and PAF, all the dots are located above the diagonal line

(Hmax.Hcount), which means that taking the temporal precision

into account increased the amount of transmitted information.

Furthermore, the mean Hmax of PAF neurons was significantly

higher than that of AAF neurons (1.7460.04 bit vs. 1.5560.03 bit,

p,0.001, t-test), indicating that the temporal responses of PAF

neurons carried more stimulus information than those of AAF

neurons.

Linear Pattern Discriminator Performance
To further determine the extent to which neurons in different

areas could use temporal pattern information in discriminating

between vocalizations, a linear pattern discriminator model was

applied based on the Euclidean distance metric (see Materials and

Methods for details). The analysis time window of the longest

vocalization was used (Meow 4) and the bin size of the PSTHs

generated for each trial and neuron was varied. The percentage of

times that the example neurons (presented in Figs. 1 and 2) were

able to correctly discriminate these 15 different vocalizations is

shown in Fig. 11A. The % correct classification by the neural

discriminator was plotted as a function of the bin size. Since we

presented 15 different vocalizations, the chance performance of

the discriminator was 6.7% (dotted line). For both example

neurons, the performance of the discriminator increased as the

temporal resolution of the data became finer (decrease in bin size),

confirming the above results that the different stimuli were better

discriminated by the temporal pattern of the response than the

mean firing rate. The % correct classification by PAF example

neuron (triangles in Fig. 11A) was better than that of the AAF

example (circles in Fig. 11A), consistent with the visual inspection

that PAF neurons showed more variability in response pattern

than AAF neurons (Figs. 1 and 2).

The above two examples were neurons that yielded the best

discrimination performance in our AAF and PAF samples,

respectively. The mean and SD of the % correct of 92 single

AAF neurons and 102 single PAF neurons are presented in

Fig. 11B. A tendency for the discrimination performance to

increase with the decrease of bin size was also observed, but the

maximum of mean % correct was only about 25% in both AAF

and PAF neurons. There was no significant difference between the

means of % correct of AAF and PAF neurons at any bin size

(p.0.05, t-test).

While the % correct of 25% is obviously higher than the chance

level of 6.7%, the discrimination of single neurons was inaccurate.

We then examined whether the combined responses of multiple

neurons can improve discrimination accuracy. For this, 3, 5, 10,

25 and 50 single neurons were randomly selected from AAF and

PAF populations, respectively, and the neural discriminability

computed based on the pooled spike activities. This computation

was repeated 50 times with subsets drawn randomly from each

cortical area every time. The mean % correct of these 50 repeats

was taken as the representative value for a cortical area. The

results of various numbers of neurons, shown as a function of %

correct against the bin size, are presented in Fig. 12. It is clear that

the % correct increased as the number of neurons increased and as

the bin size decreased. When we included the spike activities of 50

neurons, the % correct reached 80% and 90% in AAF and PAF,

respectively, suggesting that the temporal patterns of population

responses carry sufficient information to allow for correct

discrimination of stimuli that evoked these responses. More

Figure 7. Relation between response magnitude and BF. A and
B: mean response magnitude of all 15 vocalizations versus the BF of
AAF and PAF neurons, respectively. C: Energy distribution of our
vocalization stimuli. Solid line indicates the mean SPL of the 15
vocalizations. Dotted line indicates the mean+SD. Each spectrum of
vocalization was normalized by its maximum as 0, before calculating
the mean and SD.
doi:10.1371/journal.pone.0052942.g007

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e52942



importantly, the performance of PAF neurons became significantly

higher than that of AAF neurons (p,0.05, t-test), if the spike

activities of 10 neurons were read out together in $80 ms bin size

(Fig. 12C). Such a difference in % correct was observed for all bin

sizes when the activities of 25 and 50 neurons were pooled

(Fig. 12D and 12E). Therefore, although the discrimination

accuracy of individual neurons was similar between AAF and PAF,

the accuracy of neuron populations of PAF surpassed that of AAF.

This may have been because there was more variability in the

response patterns among PAF neurons than AAF neurons.

Discussion

Limits of the Study
In the present study, for the first time, we compared the

properties of neural responses to vocalizations in AAF and PAF of

awake cats. Preliminary to the general discussion, the limits of the

present study on awake cats should be emphasized. Firstly,

although the cat’s head was immobilized during the field-free

experiments, we did not monitor pinna positions or the attention

state and theoretically these may have contributed to response

variability in this study [33]. Another potential source of response

variation in this study is the likelihood that there was some

variation in the recording layer. Although we did not assess the

recording layers here, it is known that response properties change

as a function of the cortical layer within A1 [34]. Combining

neurons from multiple cortical layers may have increased the

variability of neural responses in our dataset. Thirdly, because of

the limited time for performing a single-unit recording in awake

animals, we only used a small stimulus set to test the neurons. It

could therefore not be excluded that the neurons may prefer some

specific meows that were not tested in this study, such as hiss, purr,

and growl. Nevertheless, in the current study, we focused on the

comparison of neural response properties of AAF and PAF under

the same experimental conditions.

Differences in the Neural Responses of AAF and PAF
Our data indicated that PAF neurons had more heterogeneity

of response patterns than AAF neurons. Most AAF neurons

showed a transient excitatory response at stimulus onset/offset,

and sometimes a suppressive response during the stimulus period.

Such a response pattern was also found in some PAF neurons, but

a substantial number of PAF neurons showed a sustained

excitatory response during the stimulus period (Figs. 3, 4 and 5).

Consequently, the mean duration of the excitatory response was

longer in PAF neurons (Fig. 6A), but the mean duration of the

suppressive response was longer in AAF neurons (Fig. 6B). Also,

PAF neurons had a higher mean response magnitude (Fig. 6C),

while the AAF neurons had a higher peak response magnitude

(Fig. 6D).

The response pattern of AAF neurons is in agreement with

previous studies on the A1 of anesthetized cats, which showed that

cat vocalizations excited neurons in A1 largely at the onset and

offset of the stimulus and caused inhibition or no response at all

Figure 8. Neural selectivity of vocalization stimuli. A and B: percentage distribution of Nef among 92 AAF and 102 PAF neurons. Nef was
calculated as the number of stimuli evoking an excitatory response in each neuron. C and D: percentage distribution of the Nef of suppressive
response.
doi:10.1371/journal.pone.0052942.g008
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during the other parts of the sound [2,7,35]. Our previous study

on the A1 of awake cats showed that some A1 neurons showed a

sustained excitatory response during the stimulus period, and that

these neurons were more frequently found in the region of A1

tuned to low frequencies [6]. In this study, sustained neural

responses were also found in the low frequency area of PAF (Fig. 4),

which was adjacent to the low frequency side of A1; therefore, the

sustained response neurons were concentrated on the caudal

division of the cat’s auditory cortex. The results of Gourevitch and

Eggermont on anesthetized cats also showed a similar tendency

[2]. The appearance of sustained firing suggests that the temporal

integration window of the neurons to process sound stimuli is

elongated. A recent study on marmosets found that more neurons

used a rate code as the recording sites moved from A1 to the

rostral field (R) of the core area, suggesting that the temporal

integration window increases along the caudal-to-rostral axis of a

monkey’s auditory cortex [36]. The monkey’s A1 and R are

delineated by a reversal of frequency representation, and the

border region between them represents low frequencies. The cat’s

A1 and PAF have a similar relationship; hence, the PAF of a cat

may correspond to the R of a monkey, and the temporal

integration window increases along the rostral-to-caudal axis of a

cat’s auditory cortex.

Selectivity for Vocalizations
In this study, we found that most AAF and PAF neurons had

low selectivity for our exemplars of vocalizations (Fig. 8), and there

was no significant difference in responsiveness to the three stimulus

categories: forward, reversed meows and human vowels (Fig. 9).

Our previous study found a similar result on the A1 neurons of

awake cats. Because both AAF and PAF have a tonotopic

organization, mirroring that of A1 on the rostral and caudal sides,

respectively [22–26], the three cortical fields of cats may be

equivalent to the ‘auditory core’ of the monkey cortex [37]. By

comparing the magnitude of vocalization-evoked response with

the neuron’s BF, we found that stronger responses were

concentrated in the area of BF ,5 kHz in both AAF and PAF

(Fig. 7), which matched the energy distribution of the vocaliza-

tions. Hence, AAF and PAF may still play a significant role in the

representation of the physical parameters of sound stimuli.

Neural responses to forward and reversed conspecific vocaliza-

tions have been compared in previous studies on both cats [2,7]

and monkeys [5,19,38], and these studies generally concluded that

the global firing rate in A1 and its adjacent areas was not largely

modified by reversing the vocalization. Our data are consistent

with these previous results. It should be noted that the spectro-

temporal structure of meows is one that looks and sounds quite

similar when reversed. To date, no behavioral experiments have

examined whether cats perceive natural and reversed meows as

different sound categories. Also, human vowels share a similar

harmonic stack structure with very slow temporal dynamics;

therefore, the similarity between neural responses may be due to

the spectro-temporal similarity of these stimuli. One question

remains open: is there any selectivity preference for meows over

other dissimilar sounds, such as dog barks, human consonants and

modulated noise?

On the other hand, neural responses preferring conspecific

vocalizations were found in the higher stages of the auditory

Figure 9. Effectiveness of each stimulus to evoke a neural response. A and B: percentage of neurons showing an excitatory response to each
stimulus in AAF and PAF. C and D: percentage of neurons showing a suppressive response to each stimulus in AAF and PAF.
doi:10.1371/journal.pone.0052942.g009
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hierarchy. Such evidence has been well presented by studies on

songbirds, whose auditory system shows clear anatomical parallels

to the mammalian auditory system. For example, neurons in

intermediate auditory processing stages (field L and cHV) had

stronger responses to a conspecific song than to synthetic sounds

that were designed to match the overall power spectra and AM

spectra of songs [39]. Furthermore, in the specialized song system

nuclei, auditory neurons show an extremely selective response for

the bird’s own song, but a weak response to almost any other

sounds, including conspecific songs [40,41]. In non-human

primates, neurons sensitive to conspecific vocalizations were

reported in the lateral belt area of the auditory cortex and

prefrontal cortical area [16–18,42–44]. In cats, Gourevitch and

Eggermont’s experiment [2] suggested that the indication of

conspecific vocalizations may be detected in the posterior

ectosylvian gyrus (EP) of a cat’s cortex; however, their data were

obtained in anesthized cats and the sampling size was small (only

21 sites). Because conspecific vocalizations are intrinsically

significant, it is suspected that their processing might differ

between awake and unconscious animals, and the roles of EP and

other high-order cortical areas in the processing of a cat’s meow

are worthy of further examination in awake cats. Whether some

areas of a cat’s cortex have a high preference for conspecific

meows, corresponding to the belt or parabelt area in monkeys,

remains an interesting question to be resolved in the future. To

prove the neural specificity of meows, synthetic sounds matching

different aspects of the spectral and temporal structure of the

natural vocalizations should also be applied as a control in a future

study.

Neural Discrimination of Natural Sounds
Although neural selectivity based on a simple criterion (firing

rate is beyond a threshold or not) was poor in most AAF and PAF

neurons, the temporal pattern of neural responses can be used to

discriminate vocalizations. Both information theory analysis and a

linear pattern discriminator indicated that the accuracy of

vocalization discrimination was better when fine temporal

information was used than when only rate information was

contained in the data sets (Figs. 10 and 11). Because PAF neurons

showed more complex temporal response patterns, the maximum

information (Hmax) carried by individual PAF neurons was

generally higher than that carried by AAF neurons (Fig. 10C

and 10D); however, the discrimination performance calculated by

a linear pattern model was not significantly different between the

AAF and PAF populations. The mean of % correct was only about

25% at the best temporal resolution in both cortical fields

(Fig. 11B). A method that compensates for the imprecision of

single-neuron encoding is to combine the activity of groups of

Figure 10. Stimulus information transmitted by AAF and PAF neurons. A and B: transmitted information as a function of the temporal
precision (1/q) of the example AAF and PAF neurons shown in Figs 1 and 2. Filled symbols represent the value of information is significantly higher
than the chance level (Hshuffled +2SD). C and D: scatters of the highest value of information (Hmax) versus the information obtained when only the
firing rate is considered (Hcount at q = 0) in AAF and PAF neurons. Diagonal line corresponds to Hcount = Hmax.
doi:10.1371/journal.pone.0052942.g010

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e52942



neurons [45,46]. Pooling the responses of multiple neurons in our

sample obviously increased the performance of neural discrimi-

nation in both AAF and PAF, and the performance of PAF neuron

groups was significantly higher than that of AAF neuron groups

(Fig. 12).

A similar analysis of neural discriminators was also conducted

on data from the monkey cortex by Recanzone [19], as well as by

Russ et al. [17]. They also reported that the performance of the

neural discriminator increased with the decrease of bin size, but

the performance of individual neurons reached the maximum

value of about 80–90% at a very short bin size of 2 ms. Recently,

Kusmierek et al. pointed out that this result was somewhat

perplexing, because rare neurons had the ability to lock to stimulus

modulations at a frequency of 500 Hz (2 ms interval), and the

algorithm of neural discriminators might not have been imple-

mented precisely in their studies [20]. In this study, we paid special

attention to our MATLAB scripts of discriminator analysis. Our

results showed that the discrimination performance became

saturated when the bin size was shorter than 40 ms, suggesting

that reading the spike time on ,40 ms scale cannot provide

further information to enhance the discrimination performance.

This is consistent with the calculation of Kusmierek et al. Other

authors using neural discriminator methods to study cortical

Figure 11. Accuracy of vocalization discrimination based on
the spike activities of single neurons in AAF and PAF. A:
percentage of correctly discriminated vocalizations as calculated from
the example neurons in Fig. 1 (circles) and 2 (triangles), respectively.
The percentage of correct classification is plotted as a function of the
bin size. Dotted line indicates the chance performance of discrimination
(6.7%). B: percentage of correct classification for the population of AAF
and PAF neurons as a function of the bin size. Circles (AAF) and
triangles (PAF) are the mean values and the dots represent the SD.
doi:10.1371/journal.pone.0052942.g011
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responses to sounds also showed that the optimal bin size ranged

from 5 to 50 ms in the auditory cortex [47–49]. Regardless of the

optimal bin size, our results suggest that AAF and PAF may use

the temporal response patterns of neuron populations to represent

vocalizations.

Hierarchical Auditory Processing in Cat Auditory Cortex
It has been widely accepted that the cortical process of visual

information is divided into two streams: a ventral or ‘what’

processing stream and a dorsal or ‘where’ processing stream.

Based on the concept of parallel processing streams in the visual

system, Rauschecker et al. have proposed that the auditory cortex

may also contain separate processing streams that are specialized

for either object discrimination or spatial processing [12–15].

Specifically, monkey electrophysiological studies suggest that

cortical areas rostral to A1 may be specialized for auditory-object

processing [8,18,21] and areas caudal to A1 may be specialized for

accurately determining the spatial location of a sound source

[50,51]. To date, whether hierarchical organization of auditory

processing exists in other species remains unclear.

The results of anatomic studies have indicated that there may be

a complex scheme of auditory processing between AAF and PAF

in cats. On one hand, AAF and PAF receive different projections

from the medial geniculate body (MGB). AAF receives strong

projections from the rostral pole of MGB and lesser projections

from the ventral division of MGB, while PAF receives dense

projections from the posterior portion of the ventral MGB and

smaller projections from the dorsal MGB [52–54]. This suggests

that AAF and PAF may work in parallel in auditory processing.

On the other hand, there are some corticocortical connections

projecting from AAF to A1, then from A1 to PAF, and rare

connections projecting in the reverse direction. PAF also receives

some direct projections from AAF [54,55]. The existence of such

functional corticocortical connections was also suggested by

reversible deactivation studies on cats, in which neuronal silencing

of anterior auditory cortical areas decreased the response

properties of neurons in adjacent posterior cortical areas [56–

58]. These results suggest that there may be a serial link between

AAF and PAF. Consequently, a complex system including both

serial and parallel processing pathways may exist between AAF

and PAF in cats; that is, auditory information is processed in

parallel, in which information from the thalamus arrives simulta-

neously at AAF and PAF, and is then modulated by corticocortical

connections between them. Our present electrophysiological

results, that both AAF and PAF neurons were well elicited by

vocalizations and showed low selectivity, are attributable to both

cortical areas receiving direct inputs from MGB in parallel. Thus,

they belong to low-level stages of vocalization processing. The

longer peak response latency, complex response pattern and

higher capacity of vocalization discrimination in PAF neurons may

be due to corticocortical modulation from AAF to PAF.

Recently, Carrasco and Lomber systemically compared the

latencies of neural responses to various sounds in AAF, A1, the

secondary auditory field (A2, adjacent to A1 on the ventral side)

and PAF of anesthetized cats, and found a substantial increase in

response latency along the sequence of AAF, A1, A2 and PAF

[28]. Based on the difference in response latencies among the

auditory cortical fields, and the well-established system of visual

processing, they proposed that ‘‘anterior auditory cortical fields are

good candidates for the early analysis of low-level stages of acoustic

processing, while posterior fields are good candidates for the latter

analysis of high-level acoustic scenes’’. Our present results are in

general agreement with this proposal; however, a behavioral

experiment showed that bilateral deactivation of the AAF resulted

in deficits in a pattern-discrimination task, whereas bilateral

deactivation of the PAF resulted in deficits in a sound-localization

task [27]. This suggests that AAF may be more involved in the

perception of an acoustic object than PAF. One point should be

noted that an acoustic object can be defined in many different

ways [59]. In the above-mentioned study, the cats were examined

using a task to discriminate different gap sequences embedded in

broadband noise bursts. This task only examined the perceptual

attributes of the temporal pattern of the sound envelope. As shown

in Fig. 3 in our data, most AAF neurons showed a transient

response to the abrupt change of the sound envelope at stimulus

onset and offset. With temporally precise responses, AAF neurons

could present a robust representation of the gaps among noise

bursts. In this regard, it is understandable that AAF deactivation

caused a deficit in temporal pattern discrimination; however, cat

vocalizations and human vowels contained less abrupt changes of

the sound envelope, and spectral information, such as fundamental

frequency and pitch, may play a more important role in

vocalization discrimination. How the perception of spectral

information is affected by the deactivation of AAF and PAF has

not been examined yet; therefore, it is still premature to rule out

PAF’s involvement in the processing of acoustic objects. Although

we agree with the hypothesis that ‘what’ and ‘where’ streams may

exist in the auditory cortex of cats, the two streams may not

completely separate in the early auditory cortex of AAF and PAF.

In the future, more attempts will be needed to find the cat cortical

areas specialized in processing acoustic objects.

Materials and Methods

All animal work was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of Yamanashi (permit number No.

19-15). All surgery was performed under sodium pentobarbital

anesthesia, and all efforts were made to minimize suffering.

Surgical Preparation, Electrophysiological Recording, and
Histology

Animal preparation and recording procedures were similar to

those used in our previous experiments [6,60,61]. Under

pentobarbital sodium anesthesia and aseptic conditions, an

aluminum cylinder (inner diameter, 20 mm) was implanted

bilaterally into the temporal bone for microelectrode access. A

metal block was embedded in a dental acrylic cap to immobilize

the head. After 2–3 weeks of postoperative recovery and

adaptation training, recording experiments were performed in

an electrically shielded, sound-attenuated chamber. A 0.5 mm

diameter hole was drilled in the skull, the dura was pierced with a

sharpened probe, and then a single epoxylite-insulated tungsten

microelectrode (FHC Inc.; impedance: 2–5 MV at 1 kHz) was

advanced into the auditory cortex using a remote-controlled

micromanipulator (MO-951; Narishige). The coordinate of each

Figure 12. Accuracy of vocalization discrimination based on
the spike activities of an ensemble of neurons in AAF and PAF.
The results of 3, 5, 10, 25 and 50 randomly selected neurons are plotted
as a function of the bin size in different panels. Circles (AAF) and
triangles (PAF) are the mean values of 50 neuron selections and the
dots represent the SD. To facilitate comparison, the functions of PAF are
shifted slightly to the right. Asterisk indicates that the difference of
mean values between AAF and PAF neurons is statistically significant
(p,0.05, t-test).
doi:10.1371/journal.pone.0052942.g012
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electrode site was read from the MO-951 scales and calibrated to a

fixed mark inside the recording chamber. Well-isolated single units

were discriminated using a template-matching discriminator

(ASD; Alpha-Omega Engineering) in 50 ms time resolution. The

digital ASD outputs of the spike occurrence time (time resolution:

50 ms) were stored on a hard disk.

Daily recording sessions lasted 3–5 hours over 2–6 months.

During the recording period, the cat’s head was immobilized in a

custom-built frame through a metal block, and the body was

wrapped in a cotton bag. The cats had been pre-trained to become

accustomed to this condition. A video camera was placed in front

of the cat to monitor its state. No sign of discomfort was observed

as the cats passively listened to the auditory stimuli.

At the end of the experiment, several recording sites were re-

approached and marked by electrolytic lesions. The animal was

then deeply anesthetized with sodium pentobarbital and perfused

with 10% formalin before the brain was removed. The brain

surface was photographed. The cerebral cortex was cut in coronal

sections and stained with neutral red. The location map of

recording sites was constructed on the brain surface by calibrating

the coordinates of the lesion sites.

Acoustic Stimulus Preparation and Presentation
Acoustic stimuli were presented from a speaker placed 2 cm

from the auricle contralateral to the recording site. The sound-

delivering system was calibrated to produce a flat spectrum (128–

32,000 Hz, 65 dB) measured at the entrance of the cat’s meatus.

For each isolated unit, we applied a set of pure-tone bursts (160 ms

in duration, including 5 ms rise/fall time) to access the tuning

property, which was used to identify the recording location. Then,

a set of communication sounds was presented. This stimulus set

was identical to that used in our previous study [6], including five

cat vocalizations (meow calls) presented in forward and time-

reversed directions and five human vowels (/a, o, u, e, i/) in

Japanese. The spectrographic representations of the stimuli are

illustrated in Fig. 1. Meow calls were collected from spontaneously

vocalizing cats recorded individually in a sound attenuated room.

The sounds were recorded by a microphone (LA-5110; ONO

SOKKI). The recorded signals were passed through a low-pass

filter (cutoff frequency = 20 kHz), then connected to a computer

and digitized using Spike2 software (Cambridge Electronic Design)

with a sampling rate of 100 kHz. The vowels were recorded under

the same conditions by a male Japanese speaker. The forward,

time-reversed meows, and vowels were presented in random order

at a peak level of 50 dB sound pressure level (SPL, dB re 20 mPa).

Each vocalization was repeated 8 times (inter-stimulus interval

.1.5 s).

Data Analysis
As shown in Fig. 1, the spike trains of each neuron were aligned

along the onset of stimulus to construct a raster plot of each

stimulus condition. The peri-stimulus time histogram (PSTH) of

the firing rate was computed in 1-ms bin width across 8 trials of

the same stimulus and convolved with a Gaussian kernel (s= 10).

The spontaneous firing rate for 500 ms before stimulus onset was

considered as background. The mean +2SD of background firing

rates across the trials of all stimuli was deemed as the threshold

level to identify a significant response. The analysis time window

to access a stimulus-evoked response was set from stimulus onset to

50 ms after stimulus offset, in order to include both onset and

offset responses. During this time window, a firing rate that was

higher than the threshold level for 10 consecutive 1 ms bins was

designated an evoked excitatory response, whereas firing rate ,

mean –2 SD was designated a suppressive response. We defined a

neuron as ‘‘vocalization responsive’’ if at least one of the

vocalization stimuli elicited an excitatory or suppressive response

that met the above criteria.

To illustrate the response patterns of the neuron population, we

constructed a color-coded spike density histogram for each neuron

(Fig. 3). For visualization purposes, the firing rate of each neuron

was assessed by the normalized value of the Z-score [62], which was

calculated by subtracting the mean background firing rate (averaged

across the all trials of 500 ms pre-stimulus period) from the firing

rate, and then divided by the SD of the background firing rate.

White in the plot indicates lower than the background firing rate.

Black indicates firing that is $4 SD of the background firing rate.

Duration of the excitatory/suppressive response was the summation

of time bins, at which the criterion of excitatory or suppressive response

was met, during the analysis time window. Peak latency for each

neuron was defined as the time at which the spike density function

reached its maximum. We also calculated both the mean and peak

response magnitudes. Mean response magnitude was defined as the

mean firing rate during the analysis time window. Peak magnitude was

defined as the average firing rate for 25 ms on either side of the peak

latency. Both response magnitudes were defined as firing rates above

the baseline activity of the neurons (driven rate).

Information Theory Analyses of Temporal Coding in
Responses from Single Neurons

The information content of neural responses was analyzed as

previously described [63], using metric space analyses (for further

details, see [64,65]). This analysis quantified the amount of

information about vocalization identity contributed by spike count

alone and the precise timing of spikes. The key quantity is the

‘‘distance’’ between two spike trains, which is quantified as the

minimum cost of inserting, deleting, or moving spikes in one train,

to make one spike train match the other. The cost of inserting or

deleting a spike from a spike train is always set at 1. The cost of

moving a spike (per unit time) is q, which is varied parametrically

to examine responses at multiple levels of temporal precision. The

distance between two spike trains in terms of spike count alone is

the cost obtained when q = 0 (because there is no cost associated

with moving a spike); this is simply the difference between the

spike count of each response and is called Dcount. To take into

account the temporal characteristics of the spike trains, we

calculate the distance for a range of values q.0, denoted Dspike[q].

The parameter q (in units of 1/second) determines the temporal

precision of the analysis, since the cost of moving a spike by an

amount 1/q is equal to the cost of deleting it altogether.

Calculations were performed for q = 0, and in octave steps from

q = 5/ms to 640/ms. Pairwise distances between all responses are

computed for a given value of q and clustering is performed.

Clusters can be defined as sets of spike trains that are close to each

other. To evaluate the extent of the similarity between spike trains

elicited by the same stimulus and those elicited by another stimulus, a

confusion matrix N(si,rj) is constructed. This matrix summarizes, for

each stimulus class, how many spike trains can be attributed to this

class, based on the average distance (or similarity) of this spike train

from other spike trains of the same stimulus class. This matrix N is then

used to compute the amount of transmitted information H:

H ~
1

Ntotal

X
i, j

N(si, rj)( log N (si, rj) {
�

log
X

a
N (sa, rj) { log

X
b

log Ntotal)
i

,
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in which Ntotal is the total number of spike trains and logarithms

are in base 2. The value of the information, H, indicates the

performance of stimulus-dependent clustering based on the

temporal patterns of neural responses (i.e., how well the responses

can be decoded). Animals in our experiment were presented with

15 stimuli; the amount of information required for perfect

discrimination among 15 stimuli is 3.9 bits. If the clustering is

totally random, H = 0.

The value of information for q = 0 is denoted as H0 and

indicates information conveyed by spike count alone (i.e., a rate

code). The value of q at which H is greatest is referred to as qmax

and the maximal value of H (i.e., its value at qmax) is Hmax. When

Hmax was greater than the value of H at q = 0 (Hcount), the time

course of the response and/or the timing of individual spikes

contributed information above that contained in the spike count.

Amounts of information computed from experimental data are

biased estimates of the ‘‘true’’ transmitted information that would

ideally be obtained from an infinite number of trials for each

stimulus; therefore, a control computation was performed to

estimate the bias (or chance level) and to assess the significance of

transmitted information resulting from the calculation described

above. Metric space analysis was repeated for data sets in which

the stimuli associated with the spike trains were randomly shuffled.

In reporting the results, only values of H that were at least 2 SDs

greater than the average amount of information in the shuffled

datasets (Hshuffled) were considered significant and therefore those

neurons were denoted informative neurons. The above calcula-

tions were performed using the Spike Train Analysis Toolkit

(http://neuroanalysis.org/toolkit/) and in-house MATLAB soft-

ware.

Linear Pattern Discriminator
A linear pattern discriminator based on the spike distance

metric (SDM) was used to test how well the responses of a neuron

differentiate different stimuli [17,19,29,48,66–69]. For each

neuron, a PSTH of one trial was chosen and removed from the

data, referred to as the test trial. The remaining trials were

grouped into 15 sets according to the actually presented stimulus (7

trials for the selected stimulus, 8 trials for the other 14 stimuli). A

template PSTH of each stimulus was then constructed using the

mean of each set of remaining trials.

Next, we examined whether we could determine which stimulus

elicited the test PSTH by comparing how similar the test PSTH

was to the 15 PSTH templates. For this, we calculated the

Euclidian distance (ED) between the test and template PSTH,

which is the square root of the sum of squared differences between

firing rates at each bin (i).

ED =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnbin

i~1

(xi{yi)
2

s
, where nbin is the total number of bins,

and x and y are bin heights.

If the test and template PSTH were similar, then ED would be

small. If they were different, then ED would be large. The test

PSTH was assigned to be the stimulus that had the most similar

training set. This procedure was repeated until each trial of a

neuron was considered as test data. Percentage correct for each

neuron was calculated as the percentage of total number of trials in

which the correct stimulus was selected.

This analysis was conducted during 0–1,530 ms after stimulus

onset, covering the duration of our longest stimulus (Meow 4) and

50 ms post-stimulus period. PSTH during this period was

constructed in various bin sizes to explore the temporal precision

of neural encoding. A larger bin size will capture more firing rate

information, while a smaller bin size will preserve more spike time

information. All neurons within a given cortical area were tested

using bin sizes of 5, 10, 20, 40, 80, 160, 640 and 1,530 ms. The

5 ms bin size retains the most temporal information, whereas the

1,530 ms bin is equivalent to the mean response magnitude.

Acknowledgments

We thank N. Yaguchi for assistance with animal care.

Author Contributions

Conceived and designed the experiments: LQ YS. Performed the

experiments: HM CD RZ. Analyzed the data: HM LQ. Wrote the paper:

HM CD RZ.

References

1. Creutzfeldt O, Hellweg FC, Schreiner C (1980) Thalamocortical transformation

of responses to complex auditory stimuli. Exp Brain Res 39: 87–104.

2. Gourevitch B, Eggermont JJ (2007) Spatial representation of neural responses to

natural and altered conspecific vocalizations in cat auditory cortex.

J Neurophysiol 97: 144–158.

3. Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE, et al.

(2002) Representation of spectral and temporal envelope of twitter vocalizations

in common marmoset primary auditory cortex. J Neurophysiol 87: 1723–1737.

4. Wallace MN, Shackleton TM, Anderson LA, Palmer AR (2005) Representation

of the purr call in the guinea pig primary auditory cortex. Hear Res 204: 115–

126.

5. Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a

species-specific vocalization in the primary auditory cortex of the common

marmoset: temporal and spectral characteristics. J Neurophysiol 74: 2685–2706.

6. Qin L, Wang JY, Sato Y (2008) Representations of cat meows and human

vowels in the primary auditory cortex of awake cats. J Neurophysiol 99: 2305–

2319.

7. Gehr DD, Komiya H, Eggermont JJ (2000) Neuronal responses in cat primary

auditory cortex to natural and altered species-specific calls. Hear Res 150: 27–

42.

8. Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the

macaque nonprimary auditory cortex. Science (New York, NY) 268: 111–114.

9. Ettlinger G (1990) ‘‘Object vision’’ and ‘‘spatial vision’’: the neuropsychological

evidence for the distinction. Cortex 26: 319–41.

10. Mishkin M, Ungerleider LG (1982) Analysis of Visual Behavior. (D. J. Ingle, M.

A. Goodale, & R. J. Mansfield, Eds.) (pp. 486–549).

11. Ungerleider LG, Haxby JV (1994) ‘‘What’’ and ‘‘where’’ in the human brain.

Curr Opin Neurobiol 4: 157–65.

12. Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of

‘‘what’’ and ‘‘where’’ in auditory cortex. Proc Natl Acad Sci U S A 97: 11800–

11806.

13. Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex:

nonhuman primates illuminate human speech processing. Nat Neurosci 12:

718–724.

14. Rauschecker JP (1998) Cortical processing of complex sounds. Curr Opin

Neurobiol 8: 516–521.

15. Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel

processing in rhesus monkey auditory cortex. J Comp Neurol 382: 89–103.

16. Romanski LM, Averbeck BB, Diltz M (2005) Neural representation of

vocalizations in the primate ventrolateral prefrontal cortex. J Neurophysiol 93:

734–747.

17. Russ BE, Ackelson AL, Baker AE, Cohen YE (2008) Coding of auditory-stimulus

identity in the auditory non-spatial processing stream. J Neurophysiol 99: 87–95.

18. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional

specialization in rhesus monkey auditory cortex. Science (New York, NY) 292:

290–293.

19. Recanzone GH (2008) Representation of con-specific vocalizations in the core

and belt areas of the auditory cortex in the alert macaque monkey. J Neurosci?

28: 13184–13193.

20. Kusmierek P, Ortiz M, Rauschecker JP (2011) Sound-identity processing in early

areas of the auditory ventral stream in the macaque. J Neurophysiol 107: 1123–

41.

21. Kikuchi Y, Horwitz B, Mishkin M (2010) Hierarchical auditory processing

directed rostrally along the monkey’s supratemporal plane. J Neurosci 30:

13021–13030.

22. Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles,

projections, and plasticity. Neuron 56: 356–365.

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 16 January 2013 | Volume 8 | Issue 1 | e52942



23. Winer JA, Lee CC (2007) The distributed auditory cortex. Hear Res 229: 3–13.

24. Lee CC, Winer JA (2011) Convergence of thalamic and cortical pathways in cat
auditory cortex. Hear Res 274: 85–94.

25. Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat.

J Comp Neurol 192: 265–291.
26. Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory

cortex. Curr Opin Neurobiol 12: 433–440.
27. Lomber SG, Malhotra S (2008) Double dissociation of ‘‘what’’ and ‘‘where’’

processing in auditory cortex. Nat Neurosci 11: 609–616.

28. Carrasco A, Lomber SG (2011) Neuronal activation times to simple, complex,
and natural sounds in cat primary and non-primary auditory cortex.

J Neurophysiol 106: 1166–78.
29. Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representation

and classification in primary auditory cortex. J Acoust Soc Am 123: 899–909.
30. Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE,

Merzenich MM (2002) Representation of spectral and temporal envelope of

twitter vocalizations in common marmoset primary auditory cortex.
J Neurophysiol 87: 1723–1737.

31. Shetake JA, Wolf JT, Cheung RJ, Engineer CT, Ram SK, Kilgard MP (2011).
Cortical activity patterns predict robust speech discrimination ability in noise.

Eur J Neurosci 34: 1823–38.

32. Suta D, Popelár J, Syka J, Popelar J (2008) Coding of communication calls in the
subcortical and cortical structures of the auditory system. Physiol Res 57: Suppl

3, S149–59.
33. Lee CC, Middlebrooks JC (2011) Auditory cortex spatial sensitivity sharpens

during task performance. Nat Neurosci 14: 108–114.
34. Atencio CA, Schreiner CE (2010) Columnar connectivity and laminar

processing in cat primary auditory cortex. PLoS One 5: e9521.

35. Rotman Y, Bar-Yosef O, Nelken I (2001) Relating cluster and population
responses to natural sounds and tonal stimuli in cat primary auditory cortex.

Hear Res 152: 110–127.
36. Bendor D, Wang X (2007) Differential neural coding of acoustic flutter within

primate auditory cortex. Nat Neurosci 10: 763–771.

37. Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing
streams in primates. Proc Natl Acad Sci U S A 97: 11793–11799.

38. Pelleg-Toiba R, Wollberg Z (1991) Discrimination of communication calls in the
squirrel monkey: ‘‘call detectors’’ or ‘‘cell ensembles’’? J Basic and Clinic Physiol

and Pharmacol 2: 257–272.
39. Grace JA, Amin N, Singh NC, Theunissen FE (2003) Selectivity for conspecific

song in the zebra finch auditory forebrain. J. Neurophysiol 89: 472–87.

40. Theunissen FE, Doupe AJ (1998) Temporal and spectral sensitivity of complex
auditory neurons in the nucleus HVc of male zebra finches. J Neurosci 18:

3786–3802.
41. Doupe AJ (1997) Song- and order-selective neurons in the songbird anterior

forebrain and their emergence during vocal development. J. Neurosci 17: 1147–

67.
42. Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, et al. (2008) A voice

region in the monkey brain. Nat Neurosci 11: 367–374.
43. Cohen YE, Russ BE, Gifford GW, Kiringoda R, MacLean KA (2004) Selectivity

for the spatial and nonspatial attributes of auditory stimuli in the ventrolateral
prefrontal cortex. J Neurosci? 24: 11307–11316.

44. Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, et al. (2004)

Species-specific calls evoke asymmetric activity in the monkey ’ s temporal poles.
Nature 427: 448–451.

45. Geffen MN, Broome BM, Laurent G, Meister M (2009) Neural encoding of
rapidly fluctuating odors. Neuron 61: 570–586.

46. Cohen MR, Newsome WT (2009) Estimates of the contribution of single

neurons to perception depend on timescale and noise correlation. J Neurosci?:
29: 6635–6648.

47. Kusmierek P, Rauschecker JP (2009) Functional specialization of medial

auditory belt cortex in the alert rhesus monkey. J Neurophysiol 102: 1606–1622.

48. Schnupp JWH, Hall TM, Kokelaar RF, Ahmed B (2006) Plasticity of temporal

pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci? 26:

4785–4795.

49. Malone BJ, Scott BH, Semple MN (2007) Dynamic amplitude coding in the

auditory cortex of awake rhesus macaques. J Neurophysiol 98: 1451–1474.

50. Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque

monkey. Proc Natl Acad Sci U S A 97: 11829–11835.

51. Recanzone GH, Engle JR, Juarez-Salinas DL (2011) Spatial and temporal

processing of single auditory cortical neurons and populations of neurons in the

macaque monkey. Hear Res 271: 115–122.

52. Morel A, Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the

cat auditory cortex. J Comp Neurol 265: 119–144.

53. Lee CC, Winer JA (2008) Connections of cat auditory cortex: I. Thalamocortical

system. J Comp Neurol 507: 1879–1900.

54. Lee CC, Winer JA (2011) Convergence of thalamic and cortical pathways in cat

auditory cortex. Hear Res 274: 85–94.

55. Lee CC, Winer JA (2008) Connections of cat auditory cortex: III. Corticocortical

system. J Comp Neurol 507: 1920–1943.

56. Carrasco A, Lomber SG (2010) Reciprocal modulatory influences between

tonotopic and nontonotopic cortical fields in the cat. J Neurosci 30: 1476–1487.

57. Carrasco A, Lomber SG (2009) Evidence for hierarchical processing in cat

auditory cortex: nonreciprocal influence of primary auditory cortex on the

posterior auditory field. J Neurosci 29: 14323–14333.

58. Carrasco A, Lomber SG (2009) Differential modulatory influences between

primary auditory cortex and the anterior auditory field. J Neurosci 29: 8350–

8362.

59. Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:

887–892.

60. Qin L, Chimoto S, Sakai M, Wang J, Sato Y (2007) Comparison between offset

and onset responses of primary auditory cortex ON-OFF neurons in awake cats.

J Neurophysiol 97: 3421–3431.

61. Qin L, Wang J, Sato Y (2008) Heterogeneous neuronal responses to frequency-

modulated tones in the primary auditory cortex of awake cats. J Neurophysiol

100: 1622–1634.

62. Gutierrez R, Simon SA, Nicolelis MAL (2010) Licking-induced synchrony in the

taste-reward circuit improves cue discrimination during learning. J Neurosci? 30:

287–303.

63. Huetz C, Philibert B, Edeline JM (2009) A spike-timing code for discriminating

conspecific vocalizations in the thalamocortical system of anesthetized and

awake guinea pigs. J Neurosci 29: 334–350.

64. Di Lorenzo PM, Victor JD (2003) Taste response variability and temporal

coding in the nucleus of the solitary tract of the rat. J. Neurophysiol 90: 1418–31.

65. Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual

cortex?: a metric-space analysis. J Neurophysiol 76: 1310–1326.

66. Dong C, Qin L, Liu Y, Zhang X, Sato Y (2011) Neural responses in the primary

auditory cortex of freely behaving cats while discriminating fast and slow click-

trains. PLoS One 6: e25895.

67. Engineer CT, Perez CA, Chen YH, Carraway RS, Reed AC, et al. (2008)

Cortical activity patterns predict speech discrimination ability. Nat Neurosci 11:

603–608.

68. Liu Y, Qin L, Zhang X, Dong C, Sato Y (2010) Neural correlates of auditory

temporal-interval discrimination in cats. Behav Brain Res: 28–38.

69. Narayan R, Grana G, Sen K (2006) Distinct time scales in cortical

discrimination of natural sounds in songbirds. J Neurophysiol 96: 252–258.

Neural Responses to Communication Sounds

PLOS ONE | www.plosone.org 17 January 2013 | Volume 8 | Issue 1 | e52942


