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Abstract

Phylogenetic profiles express the presence or absence of genes and their homologs across a number of reference genomes.
They have emerged as an elegant representation framework for comparative genomics and have been used for the
genome-wide inference and discovery of functionally linked genes or metabolic pathways. As the number of reference
genomes grows, there is an acute need for faster and more accurate methods for phylogenetic profile analysis with
increased performance in speed and quality. We propose a novel, efficient method for the detection of genomic
idiosyncrasies, i.e. sets of genes found in a specific genome with peculiar phylogenetic properties, such as intra-genome
correlations or inter-genome relationships. Our algorithm is a four-step process where genome profiles are first defined as
fuzzy vectors, then discretized to binary vectors, followed by a de-noising step, and finally a comparison step to generate
intra- and inter-genome distances for each gene profile. The method is validated with a carefully selected benchmark set of
five reference genomes, using a range of approaches regarding similarity metrics and pre-processing stages for noise
reduction. We demonstrate that the fuzzy profile method consistently identifies the actual phylogenetic relationship and
origin of the genes under consideration for the majority of the cases, while the detected outliers are found to be particular
genes with peculiar phylogenetic patterns. The proposed method provides a time-efficient and highly scalable approach for
phylogenetic stratification, with the detected groups of genes being either similar to their own genome profile or different
from it, thus revealing atypical evolutionary histories.

Citation: Psomopoulos FE, Mitkas PA, Ouzounis CA (2013) Detection of Genomic Idiosyncrasies Using Fuzzy Phylogenetic Profiles. PLoS ONE 8(1): e52854.
doi:10.1371/journal.pone.0052854

Editor: Vasilis J. Promponas, University of Cyprus, Cyprus

Received February 14, 2012; Accepted November 22, 2012; Published January 14, 2013

Copyright: � 2013 Psomopoulos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Parts of this work have been supported by the FP6 Network of Excellence ENFIN (contract # LSHG-CT-2005-518254) and the FP7 Collaborative Project
MICROME (grant agreement # 222886-2), both funded by the European Commission. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: Co-author CAO is a PLOS Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data
and materials.

* E-mail: ouzounis@certh.gr

¤a Current address: Computational Genomics Unit, Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
¤b Current address: Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada

Introduction

Phylogenetic profiles are binary representations that record the

presence or absence of a gene across a range of species [1].

Previous incarnations of this formalism had been proposed in

terms of sequence pattern distributions across taxonomic domains

[2]. Phylogenetic profiles have been used for the inference of

function networks [1], along conserved gene clusters [3,4] and

gene fusions [5,6], collectively known as genome context methods.

Evidently, the formulation of phylogenetic profiles can be

generalized to record gene (or protein) families instead of single

genes [2,7], with various metrics expressing the presence of a

cluster, and indeed across higher taxonomic categories [8].

Furthermore, similarity of profiles can be treated by probabilistic

methods other than Hamming distance, including Pearson

correlation coefficient and mutual information [9]. Despite the

elegance of the approach, as well as its general and expandable

character, phylogenetic profiling raises a number of conceptual

and technical issues that have proven to be highly challenging.

First, the functional relationship signal is often masked by a

strong evolutionary signal (i.e. highly similar, yet functionally

unrelated genes have similar profiles); this issue is usually

addressed by pre-processing similar genes and excluding them

from further analysis, especially in the context of network

inference [10]. Certain approaches towards this direction have

been proposed, including automated error correction [11], the

introduction of decision rules [12] and the use of weighted

phylogenetic profiles according to a wide range of criteria [13].

Second, phylogenetic profile signals can be quite noisy, thus

lowering the performance of the method for genome-wide function

prediction. Multiple benchmarks of the entire set of genome

context methods have been performed, strongly suggesting that

phylogenetic profiles typically exhibit higher recall and lower

precision than gene clusters or fusions, in that order [14]. These

initial studies have been supplemented by more recent analyses

[15,16]. Various other groups have examined the role of statistical

significance testing for improved performance [17], the effect of

genome structure and redundancy [18], and the choice of

similarity metrics and inferred network topologies [19].

Third, there are certain subtleties of biological nature for the

choice of query and reference organisms. Eukaryotic genomes

appear to perform less well than prokaryotic genomes as queries,
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possibly due to the presence of promiscuous protein domains and

the narrower taxonomic range of the reference dataset [20]. The

choice of the reference dataset obviously affects the outcome of

network inference as well: the broader the range, the better the

performance [21]. Calibration and control of these factors might

be obtained by the use of genome trees and more robust

phylogenies [7,22] – that are less sensitive to effects such as

horizontal gene transfer or gene loss than gene-based trees [23,24]

– or, more plainly, the mere collapse of highly similar genomes

[12].

Finally, an interesting avenue of research has been the

correlation of gene (phylogenetic) profiles with trait (phenotypic)

profiles for the direct detection of genotype-phenotype associations

[25,26]. These phenotypes can include traits such as optimal

growth temperature or pH [25] and oxygen dependence or

motility [26]. While the results of these studies are encouraging,

with the different approaches that have been followed, the

biological interpretation of the findings on a genome-wide scale

awaits a more thorough evaluation by independently derived data

and future experimental verification. This is particularly crucial for

phenotypes such as human diseases and their detected correlations

with certain gene sets [27]. These associations have been

generalized recently, by incorporating pathway profiles and their

correlation with phenotypes, such as methanogenesis and other

salient biochemical traits [28].

Recently, we proposed an approach based on the concept of

ranked phylogenetic profiles and a benchmark dataset that

addresses some of the issues above, especially the performance of

Figure 1. Fuzzy genome profiles for the five reference species used in this study (x-axis), against 243 species in the COGENT
database (y-axis). The color-coding scheme for the five species is followed throughout all figures, where appropriate. Notice that the sequence of
species ranks according to COGENT is #002, #039, #050, #088 and #148, reflected by the maximal values of the corresponding genome profiles.
doi:10.1371/journal.pone.0052854.g001
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the reference database [29]. In our quest for alternative

representations, we now describe fuzzy profiles, with the aim to

provide an efficient and scalable method for phylogenetic profile

analysis, by reducing the initial noise of the query genomes and

addressing certain additional limitations. Fuzzy profiles can thus

detect genomic idiosyncrasies, by the direct comparison of

individual gene profiles with the genome-wide profiles of the

reference species. Some of these idiosyncratic traits might indeed

correspond to sets of genes with evolutionary histories different

from those of their source genomes.

Methods

Step 1: Creation of Fuzzy Phylogenetic Profiles
The use of fuzzy set theory in the life sciences has been reviewed

elsewhere [30]. Following the fundamentals, the definition of a

fuzzy genome phylogenetic profile is as follows. A species si is

selected from a reference database of n species [i = 1.n] and a set of

mi phylogenetic profiles pj [j = 1.mi], corresponding to the

retrieved number of genes of species si.

Each profile pj is defined as a binary vector containing n values,

i.e.

Figure 2. Example distance diagram, showing the four different areas of interest. The specific diagram is derived from M. genitalium as
described, using the following parameters: no discretization process (both on fuzzy genome profiles and de-noized phylogenetic profile data –
therefore, parameter alpha is not applicable); SVD threshold l= 0.75; distance measure: cosine (default choice for real-value vectors). Evidently, most
genes in this case are found close to the main diagonal; this might not be the case for other species.
doi:10.1371/journal.pone.0052854.g002
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pj~ p1j p2j ::: pnj

� �
where p1j,p2j,:::,pnj[f0,1g:

The fuzzy phylogenetic profile fi of species si is defined as:

f i~

Pm
j~1

p1j

mi

Pm
j~1

p2j

mi
:::

Pm
j~1

pnj

mi

" #
ð1Þ

The fuzzy phylogenetic profile is a real-value vector of n

elements, as above (Equation 1). Each vector element in fi’
corresponds to the percentage of the genes in species si that are

also present in species si’ (or expressed, in case of expression) and

thus represents a composite, ‘average’ behaviour of the total set of

genes of the particular species. Genome profiles can thus be

described as a summary of all gene profiles of a single species, each

species being represented by a unique fuzzy genome profile. As a

result, it is obviously expected that a vector element in fi’
corresponding to species si should be equal to 1 (Figure 1). In this

study, we opted for a vertical representation, to distinguish fuzzy

profiles from the more typical horizontal representation of gene

profiles (Figure 1), while the maximal values of the genome

profile are self-hits.

The next step is to calculate the distance between phylogenetic

profiles of individual genes pj and the genome profiles both of the

same and different species fi. To achieve this, we need to define a

pair of distance values, reflecting the distance measure of the

individual gene profile against the same (intra-genome) and

different (inter-genome) species, correspondingly, as follows:

dist pj~(dist(pj,f i), min(dist(pj,f i
0 ), i=i

0
)) ð2Þ

where the first distance value clearly derives from the above

definitions, while the second distance value is taken as the

minimum of distances from all other reference species. This pair of

distances essentially represents how different each gene profile pj is

compared to its source genome (intra-genome distance) and the

closest reference species (minimum inter-genome distance – see

also below, Step 4).

Besides the minimum function in Equation 2, other approaches

could also be utilized, such as the arithmetic mean or a weighted

function of all distances involved. In fact, the selected function is

most appropriate for the given problem with regard to sensitivity

(experiments with other measures not shown – see below for more

information on the choice of distance metrics).

Step 2: Discretization of Fuzzy Phylogenetic Profiles
To achieve a crisper clustering, the fuzzy profile fi of a species

might be transformed to a de-fuzzified one fdi (or an original,

‘digital’ profile, i.e. containing binary values, as opposed to

‘analog’, i.e. containing continuous values). This procedure can be

performed as follows:

fdi~ fdi1, fdi2, :::, fdin½ �,where fdij

0,iff ijva

1,iff ij§a

�
ð3Þ

However, at this point we should consider the fact that

phylogenetic profiles are known to have high noise levels, thus

lowering their precision performance [14–16] (not shown). In

order to compensate for this issue and increase the desirable

contrast in the original phylogenetic data pj, an approach for

dimensionality (and thus noise) reduction is needed.

Step 3: Denoising of Phylogenetic Profiles with SVD
We have chosen to use Singular Value Decomposition (or SVD

for short) [31], and apply it subsequently for the denoising of

phylogenetic profiles pj of the species under consideration. This, to

our knowledge, is the first time that this approach has been used

for the processing of phylogenetic profile data under the highly

controlled conditions of a benchmark dataset [29] and on such a

scale.

Given an m6n matrix A, whose rank is r, the eigenvalues of

AAT are:

l1§l2§l3§:::lrwlrz1~:::~ln~0:

si~
ffiffiffiffi
li

p
is called singular value of A, where i = 1 … n.

Given an m6n matrix A, whose rank is r and m $ n, there exist

two orthogonal matrices Umxn~ u1,u2,:::,unð Þ and

Vnxn~ v1,v2,:::,vnð Þ such that:

A~USVT~
X
i~1,r

ui
:si
:vT

i ð4Þ

– where S~diag s1,s2,:::,snð Þ and si is the singular value of A.

Equation 4 is called the Singular Value Decomposition (SVD) of

A.

By selecting the top k values si of S s1§s2§:::§snð Þ and

setting the rest to 0, as part of the definition of SVD, we can

construct an approximate representation of A.

It is evident that this ‘‘approximate’’ representation can be

interpreted as ‘‘less noisy’’ regarding the particular case of

phylogenetic profiles, as we demonstrate further in this study.

The value of k can be selected by normalizing the values s i

between 0 and 1, and setting a coverage threshold l, or SVD

threshold. The values of s i that add up to the coverage level l (as

a percentage), are a sufficiently accurate representation of the

initial records at this coverage level. Consequently, the inverse

transformation will yield a real-valued m6n matrix A’.

To map to the phylogenetic profile data, each row of matrix A

corresponds to the profile pj of a single gene; the transformed

matrix retains this correspondence. In both cases, the number of

rows of both matrices is equal to the number of input phylogenetic

profiles.

In order to re-create a binary representation, an approximation

would be to set any value larger than a specific threshold a to 1,

and the rest to 0, according to Equation 3. Threshold a is

therefore the key parameter by which the de-fuzzification process

is achieved, with a representing the threshold cut-off value.

Interlude: Definition of Distance Metrics between Two
Vectors xr and xs

We use the following definitions as distance metrics further in

this study. The cosine distance measure is equivalent to one minus

the cosine of the included angle between points (treated as vectors).

Each centroid is the mean of the points in that cluster, after

normalizing those points to unit Euclidean length.

Fuzzy Phylogenetic Profiles
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Figure 3. Flow diagram of the fuzzy profile method – see Methods for details.
doi:10.1371/journal.pone.0052854.g003
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drs~ 1{
xrx

0
s

(x
0
rxr)

1=2(x
0
sxs)

1=2

 !

The Jaccard distance measure is equivalent to one minus the

Jaccard coefficient, also used in this context previously [13,20]. It

represents the percentage of nonzero coordinates that differ.

drs~
#½(xrj=xsj)\((xrj=0)|(xsj=0))�

#½(xrj=0)|(xsj=0)�

In practice the cosine metric is better suited for real-value

vectors, and Jaccard distance has been shown to be better fitted for

binary (discrete) vector distances [20].

These distance measures can be used for the comparison of

each gene profile against any genome profile (according to

Equation 2, in our case). As is evident from above, all profile

data are now de-fuzzified; consequently, we generally opted to

use Jaccard distance, after extensive comparisons. Since we do

not perform an all-against-all profile comparison (where one

could describe a clustering diagram capturing all profile-profile

distance data), comparison of gene profiles against genome

profiles only depends on the number of gene profiles in a linear

fashion thus achieving the desired performance. The computed

distance matrix capturing intra- and inter- genome relationships

is defined as a ‘distance diagram’.

Step 4: Determination of Profile Distances
Regardless of the actual distance metric used to detect the

inter2/intra-genome distances, the actual metric of Equation 2

allows a precise user-defined quantity by which individual gene

profiles can be compared against reference genomes (see also

above, Step 1). By laying out all corresponding values on a two-

dimensional graph with axes representing the source against the

other reference genomes, it is possible to distinguish varying

behaviours of individual genes against these backgrounds. In

particular, the following areas can be evidently seen on the

distance diagram of phylogenetic profiles (Figure 2).

This space can be decomposed into four areas:

a. Lower left, on-diagonal: in this area, genes have low distance

both in inter- and intra-genome comparisons. Typically, this

area would contain genes that are common in all species.

b. Upper right, on-diagonal: genes in this area have consistently

increasing distance from both inter- and intra-genome

comparisons.

c. Upper left, off-diagonal: genes in this area have high inter-

genomic and low intra-genomic distance. Typically, this area

would cover genome-specific genes.

d. Lower right, off-diagonal: genes in this area have low inter-

genomic and high intra-genomic distance. Typically, this area

would represent genes with unexpected phylogenetic/species

distributions, occasionally deriving from external ‘donor’

species.

The latter areas (c, d) are located at the off-diagonal sections of

this space and contain those genes with the least expected, ‘non-

canonical’ behaviour with respect to their source genomes,

according to the distance measures defined above. In other words,

the application of the fuzzy profile method and the mapping of

inter- and intra-genome differences on the distance diagram allow

the detection of genome idiosyncrasies. This stratification of genes

onto the four areas of the distance diagram with respect to the

genome profiles thus reveals those genes with particular phyloge-

netic distribution and possibly different biological histories.

These genes are either highly genome/species-specific (as in the

case of area c) or putative ‘foreign’ genes (as in the case of area d),

both requiring further investigation to establish their origins.

The entire four-step process can be depicted as a sequence on a

flow diagram, with the exception of the denoising step, which runs

in parallel (Figure 3).
We demonstrate the usefulness of fuzzy phylogenetic profiles for

the detection of certain categories of genes with a few character-

istic examples of off-diagonally distributed genes in this represen-

tation of genomic distance space (Figure 2).

Data Resources and Algorithms
Development and analysis were performed using data from the

ProfUse section of the COGENT++ environment [32], using the

original COGENT genome entries [33]. The latest ProfUse

version contains 243 species and 915,554 phylogenetic profiles;

these profiles are generated by database searching against the

COGENT collection as the target database. The 3,896 gene

profiles for the five reference species are made available as data

input (see below). For the five species selected, both the

phylogenetic profiles and the genome conservation scores were

generated as previously described [22]. Sequence matching and

database cross-referencing was performed using MagicMatch [34].

Any other database, sequence-matching algorithm and phyloge-

Figure 4. Simplified dendrogram representing the phyloge-
netic distances of the five reference species; COGENT species
codes are used for brevity.
doi:10.1371/journal.pone.0052854.g004

Table 1. Normalized phylogenetic distance values for the five
reference species, pictorially shown in Figure 5.

MGEN UURE SPYO BAPH NEQU

MGEN 0 0.7660 0.8250 0.8900 0.9740

UURE 0.7660 0 0.8500 0.9010 0.9810

SPYO 0.8250 0.8500 0 0.8300 0.9700

BAPH 0.8900 0.9010 0.8300 0 0.9750

NEQU 0.9740 0.9810 0.9700 0.9750 0

doi:10.1371/journal.pone.0052854.t001
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netic profile dataset can replace the above, since the framework is

generally applicable as implemented.

Results

To establish the method and validate it through a number of

experiments, we have selected five species with small genomes,

starting with the smallest and incorporating other small-genome

representative species with increasing phylogenetic distance from

the same taxonomic family, phylum and higher taxa, as described

elsewhere [29]. These five-species benchmark dataset was used to

perform parameter optimization, in addition to algorithm

development. Herein, we describe: (i) the establishment of the

benchmark dataset and a number of jack-knife tests to obtain

distance diagrams for the five species, (ii) parameter optimization,

(iii) an analysis of 12 outlier genes for the smallest genome and (iv)

report on a software package that can be used for larger-scale

analyses and further experimentation by the community.

Selection of the Five Reference Species
The 5 reference species used for the experiment process are the

following:

1. Mycoplasma genitalium, G-37 [35] (Bacteria; Firmicutes; Molli-

cutes; Mycoplasmatales) 479 genes, COGENT code: MGEN-

G37-01.

2. Ureaplasma urealyticum, serovar 3 [36] (Bacteria; Firmicutes;

Mollicutes; Mycoplasmatales) 613 genes, COGENT code:

UURE-SV3-01.

Figure 5. Distance matrix representing the distances between the five reference species, using the genome conservation metric
which ranges between 0 and 1 (normalized values) [22]. The diagonal self-distance values are evidently zero.
doi:10.1371/journal.pone.0052854.g005
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3. Streptococcus pyogenes M1, SF370 [37] (Bacteria; Firmicutes;

Bacilli; Lactobacillales) 1696 genes, COGENT code: SPYO-

SF3-01.

4. Buchnera aphidicola, SG [38] (Bacteria; Proteobacteria; Gamma-

proteobacteria; Enterobacteriales) 545 genes, COGENT code:

BAPH-XSG-01.

5. Nanoarchaeum equitans, Kin4-M [39] (Archaea; Nanoarchaeota)

563 genes, COGENT code: NEQU-N4M-01.

The total number of genes and corresponding profiles is 3,896.

Code names are used interchangeably with the full strain name, or

simply the species name (four-letter COGENT code pre-fix) in

text, for brevity. A simplified dendrogram representing the

phylogenetic relationships of the five species is shown in

Figure 4. The full phylogenetic tree is provided in File S1.

Genome distances were obtained from a full genome compar-

ison of 243 species [22]. The ‘genome conservation’ matrix

containing the distances for the five species is provided in Table 1
and visually in Figure 5. We regard the choice of reference

species, with the above criteria outlined, as part of the

experimental design supporting the proper validation of our

method.

Generation of Fuzzy Genome Profiles for the Reference
Species

Following the process as described previously, the fuzzy genome

profiles of the 5 species are shown in Figure 1.

It is important to observe that the differences between the fuzzy

profiles are more pronounced when the corresponding species

might be isolated (Figure 1), as measured by the actual

phylogenetic distances (Figures 4, 5), the most distant species

being N. equitans (Figure 1). This observation clearly supports the

validity of the methodological approach, by clearly highlighting

the phylogenetic distance of a species in this novel graphical

representation.

Using directly the genome fuzzy profiles as an ‘average’

representation of a genome for the gene phylogenetic profile

comparison, and using cosine as the distance metric, the following

distance diagrams can be produced (Figure 6).

Every gene is shown as a single point with the following

coordinates: {distance from the source species, minimum distance

from all other species}, in other words, {intra-genome distance,

minimum inter-genome distance} (Figure 6). It is interesting to

note that genes are primarily positioned along the main diagonal,

in most cases, with notable exceptions (e.g. N. equitans). In the case

of M. genitalium and U. urealyticum, there is a clear distribution of

genes along the diagonals, thus signifying the affinity of the two

species: for instance, in M. genitalium, most (sic typical) genes with

either low intra- or inter-genome distance exhibit similarities to S.

pyogenes, while the less typical genes (higher distances) are best

related to U. urealyticum – similarly, the case is valid for the distance

diagram of U. urealyticum, in a highly consistent fashion.

In the top three reference species distance diagrams, it is also

evident that few genes exhibit lowest distance to N. equitans, as off-

diagonal outliers (Figure 6). The most ‘unexpected’ behavior is

indeed exhibited by the latter species, with no clear pattern

emerging; this might be attributed partly to its distant phylogenetic

position with respect to the other four reference species (Figure 6,

lower right panel).

Overall, it can be argued that this novel representation

demonstrates clearly, and in a comparative mode, that the

method is able not only to delineate the differential phylogenetic

context of the gene profiles in a biologically meaningful manner,

but also stratify those genes within the distance space.

Transformation of Fuzzy Phylogenetic Profiles to De-
fuzzified Vectors

Despite the fact that the method is able to identify the source

genomes in this particular representation of genome profiles

(Figure 1), it is important to address issues of noise reduction and

obtain a crisper representation, much resembling the original

Figure 6. Distance diagrams of the 5 reference species. The upper-left panel representing M. genitalium is identical to Figure 2, except the
color-coding scheme. This scheme encodes the genome profile of the species that produced the minimum inter-genome distance, as in Figure 1.
Parameter settings as in Figure 2.
doi:10.1371/journal.pone.0052854.g006
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definition of phylogenetic profiles as binary vectors (Methods,

Step 2). To achieve this, we control fuzziness with the parameter Æ
(Equation 3).

By setting a low, permissive threshold value a= 0.2, the fuzzy

genome profiles are converted to ‘digital’ profiles, following the

original binary representation. In this extreme case, the five

genome profiles exhibit very high coverage of the database and

demonstrate, once again, the ability of the method to also stratify

entire genomes with respect to the target database content

(Figure 7). In either case, with the analog or digital profile

(Figures 1, 7, respectively), the genome profiles identify their

source genome as self-hits with varying degrees of success (the

more permissive the easier, as in the present case).

Comparing species B. aphidicola and N. equitans, this analog-to-

digital transformation is most pronounced (Figure 7). At the same

time, it is possible to assess the target database ‘enrichment’ or

over2/under-representation of a given species’ genome: B.

aphidicola is evidently over-represented than N. equitans, obviously

because of its relative phylogenetic position and the corresponding

species composition of the target database. Finally, in all cases, the

four other genomes are not able to identify N. equitans and a few

other, apparently distant, species (Figure 7). Conversely, N.

equitans shows a fairly uniform distribution of presence/absence of

its entire genome profile, for the same reasons. The corresponding

distance diagrams (cf. Figure 6) effectively produce no outliers,

while most points lie on the main diagonal (not shown).

Figure 7. Discretized fuzzy genome profiles of the 5 reference species, using a low, permissive fuzzy threshold a = 0.2.
doi:10.1371/journal.pone.0052854.g007

Fuzzy Phylogenetic Profiles
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At the other extreme of the de-fuzzification spectrum, with a

high, stringent threshold value a= 0.99, the situation reverses: the

‘digital’ genome profiles essentially identify themselves as self-hits,

against the target database. In this case, it is virtually impossible to

assess the enrichment or over2/under-representation of the

reference species against the entire data collection from which

the profiles are generated (Figure 8). One minor exception is the

ability of M. genitalium to identify M. pneumoniae (left panel,

Figure 8): for those species, the conservation distance between

them is 0.3080, whereas the minimum distance among the five

reference species considered here is 0.7660 (Table 1).

By setting the highest value of a= 1, each genome profile

recognizes only its source species: this uniquely flexible, param-

eter-driven representation provides the ability to conduct jack-

knife tests as discussed above.

Application of SVD Following Fuzzy Genome Profile
Generation

After significant experimentation (see below), we therefore

decided to perform validation experiments with the following

parameter set:

N de-fuzzification threshold a= 0.35;

Figure 8. Discretized fuzzy genome profiles of the 5 reference species, using a high, stringent threshold a = 0.99.
doi:10.1371/journal.pone.0052854.g008

Fuzzy Phylogenetic Profiles

PLOS ONE | www.plosone.org 10 January 2013 | Volume 8 | Issue 1 | e52854



N SVD threshold l= 0.75;

N Jaccard distance metric.

As should follow from the above, the threshold Æ represents a

middle value between the two extreme scenarios, with sufficient

database variability still maintained in the genome profiles

(Figure 9). Concurrently, we perform the de-noising step with

SVD, resulting in an approximate representation by setting a

coverage threshold l (see Methods) and measuring distance by

the Jaccard metric.

The distance diagrams for the five reference species chosen in

this analysis are significantly different (Figure 10), reflecting the

effects of the sensitive de-fuzzification threshold and the subse-

quent reconstruction of fuzzy profiles into binary profiles. The

most pronounced differences are exhibited in S. pyogenes and N.

equitans, where in the former case the distances are expanded due

to threshold values, while in the latter case the distances are

partioned into two off-diagonal groups with extreme inter- and

intra-genome distance values (Figure 10).

It should be noted that we have chosen to use SVD for the

denoising of the binary profile representation (Figure 3), as we

have discovered empirically that performing this step on a fuzzy

representation would create significant deviations from the original

phylogenetic signals (not shown). In other words, if the fuzzy

profiles are de-fuzzified, the use of SVD maintains data integrity.

Figure 9. Discretized fuzzy genome profiles of the 5 reference species, using a fuzzy threshold a = 0.35.
doi:10.1371/journal.pone.0052854.g009
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Search for Optimal Parameter Values
Evidently, the approach of fuzzy phylogenetic profiles critically

depends on the values of two numerical parameters namely a and

l, as well as the distance metric employed. We have seen above

situations where extreme values of parameter Æ are used and their

effects on the jack-knife validation results (Figures 7/8), along

with the optimal values we have chosen (Figure 9). To further

justify the choice of parameters, we also provide the full scope of

Figure 10. Distance diagrams of the 5 reference species, using the following parameters: fuzzy threshold a = 0.35; SVD threshold
l = 0.75; Jaccard distance metric. Corresponding fuzzy profiles are identical to those displayed in Figure 9 and color-coding as in Figure 6.
doi:10.1371/journal.pone.0052854.g010

Figure 11. Parameter optimization for threshold a. By keeping parameters distance metric (Jaccard) and SVD threshold l (0.75) constant, a is
set to different values (x-axis). Distance distributions for all genes are derived from the main diagonal and within the distance diagram; mean distance
is shown (y-axis). It is evident that there is an inflection point at a= 0.4 beyond which distances become sharply larger, thus indicating a higher
disparity of gene profiles and a divergence from the expected presence of their corresponding coordinates along the main diagonal. This value can
be taken as a maximal optimum value. Aiming at the most flexible value of a, without losing the on-diagonal presence of genes, an optimum range is
between 0.3 and 0.4, hence the selection of 0.35 as our default a value.
doi:10.1371/journal.pone.0052854.g011
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value exploration along the two numerical parameters and the

distance metric (File S2). Optimal values are selected with respect

to the mean distance of all points from the main diagonal, and the

transitioning of these lower/higher, optimal mean distance values

to higher/lower values assessed empirically by the choice of

‘inflection’ points of these curves (File S2, and example in

Figure 11).

In this case, we choose as an optimal value of parameter

a= 0.35, just before the mean distance curve climbs to higher

values with a .0.40 (Figure 11).

Biological Validation of Selected Cases
To further validate the approach beyond the technical matters

and the implicit jack-knife tests during the parameter search, we

have decided to explore in more detail twelve outliers from the M.

genitalium genome. These outliers are detected according to our

method at the lower-right off-diagonal area of the distance matrix,

with the following criteria for the Jaccard distance metric: i) intra-

genome distance $0.4, and ii) intra2/inter-genome distance ratio

$1.13, indicating a low inter-genomic and high intra-genomic

distance (see above) and thus atypical evolutionary histories

(Figure 12). Note that the latter does not necessarily imply

horizontal gene transfer (HGT), although for half of the cases there

is substantial evidence to support HGT (Table 2). We conclude

that the fuzzy profile method is able to detect certain instances of

HGT and other unusual phylogenetic distributions, under the

criteria employed here. Note that the choice of outliers might vary

according to the criteria set by users and the biological properties

of the system under investigation: one could decide to extend the

range of intra2/inter-genome distance values (Table 2) or,

reversely, restrict them to capture a more limited set of outliers.

Biological Validation of the M. genitalium Genome
Outliers

The phylogenetic profile outliers from M. genitalium are listed in

Table 2. Of these, there are reasons to believe that MG050 might

be a case of somewhat anomalous phylogenetic distribution

indicating HGT [40]. Similarly, genes MG214, MG380 (GidB),

MG041 (Hpr), MG454 (Ohr/OsmC [41]) and MG283 (ProS –

from: http://bioinfo.mbb.yale.edu/genome/MG/extra/merge.

db) are most likely cases of HGT, listed here with increasing

intra-genome distance values (Table 2). More subtle cases are the

group of genes MG062, MG063 and MG069, members of the

fructose/glucose phosphoenolpyruvate-dependent sugar phospho-

transferase transport system (PTS) and exclusively present in M.

Figure 12. Distance diagram for M. genitalium, with the twelve outlier genes highlighted (see also Table 2). This diagram corresponds to
the upper-left panel of Figure 10, with the same parameter settings.
doi:10.1371/journal.pone.0052854.g012
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genitalium compared to other species of the group, including M.

hominis and U. parvum [42]. The case of group containing genes

MG188/MG189 and MG293 is less clear, encoding two ABC

transporters and the glycerophosphoryl diester phosphodiesterase

GlpQ, all parts of glycerol transport and metabolism. In all, under

the defined criteria, we are able to detect 12 cases of putative

exogenous genes in M. genitalium, a number comparable with the

(possibly over-estimated) 50 or so genes detected as potential HGT

cases solely based on base composition [43].

Method Availability
We provide the entire module written in MATLAB and

sufficiently documented along with sample input data for further

experimentation by the community, as File S3. We have

performed analyses with various datasets of up to 20,000 profiles

in ,2 minutes on a typical workstation, with virtually linear

performance (not shown).

Discussion

The method presented here is demonstrated to be consistent

with the phylogenetic relation and position of the genes involved,

within a carefully chosen, highly controlled benchmark dataset

[29]. Thus, fuzzy phylogenetic profiles primarily address issues of

performance and noise reduction [20], delineating the evolution-

ary signal in genome-wide profile information. Singular value

decomposition (SVD) is utilized to increase the contrast function

within initial phylogenetic profile datasets. The parameters used

have been extensively explored: the SVD step does not affect

discrete (binary) genome-wide profile generation; the correspond-

ing threshold parameter l affects continuous genome-wide

Table 2. Twelve cases selected from the M. genitalium genome according to specified Jaccard distance metric cut-off values (see
text).

COGENT ID ID1

Intra-
genome
dist 11

Inter-
genome
dist Function

Taxa with
homologs Comments

MGEN-G37-01-
000288

MG283 0.8313 0.7105 prolyl-tRNA synthetase
(ProS)

Mollicutes, Firmicutes,
Prevotella

Belongs to the ProRS class II aaRS (present only
in some bacteria), archaeal/eukaryotic type

MGEN-G37-01-
000462

MG454 0.6587 0.5541 was: conserved
hypothetical protein,
Ohr/OsmC [41]

mostly Proteobacteria
(Shewanella, Vibrio,
Photobacterium), Bacili
(Enterococcus),
Actinomycetales

Unique in M. genitalium, absent in M. hominis
& U. parvum, as case MG062

MGEN-G37-01-
000065

MG063 0.6555 0.5789 1-phosphofructokinase
(FruK)

Mollicutes, Firmicutes,
Fervidobacterium,
Fusobacteriaceae, some
Proteobacteria

Unique in M. genitalium, absent in M. hominis
& U. parvum, as case MG062

MGEN-G37-01-
000041

MG041 0.5673 0.4870 phosphocarrier
protein HPr

Mollicutes, Firmicutes,
Thermotoga and Bacteroides

Absent in M. hominis, present in
U. parvum [42]

MGEN-G37-01-
000298

MG293 0.5668 0.5000 glycerophosphoryl
diester
phosphodiesterase
(GlpQ)

Mollicutes, Firmicutes,
Thermoproteaceae

Unique in M. genitalium, absent in
M. hominis & U. parvum, as case MG062

MGEN-G37-01-
000071

MG069 0.5337 0.4615 putative PTS system
glucose-specific EIICBA
component (PstG)

Mollicutes, Firmicutes Unique in M. genitalium, absent in
M. hominis & U. parvum, as case MG062

MGEN-G37-01-
000390

MG380 0.5144 0.4286 glucose-inhibited
division protein B
(GidB)

Mollicutes, Firmicutes,
Spirochaetales,
Thermotogaceae, some
Proteobacteria

Somewhat dispersed phylogenetic distribution,
Hydrogenothermaceae

MGEN-G37-01-
000064

MG062 0.5072 0.4167 fructose-permease IIBC
component (FruA)

Mollicutes, Firmicutes Unique in M. genitalium, absent in
M. hominis & U. parvum [42]

MGEN-G37-01-
000217

MG214 0.4327 0.3314 conserved
hypothetical protein

Mollicutes, Firmicutes Similarity to a gene from Ktedonobacter
racemifer

MGEN-G37-01-
000192

MG189 0.4234 0.3368 ABC transporter
(UgpE?)

Mollicutes, Firmicutes,
Actinobacteridae

As case MG188

MGEN-G37-01-
000050

MG050 0.4170 0.3472 deoxyribose-
phosphate aldolase
(DeoC)

Mollicutes, Firmicutes,
Flavobacteriales and
some Proteobacteria

Somewhat dispersed phylogenetic distribution,
similar to orthologs from Dictyoglomus sp.

MGEN-G37-01-
000191

MG188 0.4136 0.3155 ABC transporter
(UgpA?)

Mollicutes, Firmicutes Highly similar to group, glycerol transport

Both values have been experimentally validated to yield the maximum number of genes with respect to the trend across the main diagonal (Figure 12). Column names:
COGENT identifier, common identifier (ID), intra-genome and inter-genome distances, described function, taxonomic categories (taxa) with homologs of corresponding
genes and comments. The twelve cases are sorted by intra-genome distance in descending order, highlighting genes with the most anomalous phylogenetic
distribution first.
1putative cases of HGT are marked as bold in the ID column; remaining cases are classified into the Ugp/Glp and Fru/Pst groups;
11sorted by intra-genome distance.
doi:10.1371/journal.pone.0052854.t002
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profiles, with significantly less impact than the de-fuzzification

parameter a.

This approach presupposes the availability of a well-organized

database such as COGENT [33], so that issues of pre-processing,

ranking and validation are alleviated. For example, the generation

of genome trees [22] can assist during the pre-processing stage as

well as the definition of query and reference genomes [21]. The

full sampling of phylogenetic datasets with deterministic approach-

es for noise reduction eliminates the need for statistical analysis

and other stochastic treatment [17]. Moreover, our approach is

independent of the ranking order of database entries [13], both at

the level of phylogenetic profiles and reference species (i.e. genome

sequences).

Comparison of fuzzy profiles with other methods based on

statistics or ranked profiles indeed represents a highly interesting

avenue for future analysis, but it is clearly beyond the scope of the

present work. One limitation of the present method is its exact

nature, requiring from users to design analyses carefully; it is not a

data mining approach that returns the most prominent features in

any type of analysis: instead, the query dataset must be crafted in a

selective fashion.

Conclusions
Overall, the method is demonstrated to be extremely efficient,

both in terms of computational complexity and high scalability.

Moreover, it can be used as a validation approach for further

studies, including correlation with phenotypic information [25],

metagenomics datasets or metabolic pathways. In the near future,

we intend to explore the phylogenetic profile formalism for a wider

range of genomes and metagenomes as well as compare its

performance with ranked profiles [29].

Indeed, the methodology can be used as a pre-processing step

for several layers of genome analysis, including for instance the

detection of atypical genes and other genomic idiosyncrasies. On

the intra-genome level, the method can be utilized to identify

single genes that exhibit interesting, species- or genome-specific

traits. On the inter-genome level, whole genome collections can be

evaluated for phylogenetic correlation of outlier genes, potential

candidates of HGT. Ultimately, on the meta-genomic level, the

methodology can be used with metagenomic sets as queries against

genome collections for the detection of evolutionary and functional

relationships.
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